Exemplo n.º 1
0
int 
main(void)
{
	int             count = IN_COUNT;

	initbuffer();

	/* if(maxbits < INIT_BITS) maxbits = INIT_BITS; */
	/*
	 * With our setting, maxbits = 16, INIT_BITS = 9
	 */
	/* if (maxbits > BITS) maxbits = BITS; */
	maxbits = BITS;
	maxmaxcode = 1 << maxbits;

	InCnt = count;
	apsim_InCnt = IN_COUNT + 3;
	InBuff = (unsigned char *) orig_text_buffer;
	OutBuff = (unsigned char *) comp_text_buffer;

	compress();
#ifdef PRINT_RESULTS
        int i;
        for (i = 0; i < HSIZE; i++) {
          printf("compress: htab[%d] = %lu\n", i, htabof(i));
        }
#endif
        if(htabof(2) != 10485922) return (1);
	return (0);

}
Exemplo n.º 2
0
/*-
 * compress write
 *
 * Algorithm:  use open addressing double hashing (no chaining) on the
 * prefix code / next character combination.  We do a variant of Knuth's
 * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
 * secondary probe.  Here, the modular division first probe is gives way
 * to a faster exclusive-or manipulation.  Also do block compression with
 * an adaptive reset, whereby the code table is cleared when the compression
 * ratio decreases, but after the table fills.  The variable-length output
 * codes are re-sized at this point, and a special CLEAR code is generated
 * for the decompressor.  Late addition:  construct the table according to
 * file size for noticeable speed improvement on small files.  Please direct
 * questions about this implementation to ames!jaw.
 */
static int
zwrite(void *cookie, const char *wbp, int num)
{
	code_int i;
	int c, disp;
	struct s_zstate *zs;
	const u_char *bp;
	u_char tmp;
	int count;

	if (num == 0)
		return (0);

	zs = cookie;
	count = num;
	bp = wbp;
	if (state == S_MIDDLE)
		goto middle;
	state = S_MIDDLE;

	maxmaxcode = 1L << maxbits;
	if (fwrite(magic_header,
	    sizeof(char), sizeof(magic_header), fp) != sizeof(magic_header))
		return (-1);
	tmp = (u_char)((maxbits) | block_compress);
	if (fwrite(&tmp, sizeof(char), sizeof(tmp), fp) != sizeof(tmp))
		return (-1);

	offset = 0;
	bytes_out = 3;		/* Includes 3-byte header mojo. */
	out_count = 0;
	clear_flg = 0;
	ratio = 0;
	in_count = 1;
	checkpoint = CHECK_GAP;
	maxcode = MAXCODE(n_bits = INIT_BITS);
	free_ent = ((block_compress) ? FIRST : 256);

	ent = *bp++;
	--count;

	hshift = 0;
	for (fcode = (long)hsize; fcode < 65536L; fcode *= 2L)
		hshift++;
	hshift = 8 - hshift;	/* Set hash code range bound. */

	hsize_reg = hsize;
	cl_hash(zs, (count_int)hsize_reg);	/* Clear hash table. */

middle:	for (i = 0; count--;) {
		c = *bp++;
		in_count++;
		fcode = (long)(((long)c << maxbits) + ent);
		i = ((c << hshift) ^ ent);	/* Xor hashing. */

		if (htabof(i) == fcode) {
			ent = codetabof(i);
			continue;
		} else if ((long)htabof(i) < 0)	/* Empty slot. */
			goto nomatch;
		disp = hsize_reg - i;	/* Secondary hash (after G. Knott). */
		if (i == 0)
			disp = 1;
probe:		if ((i -= disp) < 0)
			i += hsize_reg;

		if (htabof(i) == fcode) {
			ent = codetabof(i);
			continue;
		}
		if ((long)htabof(i) >= 0)
			goto probe;
nomatch:	if (output(zs, (code_int) ent) == -1)
			return (-1);
		out_count++;
		ent = c;
		if (free_ent < maxmaxcode) {
			codetabof(i) = free_ent++;	/* code -> hashtable */
			htabof(i) = fcode;
		} else if ((count_int)in_count >=
		    checkpoint && block_compress) {
			if (cl_block(zs) == -1)
				return (-1);
		}
	}
	return (num);
}
Exemplo n.º 3
0
int main() {
    register long fcode;
    register code_int i = 0;
    register int c;
    register code_int ent;
#ifdef XENIX_16
    register code_int disp;
#else	/* Normal machine */
    register int disp;
#endif
    register code_int hsize_reg;
    register int hshift;

#ifndef COMPATIBLE
    if (nomagic == 0) {
	/* putchar(magic_header[0]); putchar(magic_header[1]);
	putchar((char)(maxbits | block_compress)); */
    }
#endif /* COMPATIBLE */

    offset = 0;
    bytes_out = 3;		/* includes 3-byte header mojo */
    out_count = 0;
    clear_flg = 0;
    ratio = 0;
    in_count = 1;

    printf("main: bytes_out %d... hsize %d\n", (int)bytes_out, (int)hsize);

    checkpoint = CHECK_GAP;
    maxcode = MAXCODE(n_bits = INIT_BITS);
    free_ent = ((block_compress) ? FIRST : 256 );


    ent = '\0'; /* getchar (); */

    hshift = 0;
    for ( fcode = (long) hsize;  fcode < 65536L; fcode *= 2L )
    	hshift++;
    hshift = 8 - hshift;		/* set hash code range bound */
    printf("main: hshift %d...\n", hshift);

    hsize_reg = hsize;
    cl_hash( (count_int) hsize_reg);		/* clear hash table */

/*#ifdef SIGNED_COMPARE_SLOW
    while ( (c = getchar()) != (unsigned) EOF ) {
#else
    while ( (c = getchar()) != EOF ) {
#endif*/
    printf("main: bytes_out %d...\n", (int)bytes_out);
    printf("main: hsize_reg %d...\n", (int)hsize_reg);
    printf("main: before compress %d...\n", (int)in_count);
    while (in_count < BYTES_TO_COMPRESS) {
        c = in_count % 255;
        
        printf("main: compressing %d...\n", (int)in_count);
	in_count++;
	fcode = (long) (((long) c << maxbits) + ent);
 	i = (((long)c << hshift) ^ ent);	/* xor hashing */
	
	if ( htabof (i) == fcode ) {
	    ent = codetabof (i);
	    continue;
	} else if ( (long)htabof (i) < 0 ) 	/* empty slot */
	    goto nomatch;
	 
 	disp = hsize_reg - i;		/* secondary hash (after G. Knott) */
	if ( i == 0 )
	    disp = 1;
probe:
	if ( (i -= disp) < 0 )
	    i += hsize_reg;

	if ( htabof (i) == fcode ) {
	    ent = codetabof (i);
	    continue;
	}
	if ( (long)htabof (i) > 0 ) 
	    goto probe;
nomatch:
	output ( (code_int) ent );
	out_count++;
 	ent = c;
#ifdef SIGNED_COMPARE_SLOW
	if ( (unsigned) free_ent < (unsigned) maxmaxcode) {
#else
	if ( free_ent < maxmaxcode ) {
#endif
 	    codetabof (i) = free_ent++;	/* code -> hashtable */
	    htabof (i) = fcode;
	}
	else if ( (count_int)in_count >= checkpoint && block_compress )
	    cl_block ();
    }
    /*
     * Put out the final code.
     */
    printf("main: output...\n");
    output( (code_int)ent );
    out_count++;
    output( (code_int)-1 );

    if(bytes_out > in_count)	/* exit(2) if no savings */
	exit_stat = 2;
    printf("main: end...\n");
    report (0xdeaddead);
    return 0;
}

/*****************************************************************
 * TAG( output )
 *
 * Output the given code.
 * Inputs:
 * 	code:	A n_bits-bit integer.  If == -1, then EOF.  This assumes
 *		that n_bits =< (long)wordsize - 1.
 * Outputs:
 * 	Outputs code to the file.
 * Assumptions:
 *	Chars are 8 bits long.
 * Algorithm:
 * 	Maintain a BITS character long buffer (so that 8 codes will
 * fit in it exactly).  Use the VAX insv instruction to insert each
 * code in turn.  When the buffer fills up empty it and start over.
 */

static char buf[BITS];

#ifndef vax
char_type lmask[9] = {0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00};
char_type rmask[9] = {0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};
#endif /* vax */

void output( code )
code_int  code;
{

    /*
     * On the VAX, it is important to have the register declarations
     * in exactly the order given, or the asm will break.
     */
    register int r_off = offset, bits= n_bits;
    register char * bp = buf;

    if ( code >= 0 ) {
#ifdef vax
	/* VAX DEPENDENT!! Implementation on other machines is below.
	 *
	 * Translation: Insert BITS bits from the argument starting at
	 * offset bits from the beginning of buf.
	 */
	0;	/* Work around for pcc -O bug with asm and if stmt */
	asm( "insv	4(ap),r11,r10,(r9)" );
#else /* not a vax */
/* 
 * byte/bit numbering on the VAX is simulated by the following code
 */
	/*
	 * Get to the first byte.
	 */
	bp += (r_off >> 3);
	r_off &= 7;
	/*
	 * Since code is always >= 8 bits, only need to mask the first
	 * hunk on the left.
	 */
	*bp = (*bp & rmask[r_off]) | ((code << r_off) & lmask[r_off]);
	bp++;
	bits -= (8 - r_off);
	code >>= 8 - r_off;
	/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
	if ( bits >= 8 ) {
	    *bp++ = code;
	    code >>= 8;
	    bits -= 8;
	}
	/* Last bits. */
	if(bits)
	    *bp = code;
#endif /* vax */
	offset += n_bits;
	if ( offset == (n_bits << 3) ) {
	    bp = buf;
	    bits = n_bits;
	    bytes_out += bits;
	/*    do
		putchar(*bp++); */
	    while(--bits);
	    offset = 0;
	}

	/*
	 * If the next entry is going to be too big for the code size,
	 * then increase it, if possible.
	 */
	if ( free_ent > maxcode || (clear_flg > 0))
	{
	    /*
	     * Write the whole buffer, because the input side won't
	     * discover the size increase until after it has read it.
	     */
	    if ( offset > 0 ) {
		/* if( fwrite( buf, 1, n_bits, stdout ) != n_bits)
			writeerr(); */
		bytes_out += n_bits;
	    }
	    offset = 0;

	    if ( clear_flg ) {
    	        maxcode = MAXCODE (n_bits = INIT_BITS);
	        clear_flg = 0;
	    }
	    else {
	    	n_bits++;
	    	if ( n_bits == maxbits )
		    maxcode = maxmaxcode;
	    	else
		    maxcode = MAXCODE(n_bits);
	    }
	}
    } else {
Exemplo n.º 4
0
void 
compress(void)
{
	register long   fcode;
	register code_int i = 0;
	register int    c;
	register code_int ent;
	register int    disp;
	register code_int hsize_reg;
	register int    hshift;


	offset = 0;
	bytes_out = 3;		/* includes 3-byte header mojo */
	out_count = 0;
	clear_flg = 0;
	ratio = 0;
	in_count = 1;
	checkpoint = CHECK_GAP;
	maxcode = MAXCODE(n_bits = INIT_BITS);
	free_ent = ((block_compress) ? (FIRST) : (256));

	ent = getbyte();

	hshift = 0;
	for (fcode = (long) hsize; fcode < 65536L; fcode *= 2L) {
		hshift++;
	}

	hshift = 8 - hshift;	/* set hash code range bound */

	hsize_reg = hsize;
	cl_hash((count_int) hsize_reg);	/* clear hash table */


	while (InCnt > 0) {	/* apsim_loop 11 0 */
		int             apsim_bound111 = 0;

		c = getbyte();	/* decrements InCnt */

		in_count++;
		fcode = (long) (((long) c << maxbits) + ent);
		i = ((c << hshift) ^ ent);	/* xor hashing */

		if (htabof(i) == fcode) {
			ent = codetabof(i);
			continue;
		} else if ((long) htabof(i) < 0) {	/* empty slot */
			goto nomatch;
		}
		disp = hsize_reg - i;	/* secondary hash (after G. Knott) */
		if (i == 0) {
			disp = 1;
		}
probe:

		if ((i -= disp) < 0) {	/* apsim_loop 111 11 */
			i += hsize_reg;
		}
		if (htabof(i) == fcode) {
			ent = codetabof(i);
			continue;
		}
		if ((long) htabof(i) > 0 && (++apsim_bound111 < in_count))
			goto probe;
nomatch:

		out_count++;
		ent = c;
		if (free_ent < maxmaxcode) {
			codetabof(i) = free_ent++;	/* apsim_unknown codetab */
			htabof(i) = fcode;	/* apsim_unknown htab */
		} else if (((count_int) in_count >= checkpoint) && (block_compress)) {
			cl_block();
		}
	}
	if (bytes_out > in_count) {	/* exit(2) if no savings */
		exit_stat = 2;
	}
	return;
}
Exemplo n.º 5
0
compress() {
    register long fcode;
    register code_int i = 0;
    register int c;
    register code_int ent;
#ifdef XENIX_16
    register code_int disp;
#else	/* Normal machine */
    register int disp;
#endif
    register code_int hsize_reg;
    register int hshift;

#ifndef COMPATIBLE
    if (nomagic == 0) {
	putbyte(magic_header[0]); putbyte(magic_header[1]);
	putbyte((char)(maxbits | block_compress));
    }
#endif /* COMPATIBLE */

    offset = 0;
    bytes_out = 3;		/* includes 3-byte header mojo */
    out_count = 0;
    clear_flg = 0;
    ratio = 0;
    in_count = 1;
    checkpoint = CHECK_GAP;
    maxcode = MAXCODE(n_bits = INIT_BITS);
    free_ent = ((block_compress) ? FIRST : 256 );

    ent = getbyte ();

    hshift = 0;
    for ( fcode = (long) hsize;  fcode < 65536L; fcode *= 2L )
    	hshift++;
    hshift = 8 - hshift;		/* set hash code range bound */

    hsize_reg = hsize;
    cl_hash( (count_int) hsize_reg);		/* clear hash table */

#ifdef SIGNED_COMPARE_SLOW
    while ( (c = getbyte()) != (unsigned) EOF ) {
#else
    while ( (c = getbyte()) != EOF ) {
#endif
	in_count++;
	fcode = (long) (((long) c << maxbits) + ent);
 	i = ((c << hshift) ^ ent);	/* xor hashing */

	if ( htabof (i) == fcode ) {
	    ent = codetabof (i);
	    continue;
	} else if ( (long)htabof (i) < 0 )	/* empty slot */
	    goto nomatch;
 	disp = hsize_reg - i;		/* secondary hash (after G. Knott) */
	if ( i == 0 )
	    disp = 1;
probe:
	if ( (i -= disp) < 0 )
	    i += hsize_reg;

	if ( htabof (i) == fcode ) {
	    ent = codetabof (i);
	    continue;
	}
	if ( (long)htabof (i) > 0 ) 
	    goto probe;
nomatch:
	output ( (code_int) ent );
	out_count++;
 	ent = c;
#ifdef SIGNED_COMPARE_SLOW
	if ( (unsigned) free_ent < (unsigned) maxmaxcode) {
#else
	if ( free_ent < maxmaxcode ) {
#endif
 	    codetabof (i) = free_ent++;	/* code -> hashtable */
	    htabof (i) = fcode;
	}
	else if ( (count_int)in_count >= checkpoint && block_compress )
	    cl_block ();
    }
    /*
     * Put out the final code.
     */
    output( (code_int)ent );
    out_count++;
    output( (code_int)-1 );

    /*
     * Print out stats on stderr
     */
    if(zcat_flg == 0 && !quiet) {
#ifdef DEBUG
	fprintf( stderr,
		"%ld chars in, %ld codes (%ld bytes) out, compression factor: ",
		in_count, out_count, bytes_out );
	prratio( stderr, in_count, bytes_out );
	fprintf( stderr, "\n");
	fprintf( stderr, "\tCompression as in compact: " );
	prratio( stderr, in_count-bytes_out, in_count );
	fprintf( stderr, "\n");
	fprintf( stderr, "\tLargest code (of last block) was %d (%d bits)\n",
		free_ent - 1, n_bits );
#else /* !DEBUG */
	fprintf( stderr, "Compression: " );
	prratio( stderr, in_count-bytes_out, in_count );
#endif /* DEBUG */
    }
    if(bytes_out > in_count)	/* exit(2) if no savings */
	exit_stat = 2;
    return;
}

/*****************************************************************
 * TAG( output )
 *
 * Output the given code.
 * Inputs:
 * 	code:	A n_bits-bit integer.  If == -1, then EOF.  This assumes
 *		that n_bits =< (long)wordsize - 1.
 * Outputs:
 * 	Outputs code to the file.
 * Assumptions:
 *	Chars are 8 bits long.
 * Algorithm:
 * 	Maintain a BITS character long buffer (so that 8 codes will
 * fit in it exactly).  Use the VAX insv instruction to insert each
 * code in turn.  When the buffer fills up empty it and start over.
 */

static char buf[BITS];

char_type lmask[9] = {0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00};
char_type rmask[9] = {0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};

output( code )
code_int  code;
{
#ifdef DEBUG
    static int col = 0;
#endif /* DEBUG */

    /*
     * On the VAX, it is important to have the register declarations
     * in exactly the order given, or the asm will break.
     */
    register int r_off = offset, bits= n_bits;
    register char * bp = buf;

#ifdef DEBUG
	if ( verbose )
	    fprintf( stderr, "%5d%c", code,
		    (col+=6) >= 74 ? (col = 0, '\n') : ' ' );
#endif /* DEBUG */
    if ( code >= 0 ) {
/* 
 * byte/bit numbering on the VAX is simulated by the following code
 */
	/*
	 * Get to the first byte.
	 */
	bp += (r_off >> 3);
	r_off &= 7;
	/*
	 * Since code is always >= 8 bits, only need to mask the first
	 * hunk on the left.
	 */
	*bp = (*bp & rmask[r_off]) | (code << r_off) & lmask[r_off];
	bp++;
	bits -= (8 - r_off);
	code >>= 8 - r_off;
	/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
	if ( bits >= 8 ) {
	    *bp++ = code;
	    code >>= 8;
	    bits -= 8;
	}
	/* Last bits. */
	if(bits)
	    *bp = code;
	offset += n_bits;
	if ( offset == (n_bits << 3) ) {
	    bp = buf;
	    bits = n_bits;
	    bytes_out += bits;
	    do
		putbyte(*bp++);
	    while(--bits);
	    offset = 0;
	}

	/*
	 * If the next entry is going to be too big for the code size,
	 * then increase it, if possible.
	 */
	if ( free_ent > maxcode || (clear_flg > 0))
	{
	    /*
	     * Write the whole buffer, because the input side won't
	     * discover the size increase until after it has read it.
	     */
	    if ( offset > 0 ) {
		writebytes( buf, n_bits );
		bytes_out += n_bits;
	    }
	    offset = 0;

	    if ( clear_flg ) {
    	        maxcode = MAXCODE (n_bits = INIT_BITS);
	        clear_flg = 0;
	    }
	    else {
	    	n_bits++;
	    	if ( n_bits == maxbits )
		    maxcode = maxmaxcode;
	    	else
		    maxcode = MAXCODE(n_bits);
	    }
#ifdef DEBUG
	    if ( debug ) {
		fprintf( stderr, "\nChange to %d bits\n", n_bits );
		col = 0;
	    }
#endif /* DEBUG */
	}
    } else {
	/*
	 * At EOF, write the rest of the buffer.
	 */
	if ( offset > 0 )