Exemplo n.º 1
0
void reverse_subg(giant a, giant b)
/* b := a - b; requires b, a non-negative and a >= b. */
{
	int 			j, size = a->sign;
	unsigned int	k;

	k = 0;
	for (j = 0; j < b->sign; ++j)
	{
		k += 0xffff - b->n[j] + a->n[j];
		b->n[j] = (unsigned short)(k & 0xffff);
		k >>= 16;
	}
	for (j = b->sign; j < size; ++j)
	{
		k += 0xffff + a->n[j];
		b->n[j] = (unsigned short)(k & 0xffff);
		k >>= 16;
	}

	b->sign = size; /* REC, 21 Apr 1996. */
	if (b->n[0] == 0xffff)
		iaddg(1, b);
	else
		++b->n[0];

	while (!b->n[--size]);

	b->sign = size + 1;
}
Exemplo n.º 2
0
/*
 * Completely rewritten in CryptKit-18, 13 Jan 1997, for new IEEE-style
 * curveParameters.
 */
int which_curve(giant x, curveParams *par)
 /* Returns (+-1) depending on whether x is on curve
   (+-)y^2 = x^3 + c x^2 + a x + b.
 */
{
    giant t1;
    giant t2;
    giant t3;
    int result;
    PROF_START;

    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);
    t3 = borrowGiant(par->maxDigits);

   /* First, set t2:= x^3 + c x^2 + a x + b. */
    gtog(x, t2); addg(par->c, t2);
    mulg(x, t2); addg(par->a, t2);  /* t2 := x^2 + c x + a. */
    feemod(par, t2);
    mulg(x, t2); addg(par->b, t2);
    feemod(par, t2);
    /* Next, test whether t2 is a square. */
    gtog(t2, t1);
    make_base(par, t3); iaddg(1, t3); gshiftright(1, t3); /* t3 = (p+1)/2. */
    feepowermodg(par, t1, t3); 		      /* t1 := t2^((p+1)/2) (mod p). */
    if(gcompg(t1, t2) == 0)
            result = CURVE_PLUS;
    else
            result = CURVE_MINUS;
    returnGiant(t1);
    returnGiant(t2);
    returnGiant(t3);
    PROF_END(whichCurveTime);
    return result;
}
Exemplo n.º 3
0
void normal_subg(giant a, giant b)
/* b := b - a; requires b, a non-negative and b >= a. */
{
	int 			j, size = b->sign;
	unsigned int	k;

	if (a->sign == 0)
		return;

	k = 0;
	for (j = 0; j < a->sign; ++j)
	{
		k += 0xffff - a->n[j] + b->n[j];
		b->n[j] = (unsigned short)(k & 0xffff);
		k >>= 16;
	}
	for (j = a->sign; j < size; ++j)
	{
		k += 0xffff + b->n[j];
		b->n[j] = (unsigned short)(k & 0xffff);
		k >>= 16;
	}

	if (b->n[0] == 0xffff)
		iaddg(1, b);
	else
		++b->n[0];

	while ((size-- > 0) && (b->n[size] == 0));

	b->sign = (b->n[size] == 0) ? 0 : size + 1;
}
Exemplo n.º 4
0
main(int argc, char **argv) {
    giant p = newgiant(CM_SHORTS);
	giant u = newgiant(CM_SHORTS);
	giant v = newgiant(CM_SHORTS);
	giant g[6];
    giant plus_order = newgiant(CM_SHORTS);
    giant minus_order = newgiant(CM_SHORTS);
	giant a = newgiant(CM_SHORTS);
    giant b = newgiant(CM_SHORTS);
    int d, dc, olen, k;

    init_tools(CM_SHORTS);    /* Basic algorithms. */
    printf("Give base prime p:\n"); fflush(stdout);
    gin(p);
    for(dc=0; dc < 6; dc++) g[dc] = newgiant(CM_SHORTS);
    for(dc = 0; dc < DCOUNT; dc++) {
			d = disc12[dc];
			/* Next, seek representation 4N = u^2 + |d| v^2. */
			if(cornacchia4(p, d, u, v) == 0) continue;
/* Here, (u,v) give the quadratic representation of 4p. */
			printf("D: %d\n", d); fflush(stdout);
			gtog(u, g[0]);
			switch(d) {
				case -3: olen = 3;  /* Six orders: p + 1 +- g[0,1,2]. */
						gtog(u, g[1]); gtog(v, g[2]);
						addg(g[2], g[2]); addg(v, g[2]); /* g[2] := 3v. */
						addg(g[2], g[1]); gshiftright(1, g[1]);  /* g[1] = (u + 3v)/2. */
						subg(u, g[2]); gshiftright(1, g[2]); absg(g[2]); /* g[2] = |u-3v|/2. */
						break;
				case -4: olen = 2;  /* Four orders: p + 1 +- g[0,1]. */
						gtog(v, g[1]); addg(g[1], g[1]); /* g[1] = 2v. */
						break;
				default: olen = 1;  /* Two orders: p + 1 +- g[0]. */
			}
			for(k=0; k < olen; k++) {
				 gtog(p, plus_order); iaddg(1, plus_order);
				 gtog(p, minus_order); iaddg(1, minus_order);
				 addg(g[k], plus_order);
				 subg(g[k], minus_order);
				 printf("curve orders: \n");
				 printf("(%d) ", prime_probable(plus_order));
                 gout(plus_order);
				 printf("(%d) ", prime_probable(minus_order));
				 gout(minus_order);
			}
   }
}
Exemplo n.º 5
0
/*
 * New optimzation of curveOrderJustify using known reciprocal, 11 June 1997.
 * g is set to be within [2, curveOrder-2].
 */
static void curveOrderJustifyWithRecip(giant g, giant curveOrder, giant recip)
{
    giant tmp;

    CKASSERT(!isZero(curveOrder));

    modg_via_recip(curveOrder, recip, g);	// g now in [0, curveOrder-1]

    if(isZero(g)) {
    	/*
	 * First degenerate case - (g == 0) : set g := 2
	 */
	dbgLog(("curveOrderJustify: case 1\n"));
   	int_to_giant(2, g);
	return;
    }
    if(isone(g)) {
    	/*
	 * Second case - (g == 1) : set g := 2
	 */
 	dbgLog(("curveOrderJustify: case 2\n"));
   	int_to_giant(2, g);
	return;
    }
    tmp = borrowGiant(g->capacity);
    gtog(g, tmp);
    iaddg(1, tmp);
    if(gcompg(tmp, curveOrder) == 0) {
    	/*
	 * Third degenerate case - (g == (curveOrder-1)) : set g -= 1
	 */
	dbgLog(("curveOrderJustify: case 3\n"));
	int_to_giant(1, tmp);
	subg(tmp, g);
    }
    returnGiant(tmp);
    return;
}
Exemplo n.º 6
0
void findPointProj(pointProj pt, giant seed, curveParams *cp)
/* Starting with seed, finds a random (projective) point {x,y,1} on curve.
 */
{
	giant x = pt->x, y = pt->y, z = pt->z;

	CKASSERT(cp->curveType == FCT_Weierstrass);
	feemod(cp, seed);
    	while(1) {
		gtog(seed, x);
		gsquare(x); feemod(cp, x);	// x := seed^2
		addg(cp->a, x);			// x := seed^2 + a
		mulg(seed,x); 			// x := seed^3 + a*seed
		addg(cp->b, x);
		feemod(cp, x);			// x := seed^3 + a seed + b.
		/* test cubic form for having root. */
		if(sqrtmod(x, cp)) break;
		iaddg(1, seed);
	}
	gtog(x, y);
    	gtog(seed,x);
	int_to_giant(1, z);
}
Exemplo n.º 7
0
void
main(
	void
)
{
	giant 		x = newgiant(INFINITY), y = newgiant(INFINITY),
				p = newgiant(INFINITY), r = newgiant(100);
	int 		j;

   	printf("Give two integers x, y on separate lines:\n");
   	gin(x); 
   	gin(y); 

   	gtog(y, p);  /* p := y */
   	mulg(x, p);
   	printf("y * x = "); 
   	gout(p);

  	gtog(y, p);
   	subg(x, p);
   	printf("y - x = "); 
   	gout(p);

   	gtog(y, p);
   	addg(x, p);
   	printf("y + x = "); 
   	gout(p);

   	gtog(y, p);
   	divg(x, p);
   	printf("y div x = "); 
   	gout(p);

   	gtog(y, p);
   	modg(x, p);
   	printf("y mod x = "); 
   	gout(p);

   	gtog(y, p);
   	gcdg(x, p);
   	printf("GCD(x, y) = "); 
   	gout(p);
 
	/* Next, test which of x, y is greater. */
   	if (gcompg(x, y) < 0 ) 
   		printf("y is greater\n");
	else if (gcompg(x,y) == 0) 
		printf("x, y equal\n");
	else 
		printf("x is greater\n");

	/* Next, we see how a giant struct is comprised.
   	 * We make a random, bipolar number of about 100 
   	 * digits in base 65536. 
   	 */
	for (j=0; j < 100; j++) 
	{  /* Fill 100 digits randomly. */
		r->n[j] = (unsigned short)rand();
   	}
   	r->sign = 100 * (1 - 2*(rand()%2));

	/* Next, don't forget to check for leading zero digits,
     * even though such are unlikely. 
     */
   	j = abs(r->sign) - 1;
   	while ((r->n[j] == 0) && (j > 0)) 
   	{
   		--j;
   	}
   	r->sign = (j+1) * ((r->sign > 0) ? 1: -1);
   	printf("The random number: "); gout(r);

	/* Next, compare a large-FFT multiply with a standard,
     * grammar-school multiply. 
     */
   	itog(1, x); 
   	gshiftleft(65536, x); 
   	iaddg(1, x);
   	itog(5, y); 
   	gshiftleft(30000, y); 
   	itog(1, p); 
   	subg(p, y); 
	/* Now we multiply (2^65536 + 1)*(5*(2^30000) - 1). */
   	gtog(y, p);
   	mulg(x, p);  /* Actually invokes FFT method because
					bit lengths of x, y are sufficiently large. */
   	printf("High digit of (2^65536 + 1)*(5*(2^30000) - 1) via FFT mul: %d\n", (int) p->n[abs(p->sign)-1]);
   	fflush(stdout);
   	gtog(y, p);
   	grammarmulg(x, p);  /* Grammar-school method. */
   	printf("High digit via grammar-school mul: %d\n", (int) p->n[abs(p->sign)-1]);
   	fflush(stdout);

	/* Next, perform Fermat test for pseudoprimality. */
   	printf("Give prime candidate p:\n");
   	gin(p); 
   	gtog(p, y);
   	itog(1, x); subg(x, y);
   	itog(2, x);
   	powermodg(x, y, p);
   	if (isone(x)) 
   		printf("p is probably prime.\n");
	else 
		printf("p is composite.\n");
}
Exemplo n.º 8
0
static int sqrtmod(giant x, curveParams *cp)
/* If Sqrt[x] (mod p) exists, function returns 1, else 0.
   In either case x is modified, but if 1 is returned,
   x:= Sqrt[x] (mod p).
 */
{
	int rtn;
	giant t0 = borrowGiant(cp->maxDigits);
	giant t1 = borrowGiant(cp->maxDigits);
	giant t2 = borrowGiant(cp->maxDigits);
	giant t3 = borrowGiant(cp->maxDigits);
	giant t4 = borrowGiant(cp->maxDigits);

	giant p = cp->basePrime;

    	feemod(cp, x);			/* Justify the argument. */
    	gtog(x, t0);  /* Store x for eventual validity check on square root. */
    	if((p->n[0] & 3) == 3) {  /* The case p = 3 (mod 4). */
		gtog(p, t1);
		iaddg(1, t1); gshiftright(2, t1);
		powermodg(x, t1, cp);
		goto resolve;
    	}
	/* Next, handle case p = 5 (mod 8). */
    	if((p->n[0] & 7) == 5) {
		gtog(p, t1); int_to_giant(1, t2);
		subg(t2, t1); gshiftright(2, t1);
		gtog(x, t2);
		powermodg(t2, t1, cp);  /* t2 := x^((p-1)/4) % p. */
		iaddg(1, t1);
		gshiftright(1, t1); /* t1 := (p+3)/8. */
		if(isone(t2)) {
			powermodg(x, t1, cp);  /* x^((p+3)/8) is root. */
			goto resolve;
		} else {
			int_to_giant(1, t2); subg(t2, t1);
				/* t1 := (p-5)/8. */
			gshiftleft(2,x);
			powermodg(x, t1, cp);
			mulg(t0, x); addg(x, x); feemod(cp, x);
				/* 2x (4x)^((p-5)/8. */
			goto resolve;
		}
	}

	/* Next, handle tougher case: p = 1 (mod 8). */
	int_to_giant(2, t1);
	while(1) {  /* Find appropriate nonresidue. */
		gtog(t1, t2);
		gsquare(t2); subg(x, t2); feemod(cp, t2);
		if(jacobi_symbol(t2, cp) == -1) break;
		iaddg(1, t1);
	}  /* t2 is now w^2 in F_p^2. */
   	int_to_giant(1, t3);
   	gtog(p, t4); iaddg(1, t4); gshiftright(1, t4);
	powFp2(t1, t3, t2, t4, cp);
	gtog(t1, x);

resolve:
   	gtog(x,t1); gsquare(t1); feemod(cp, t1);
    	if(gcompg(t0, t1) == 0) {
		rtn = 1; 	/* Success. */
	}
	else {
		rtn = 0;	/* no square root */
	}
	returnGiant(t0);
	returnGiant(t1);
	returnGiant(t2);
	returnGiant(t3);
	returnGiant(t4);
	return rtn;
}
Exemplo n.º 9
0
/*
 * Completely rewritten in CryptKit-18, 13 Jan 1997, for new IEEE-style
 * curveParameters.
 */
void elliptic_add(giant x1, giant x2, giant x3, curveParams *par, int s) {

 /* Addition algorithm for x3 = x1 + x2 on the curve, with sign ambiguity s.
    From theory, we know that if {x1,1} and {x2,1} are on a curve, then
    their elliptic sum (x1,1} + {x2,1} = {x3,1} must have x3 as one of two
    values:

       x3 = U/2 + s*Sqrt[U^2/4 - V]

    where sign s = +-1, and U,V are functions of x1,x2.  Tho present function
    is called a maximum of twice, to settle which of +- is s.  When a call
    is made, it is guaranteed already that x1, x2 both lie on the same curve
    (+- curve); i.e., which curve (+-) is not connected at all with sign s of
    the x3 relation.
  */

    giant cur_n;
    giant t1;
    giant t2;
    giant t3;
    giant t4;
    giant t5;

    PROF_START;
    cur_n = borrowGiant(par->maxDigits);
    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);
    t3 = borrowGiant(par->maxDigits);
    t4 = borrowGiant(par->maxDigits);
    t5 = borrowGiant(par->maxDigits);

    if(gcompg(x1, x2)==0) {
	int_to_giant(1, t1);
	numer_double(x1, t1, x3, par);
	denom_double(x1, t1, t2, par);
	binvg_cp(par, t2);
	mulg(t2, x3); feemod(par, x3);
	goto out;
    }
    numer_plus(x1, x2, t1, par);
    int_to_giant(1, t3);
    numer_times(x1, t3, x2, t3, t2, par);
    int_to_giant(1, t4); int_to_giant(1, t5);
    denom_times(x1, t4, x2, t5, t3, par);
    binvg_cp(par, t3);
    mulg(t3, t1); feemod(par, t1); /* t1 := U/2. */
    mulg(t3, t2); feemod(par, t2); /* t2 := V. */
    /* Now x3 will be t1 +- Sqrt[t1^2 - t2]. */
    gtog(t1, t4); gsquare(t4); feemod(par, t4);
    subg(t2, t4);
    make_base(par, cur_n); iaddg(1, cur_n); gshiftright(2, cur_n);
    	/* cur_n := (p+1)/4. */
    feepowermodg(par, t4, cur_n);      /* t4 := t2^((p+1)/4) (mod p). */
    gtog(t1, x3);
    if(s != SIGN_PLUS) negg(t4);
    addg(t4, x3);
    feemod(par, x3);

out:
    returnGiant(cur_n);
    returnGiant(t1);
    returnGiant(t2);
    returnGiant(t3);
    returnGiant(t4);
    returnGiant(t5);

    PROF_END(ellAddTime);
}