Exemplo n.º 1
0
   Subroutine */ int igraphdgeevx_(char *balanc, char *jobvl, char *jobvr, char *
	sense, integer *n, doublereal *a, integer *lda, doublereal *wr, 
	doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr, 
	integer *ldvr, integer *ilo, integer *ihi, doublereal *scale, 
	doublereal *abnrm, doublereal *rconde, doublereal *rcondv, doublereal 
	*work, integer *lwork, integer *iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
	    i__2, i__3;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, k;
    doublereal r__, cs, sn;
    char job[1];
    doublereal scl, dum[1], eps;
    char side[1];
    doublereal anrm;
    integer ierr, itau;
    extern /* Subroutine */ int igraphdrot_(integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *);
    integer iwrk, nout;
    extern doublereal igraphdnrm2_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    integer icond;
    extern logical igraphlsame_(char *, char *);
    extern doublereal igraphdlapy2_(doublereal *, doublereal *);
    extern /* Subroutine */ int igraphdlabad_(doublereal *, doublereal *), igraphdgebak_(
	    char *, char *, integer *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *), 
	    igraphdgebal_(char *, integer *, doublereal *, integer *, integer *, 
	    integer *, doublereal *, integer *);
    logical scalea;
    extern doublereal igraphdlamch_(char *);
    doublereal cscale;
    extern doublereal igraphdlange_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int igraphdgehrd_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), igraphdlascl_(char *, integer *, integer *, doublereal *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *);
    extern integer igraphidamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    igraphdlartg_(doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *), igraphxerbla_(char *, integer *, ftnlen);
    logical select[1];
    extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    doublereal bignum;
    extern /* Subroutine */ int igraphdorghr_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), igraphdhseqr_(char *, char *, integer *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *), igraphdtrevc_(char *, char *, logical *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, integer *, doublereal *, integer *), igraphdtrsna_(char *, char *, logical *, integer *, doublereal 
	    *, integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *, integer *);
    integer minwrk, maxwrk;
    logical wantvl, wntsnb;
    integer hswork;
    logical wntsne;
    doublereal smlnum;
    logical lquery, wantvr, wntsnn, wntsnv;


/*  -- LAPACK driver routine (version 3.4.2) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
       September 2012   


    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --wr;
    --wi;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --scale;
    --rconde;
    --rcondv;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1;
    wantvl = igraphlsame_(jobvl, "V");
    wantvr = igraphlsame_(jobvr, "V");
    wntsnn = igraphlsame_(sense, "N");
    wntsne = igraphlsame_(sense, "E");
    wntsnv = igraphlsame_(sense, "V");
    wntsnb = igraphlsame_(sense, "B");
    if (! (igraphlsame_(balanc, "N") || igraphlsame_(balanc, "S") || igraphlsame_(balanc, "P") 
	    || igraphlsame_(balanc, "B"))) {
	*info = -1;
    } else if (! wantvl && ! igraphlsame_(jobvl, "N")) {
	*info = -2;
    } else if (! wantvr && ! igraphlsame_(jobvr, "N")) {
	*info = -3;
    } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb) 
	    && ! (wantvl && wantvr)) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
	*info = -11;
    } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
	*info = -13;
    }

/*     Compute workspace   
        (Note: Comments in the code beginning "Workspace:" describe the   
         minimal amount of workspace needed at that point in the code,   
         as well as the preferred amount for good performance.   
         NB refers to the optimal block size for the immediately   
         following subroutine, as returned by ILAENV.   
         HSWORK refers to the workspace preferred by DHSEQR, as   
         calculated below. HSWORK is computed assuming ILO=1 and IHI=N,   
         the worst case.) */

    if (*info == 0) {
	if (*n == 0) {
	    minwrk = 1;
	    maxwrk = 1;
	} else {
	    maxwrk = *n + *n * igraphilaenv_(&c__1, "DGEHRD", " ", n, &c__1, n, &
		    c__0, (ftnlen)6, (ftnlen)1);

	    if (wantvl) {
		igraphdhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
			1], &vl[vl_offset], ldvl, &work[1], &c_n1, info);
	    } else if (wantvr) {
		igraphdhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
			1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
	    } else {
		if (wntsnn) {
		    igraphdhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], 
			    &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, 
			    info);
		} else {
		    igraphdhseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], 
			    &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, 
			    info);
		}
	    }
	    hswork = (integer) work[1];

	    if (! wantvl && ! wantvr) {
		minwrk = *n << 1;
		if (! wntsnn) {
/* Computing MAX */
		    i__1 = minwrk, i__2 = *n * *n + *n * 6;
		    minwrk = max(i__1,i__2);
		}
		maxwrk = max(maxwrk,hswork);
		if (! wntsnn) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *n * *n + *n * 6;
		    maxwrk = max(i__1,i__2);
		}
	    } else {
		minwrk = *n * 3;
		if (! wntsnn && ! wntsne) {
/* Computing MAX */
		    i__1 = minwrk, i__2 = *n * *n + *n * 6;
		    minwrk = max(i__1,i__2);
		}
		maxwrk = max(maxwrk,hswork);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n + (*n - 1) * igraphilaenv_(&c__1, "DORGHR",
			 " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
		maxwrk = max(i__1,i__2);
		if (! wntsnn && ! wntsne) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *n * *n + *n * 6;
		    maxwrk = max(i__1,i__2);
		}
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n * 3;
		maxwrk = max(i__1,i__2);
	    }
	    maxwrk = max(maxwrk,minwrk);
	}
	work[1] = (doublereal) maxwrk;

	if (*lwork < minwrk && ! lquery) {
	    *info = -21;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DGEEVX", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = igraphdlamch_("P");
    smlnum = igraphdlamch_("S");
    bignum = 1. / smlnum;
    igraphdlabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1. / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    icond = 0;
    anrm = igraphdlange_("M", n, n, &a[a_offset], lda, dum);
    scalea = FALSE_;
    if (anrm > 0. && anrm < smlnum) {
	scalea = TRUE_;
	cscale = smlnum;
    } else if (anrm > bignum) {
	scalea = TRUE_;
	cscale = bignum;
    }
    if (scalea) {
	igraphdlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
		ierr);
    }

/*     Balance the matrix and compute ABNRM */

    igraphdgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
    *abnrm = igraphdlange_("1", n, n, &a[a_offset], lda, dum);
    if (scalea) {
	dum[0] = *abnrm;
	igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
		ierr);
	*abnrm = dum[0];
    }

/*     Reduce to upper Hessenberg form   
       (Workspace: need 2*N, prefer N+N*NB) */

    itau = 1;
    iwrk = itau + *n;
    i__1 = *lwork - iwrk + 1;
    igraphdgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
	    ierr);

    if (wantvl) {

/*        Want left eigenvectors   
          Copy Householder vectors to VL */

	*(unsigned char *)side = 'L';
	igraphdlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
		;

/*        Generate orthogonal matrix in VL   
          (Workspace: need 2*N-1, prefer N+(N-1)*NB) */

	i__1 = *lwork - iwrk + 1;
	igraphdorghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
		i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VL   
          (Workspace: need 1, prefer HSWORK (see comments) ) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	igraphdhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vl[
		vl_offset], ldvl, &work[iwrk], &i__1, info);

	if (wantvr) {

/*           Want left and right eigenvectors   
             Copy Schur vectors to VR */

	    *(unsigned char *)side = 'B';
	    igraphdlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
	}

    } else if (wantvr) {

/*        Want right eigenvectors   
          Copy Householder vectors to VR */

	*(unsigned char *)side = 'R';
	igraphdlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
		;

/*        Generate orthogonal matrix in VR   
          (Workspace: need 2*N-1, prefer N+(N-1)*NB) */

	i__1 = *lwork - iwrk + 1;
	igraphdorghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
		i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VR   
          (Workspace: need 1, prefer HSWORK (see comments) ) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	igraphdhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);

    } else {

/*        Compute eigenvalues only   
          If condition numbers desired, compute Schur form */

	if (wntsnn) {
	    *(unsigned char *)job = 'E';
	} else {
	    *(unsigned char *)job = 'S';
	}

/*        (Workspace: need 1, prefer HSWORK (see comments) ) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	igraphdhseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);
    }

/*     If INFO > 0 from DHSEQR, then quit */

    if (*info > 0) {
	goto L50;
    }

    if (wantvl || wantvr) {

/*        Compute left and/or right eigenvectors   
          (Workspace: need 3*N) */

	igraphdtrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl,
		 &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &ierr);
    }

/*     Compute condition numbers if desired   
       (Workspace: need N*N+6*N unless SENSE = 'E') */

    if (! wntsnn) {
	igraphdtrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset], 
		ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout, 
		&work[iwrk], n, &iwork[1], &icond);
    }

    if (wantvl) {

/*        Undo balancing of left eigenvectors */

	igraphdgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl, 
		&ierr);

/*        Normalize left eigenvectors and make largest component real */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (wi[i__] == 0.) {
		scl = 1. / igraphdnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
	    } else if (wi[i__] > 0.) {
		d__1 = igraphdnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
		d__2 = igraphdnrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
		scl = 1. / igraphdlapy2_(&d__1, &d__2);
		igraphdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
		i__2 = *n;
		for (k = 1; k <= i__2; ++k) {
/* Computing 2nd power */
		    d__1 = vl[k + i__ * vl_dim1];
/* Computing 2nd power */
		    d__2 = vl[k + (i__ + 1) * vl_dim1];
		    work[k] = d__1 * d__1 + d__2 * d__2;
/* L10: */
		}
		k = igraphidamax_(n, &work[1], &c__1);
		igraphdlartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1], 
			&cs, &sn, &r__);
		igraphdrot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) * 
			vl_dim1 + 1], &c__1, &cs, &sn);
		vl[k + (i__ + 1) * vl_dim1] = 0.;
	    }
/* L20: */
	}
    }

    if (wantvr) {

/*        Undo balancing of right eigenvectors */

	igraphdgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr, 
		&ierr);

/*        Normalize right eigenvectors and make largest component real */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (wi[i__] == 0.) {
		scl = 1. / igraphdnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
	    } else if (wi[i__] > 0.) {
		d__1 = igraphdnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
		d__2 = igraphdnrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
		scl = 1. / igraphdlapy2_(&d__1, &d__2);
		igraphdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
		i__2 = *n;
		for (k = 1; k <= i__2; ++k) {
/* Computing 2nd power */
		    d__1 = vr[k + i__ * vr_dim1];
/* Computing 2nd power */
		    d__2 = vr[k + (i__ + 1) * vr_dim1];
		    work[k] = d__1 * d__1 + d__2 * d__2;
/* L30: */
		}
		k = igraphidamax_(n, &work[1], &c__1);
		igraphdlartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1], 
			&cs, &sn, &r__);
		igraphdrot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) * 
			vr_dim1 + 1], &c__1, &cs, &sn);
		vr[k + (i__ + 1) * vr_dim1] = 0.;
	    }
/* L40: */
	}
    }

/*     Undo scaling if necessary */

L50:
    if (scalea) {
	i__1 = *n - *info;
/* Computing MAX */
	i__3 = *n - *info;
	i__2 = max(i__3,1);
	igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info + 
		1], &i__2, &ierr);
	i__1 = *n - *info;
/* Computing MAX */
	i__3 = *n - *info;
	i__2 = max(i__3,1);
	igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info + 
		1], &i__2, &ierr);
	if (*info == 0) {
	    if ((wntsnv || wntsnb) && icond == 0) {
		igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
			1], n, &ierr);
	    }
	} else {
	    i__1 = *ilo - 1;
	    igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1], 
		    n, &ierr);
	    i__1 = *ilo - 1;
	    igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1], 
		    n, &ierr);
	}
    }

    work[1] = (doublereal) maxwrk;
    return 0;

/*     End of DGEEVX */

} /* igraphdgeevx_ */
Exemplo n.º 2
0
/* Subroutine */ int igraphdnaitr_(integer *ido, char *bmat, integer *n, integer *k,
	 integer *np, integer *nb, doublereal *resid, doublereal *rnorm, 
	doublereal *v, integer *ldv, doublereal *h__, integer *ldh, integer *
	ipntr, doublereal *workd, integer *info)
{
    /* Initialized data */

    static logical first = TRUE_;

    /* System generated locals */
    integer h_dim1, h_offset, v_dim1, v_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    static integer i__, j;
    static real t0, t1, t2, t3, t4, t5;
    static integer jj, ipj, irj, ivj;
    static doublereal ulp, tst1;
    extern doublereal igraphddot_(integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    static integer ierr, iter;
    static doublereal unfl, ovfl;
    static integer itry;
    extern doublereal igraphdnrm2_(integer *, doublereal *, integer *);
    static doublereal temp1;
    static logical orth1, orth2, step3, step4;
    static doublereal betaj;
    extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, 
	    integer *), igraphdgemv_(char *, integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *);
    static integer infol;
    extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), igraphdaxpy_(integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *), igraphdmout_(integer 
	    *, integer *, integer *, doublereal *, integer *, integer *, char 
	    *);
    static doublereal xtemp[2];
    extern /* Subroutine */ int igraphdvout_(integer *, integer *, doublereal *, 
	    integer *, char *);
    static doublereal wnorm;
    extern /* Subroutine */ int igraphivout_(integer *, integer *, integer *, 
	    integer *, char *), igraphdgetv0_(integer *, char *, integer *, 
	    logical *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *
	    ), igraphdlabad_(doublereal *, doublereal *);
    static doublereal rnorm1;
    extern doublereal igraphdlamch_(char *);
    extern /* Subroutine */ int igraphdlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *);
    extern doublereal igraphdlanhs_(char *, integer *, doublereal *, integer *, 
	    doublereal *);
    extern /* Subroutine */ int igraphsecond_(real *);
    static logical rstart;
    static integer msglvl;
    static doublereal smlnum;


/*     %----------------------------------------------------% */
/*     | Include files for debugging and timing information | */
/*     %----------------------------------------------------% */


/* \SCCS Information: @(#) */
/* FILE: debug.h   SID: 2.3   DATE OF SID: 11/16/95   RELEASE: 2 */

/*     %---------------------------------% */
/*     | See debug.doc for documentation | */
/*     %---------------------------------% */

/*     %------------------% */
/*     | Scalar Arguments | */
/*     %------------------% */

/*     %--------------------------------% */
/*     | See stat.doc for documentation | */
/*     %--------------------------------% */

/* \SCCS Information: @(#) */
/* FILE: stat.h   SID: 2.2   DATE OF SID: 11/16/95   RELEASE: 2 */



/*     %-----------------% */
/*     | Array Arguments | */
/*     %-----------------% */


/*     %------------% */
/*     | Parameters | */
/*     %------------% */


/*     %---------------% */
/*     | Local Scalars | */
/*     %---------------% */


/*     %-----------------------% */
/*     | Local Array Arguments | */
/*     %-----------------------% */


/*     %----------------------% */
/*     | External Subroutines | */
/*     %----------------------% */


/*     %--------------------% */
/*     | External Functions | */
/*     %--------------------% */


/*     %---------------------% */
/*     | Intrinsic Functions | */
/*     %---------------------% */


/*     %-----------------% */
/*     | Data statements | */
/*     %-----------------% */

    /* Parameter adjustments */
    --workd;
    --resid;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    --ipntr;

    /* Function Body */

/*     %-----------------------% */
/*     | Executable Statements | */
/*     %-----------------------% */

    if (first) {

/*        %-----------------------------------------% */
/*        | Set machine-dependent constants for the | */
/*        | the splitting and deflation criterion.  | */
/*        | If norm(H) <= sqrt(OVFL),               | */
/*        | overflow should not occur.              | */
/*        | REFERENCE: LAPACK subroutine dlahqr     | */
/*        %-----------------------------------------% */

	unfl = igraphdlamch_("safe minimum");
	ovfl = 1. / unfl;
	igraphdlabad_(&unfl, &ovfl);
	ulp = igraphdlamch_("precision");
	smlnum = unfl * (*n / ulp);
	first = FALSE_;
    }

    if (*ido == 0) {

/*        %-------------------------------% */
/*        | Initialize timing statistics  | */
/*        | & message level for debugging | */
/*        %-------------------------------% */

	igraphsecond_(&t0);
	msglvl = debug_1.mnaitr;

/*        %------------------------------% */
/*        | Initial call to this routine | */
/*        %------------------------------% */

	*info = 0;
	step3 = FALSE_;
	step4 = FALSE_;
	rstart = FALSE_;
	orth1 = FALSE_;
	orth2 = FALSE_;
	j = *k + 1;
	ipj = 1;
	irj = ipj + *n;
	ivj = irj + *n;
    }

/*     %-------------------------------------------------% */
/*     | When in reverse communication mode one of:      | */
/*     | STEP3, STEP4, ORTH1, ORTH2, RSTART              | */
/*     | will be .true. when ....                        | */
/*     | STEP3: return from computing OP*v_{j}.          | */
/*     | STEP4: return from computing B-norm of OP*v_{j} | */
/*     | ORTH1: return from computing B-norm of r_{j+1}  | */
/*     | ORTH2: return from computing B-norm of          | */
/*     |        correction to the residual vector.       | */
/*     | RSTART: return from OP computations needed by   | */
/*     |         dgetv0.                                 | */
/*     %-------------------------------------------------% */

    if (step3) {
	goto L50;
    }
    if (step4) {
	goto L60;
    }
    if (orth1) {
	goto L70;
    }
    if (orth2) {
	goto L90;
    }
    if (rstart) {
	goto L30;
    }

/*     %-----------------------------% */
/*     | Else this is the first step | */
/*     %-----------------------------% */

/*     %--------------------------------------------------------------% */
/*     |                                                              | */
/*     |        A R N O L D I     I T E R A T I O N     L O O P       | */
/*     |                                                              | */
/*     | Note:  B*r_{j-1} is already in WORKD(1:N)=WORKD(IPJ:IPJ+N-1) | */
/*     %--------------------------------------------------------------% */
L1000:

    if (msglvl > 1) {
	igraphivout_(&debug_1.logfil, &c__1, &j, &debug_1.ndigit, "_naitr: generat"
		"ing Arnoldi vector number");
	igraphdvout_(&debug_1.logfil, &c__1, rnorm, &debug_1.ndigit, "_naitr: B-no"
		"rm of the current residual is");
    }

/*        %---------------------------------------------------% */
/*        | STEP 1: Check if the B norm of j-th residual      | */
/*        | vector is zero. Equivalent to determing whether   | */
/*        | an exact j-step Arnoldi factorization is present. | */
/*        %---------------------------------------------------% */

    betaj = *rnorm;
    if (*rnorm > 0.) {
	goto L40;
    }

/*           %---------------------------------------------------% */
/*           | Invariant subspace found, generate a new starting | */
/*           | vector which is orthogonal to the current Arnoldi | */
/*           | basis and continue the iteration.                 | */
/*           %---------------------------------------------------% */

    if (msglvl > 0) {
	igraphivout_(&debug_1.logfil, &c__1, &j, &debug_1.ndigit, "_naitr: ****** "
		"RESTART AT STEP ******");
    }

/*           %---------------------------------------------% */
/*           | ITRY is the loop variable that controls the | */
/*           | maximum amount of times that a restart is   | */
/*           | attempted. NRSTRT is used by stat.h         | */
/*           %---------------------------------------------% */

    betaj = 0.;
    ++timing_1.nrstrt;
    itry = 1;
L20:
    rstart = TRUE_;
    *ido = 0;
L30:

/*           %--------------------------------------% */
/*           | If in reverse communication mode and | */
/*           | RSTART = .true. flow returns here.   | */
/*           %--------------------------------------% */

    igraphdgetv0_(ido, bmat, &itry, &c_false, n, &j, &v[v_offset], ldv, &resid[1], 
	    rnorm, &ipntr[1], &workd[1], &ierr);
    if (*ido != 99) {
	goto L9000;
    }
    if (ierr < 0) {
	++itry;
	if (itry <= 3) {
	    goto L20;
	}

/*              %------------------------------------------------% */
/*              | Give up after several restart attempts.        | */
/*              | Set INFO to the size of the invariant subspace | */
/*              | which spans OP and exit.                       | */
/*              %------------------------------------------------% */

	*info = j - 1;
	igraphsecond_(&t1);
	timing_1.tnaitr += t1 - t0;
	*ido = 99;
	goto L9000;
    }

L40:

/*        %---------------------------------------------------------% */
/*        | STEP 2:  v_{j} = r_{j-1}/rnorm and p_{j} = p_{j}/rnorm  | */
/*        | Note that p_{j} = B*r_{j-1}. In order to avoid overflow | */
/*        | when reciprocating a small RNORM, test against lower    | */
/*        | machine bound.                                          | */
/*        %---------------------------------------------------------% */

    igraphdcopy_(n, &resid[1], &c__1, &v[j * v_dim1 + 1], &c__1);
    if (*rnorm >= unfl) {
	temp1 = 1. / *rnorm;
	igraphdscal_(n, &temp1, &v[j * v_dim1 + 1], &c__1);
	igraphdscal_(n, &temp1, &workd[ipj], &c__1);
    } else {

/*            %-----------------------------------------% */
/*            | To scale both v_{j} and p_{j} carefully | */
/*            | use LAPACK routine SLASCL               | */
/*            %-----------------------------------------% */

	igraphdlascl_("General", &i__, &i__, rnorm, &c_b25, n, &c__1, &v[j * v_dim1 
		+ 1], n, &infol);
	igraphdlascl_("General", &i__, &i__, rnorm, &c_b25, n, &c__1, &workd[ipj], 
		n, &infol);
    }

/*        %------------------------------------------------------% */
/*        | STEP 3:  r_{j} = OP*v_{j}; Note that p_{j} = B*v_{j} | */
/*        | Note that this is not quite yet r_{j}. See STEP 4    | */
/*        %------------------------------------------------------% */

    step3 = TRUE_;
    ++timing_1.nopx;
    igraphsecond_(&t2);
    igraphdcopy_(n, &v[j * v_dim1 + 1], &c__1, &workd[ivj], &c__1);
    ipntr[1] = ivj;
    ipntr[2] = irj;
    ipntr[3] = ipj;
    *ido = 1;

/*        %-----------------------------------% */
/*        | Exit in order to compute OP*v_{j} | */
/*        %-----------------------------------% */

    goto L9000;
L50:

/*        %----------------------------------% */
/*        | Back from reverse communication; | */
/*        | WORKD(IRJ:IRJ+N-1) := OP*v_{j}   | */
/*        | if step3 = .true.                | */
/*        %----------------------------------% */

    igraphsecond_(&t3);
    timing_1.tmvopx += t3 - t2;
    step3 = FALSE_;

/*        %------------------------------------------% */
/*        | Put another copy of OP*v_{j} into RESID. | */
/*        %------------------------------------------% */

    igraphdcopy_(n, &workd[irj], &c__1, &resid[1], &c__1);

/*        %---------------------------------------% */
/*        | STEP 4:  Finish extending the Arnoldi | */
/*        |          factorization to length j.   | */
/*        %---------------------------------------% */

    igraphsecond_(&t2);
    if (*(unsigned char *)bmat == 'G') {
	++timing_1.nbx;
	step4 = TRUE_;
	ipntr[1] = irj;
	ipntr[2] = ipj;
	*ido = 2;

/*           %-------------------------------------% */
/*           | Exit in order to compute B*OP*v_{j} | */
/*           %-------------------------------------% */

	goto L9000;
    } else if (*(unsigned char *)bmat == 'I') {
	igraphdcopy_(n, &resid[1], &c__1, &workd[ipj], &c__1);
    }
L60:

/*        %----------------------------------% */
/*        | Back from reverse communication; | */
/*        | WORKD(IPJ:IPJ+N-1) := B*OP*v_{j} | */
/*        | if step4 = .true.                | */
/*        %----------------------------------% */

    if (*(unsigned char *)bmat == 'G') {
	igraphsecond_(&t3);
	timing_1.tmvbx += t3 - t2;
    }

    step4 = FALSE_;

/*        %-------------------------------------% */
/*        | The following is needed for STEP 5. | */
/*        | Compute the B-norm of OP*v_{j}.     | */
/*        %-------------------------------------% */

    if (*(unsigned char *)bmat == 'G') {
	wnorm = igraphddot_(n, &resid[1], &c__1, &workd[ipj], &c__1);
	wnorm = sqrt((abs(wnorm)));
    } else if (*(unsigned char *)bmat == 'I') {
	wnorm = igraphdnrm2_(n, &resid[1], &c__1);
    }

/*        %-----------------------------------------% */
/*        | Compute the j-th residual corresponding | */
/*        | to the j step factorization.            | */
/*        | Use Classical Gram Schmidt and compute: | */
/*        | w_{j} <-  V_{j}^T * B * OP * v_{j}      | */
/*        | r_{j} <-  OP*v_{j} - V_{j} * w_{j}      | */
/*        %-----------------------------------------% */


/*        %------------------------------------------% */
/*        | Compute the j Fourier coefficients w_{j} | */
/*        | WORKD(IPJ:IPJ+N-1) contains B*OP*v_{j}.  | */
/*        %------------------------------------------% */

    igraphdgemv_("T", n, &j, &c_b25, &v[v_offset], ldv, &workd[ipj], &c__1, &c_b47, 
	    &h__[j * h_dim1 + 1], &c__1);

/*        %--------------------------------------% */
/*        | Orthogonalize r_{j} against V_{j}.   | */
/*        | RESID contains OP*v_{j}. See STEP 3. | */
/*        %--------------------------------------% */

    igraphdgemv_("N", n, &j, &c_b50, &v[v_offset], ldv, &h__[j * h_dim1 + 1], &c__1,
	     &c_b25, &resid[1], &c__1);

    if (j > 1) {
	h__[j + (j - 1) * h_dim1] = betaj;
    }

    igraphsecond_(&t4);

    orth1 = TRUE_;

    igraphsecond_(&t2);
    if (*(unsigned char *)bmat == 'G') {
	++timing_1.nbx;
	igraphdcopy_(n, &resid[1], &c__1, &workd[irj], &c__1);
	ipntr[1] = irj;
	ipntr[2] = ipj;
	*ido = 2;

/*           %----------------------------------% */
/*           | Exit in order to compute B*r_{j} | */
/*           %----------------------------------% */

	goto L9000;
    } else if (*(unsigned char *)bmat == 'I') {
	igraphdcopy_(n, &resid[1], &c__1, &workd[ipj], &c__1);
    }
L70:

/*        %---------------------------------------------------% */
/*        | Back from reverse communication if ORTH1 = .true. | */
/*        | WORKD(IPJ:IPJ+N-1) := B*r_{j}.                    | */
/*        %---------------------------------------------------% */

    if (*(unsigned char *)bmat == 'G') {
	igraphsecond_(&t3);
	timing_1.tmvbx += t3 - t2;
    }

    orth1 = FALSE_;

/*        %------------------------------% */
/*        | Compute the B-norm of r_{j}. | */
/*        %------------------------------% */

    if (*(unsigned char *)bmat == 'G') {
	*rnorm = igraphddot_(n, &resid[1], &c__1, &workd[ipj], &c__1);
	*rnorm = sqrt((abs(*rnorm)));
    } else if (*(unsigned char *)bmat == 'I') {
	*rnorm = igraphdnrm2_(n, &resid[1], &c__1);
    }

/*        %-----------------------------------------------------------% */
/*        | STEP 5: Re-orthogonalization / Iterative refinement phase | */
/*        | Maximum NITER_ITREF tries.                                | */
/*        |                                                           | */
/*        |          s      = V_{j}^T * B * r_{j}                     | */
/*        |          r_{j}  = r_{j} - V_{j}*s                         | */
/*        |          alphaj = alphaj + s_{j}                          | */
/*        |                                                           | */
/*        | The stopping criteria used for iterative refinement is    | */
/*        | discussed in Parlett's book SEP, page 107 and in Gragg &  | */
/*        | Reichel ACM TOMS paper; Algorithm 686, Dec. 1990.         | */
/*        | Determine if we need to correct the residual. The goal is | */
/*        | to enforce ||v(:,1:j)^T * r_{j}|| .le. eps * || r_{j} ||  | */
/*        | The following test determines whether the sine of the     | */
/*        | angle between  OP*x and the computed residual is less     | */
/*        | than or equal to 0.717.                                   | */
/*        %-----------------------------------------------------------% */

    if (*rnorm > wnorm * .717f) {
	goto L100;
    }
    iter = 0;
    ++timing_1.nrorth;

/*        %---------------------------------------------------% */
/*        | Enter the Iterative refinement phase. If further  | */
/*        | refinement is necessary, loop back here. The loop | */
/*        | variable is ITER. Perform a step of Classical     | */
/*        | Gram-Schmidt using all the Arnoldi vectors V_{j}  | */
/*        %---------------------------------------------------% */

L80:

    if (msglvl > 2) {
	xtemp[0] = wnorm;
	xtemp[1] = *rnorm;
	igraphdvout_(&debug_1.logfil, &c__2, xtemp, &debug_1.ndigit, "_naitr: re-o"
		"rthonalization; wnorm and rnorm are");
	igraphdvout_(&debug_1.logfil, &j, &h__[j * h_dim1 + 1], &debug_1.ndigit, 
		"_naitr: j-th column of H");
    }

/*        %----------------------------------------------------% */
/*        | Compute V_{j}^T * B * r_{j}.                       | */
/*        | WORKD(IRJ:IRJ+J-1) = v(:,1:J)'*WORKD(IPJ:IPJ+N-1). | */
/*        %----------------------------------------------------% */

    igraphdgemv_("T", n, &j, &c_b25, &v[v_offset], ldv, &workd[ipj], &c__1, &c_b47, 
	    &workd[irj], &c__1);

/*        %---------------------------------------------% */
/*        | Compute the correction to the residual:     | */
/*        | r_{j} = r_{j} - V_{j} * WORKD(IRJ:IRJ+J-1). | */
/*        | The correction to H is v(:,1:J)*H(1:J,1:J)  | */
/*        | + v(:,1:J)*WORKD(IRJ:IRJ+J-1)*e'_j.         | */
/*        %---------------------------------------------% */

    igraphdgemv_("N", n, &j, &c_b50, &v[v_offset], ldv, &workd[irj], &c__1, &c_b25, 
	    &resid[1], &c__1);
    igraphdaxpy_(&j, &c_b25, &workd[irj], &c__1, &h__[j * h_dim1 + 1], &c__1);

    orth2 = TRUE_;
    igraphsecond_(&t2);
    if (*(unsigned char *)bmat == 'G') {
	++timing_1.nbx;
	igraphdcopy_(n, &resid[1], &c__1, &workd[irj], &c__1);
	ipntr[1] = irj;
	ipntr[2] = ipj;
	*ido = 2;

/*           %-----------------------------------% */
/*           | Exit in order to compute B*r_{j}. | */
/*           | r_{j} is the corrected residual.  | */
/*           %-----------------------------------% */

	goto L9000;
    } else if (*(unsigned char *)bmat == 'I') {
	igraphdcopy_(n, &resid[1], &c__1, &workd[ipj], &c__1);
    }
L90:

/*        %---------------------------------------------------% */
/*        | Back from reverse communication if ORTH2 = .true. | */
/*        %---------------------------------------------------% */

    if (*(unsigned char *)bmat == 'G') {
	igraphsecond_(&t3);
	timing_1.tmvbx += t3 - t2;
    }

/*        %-----------------------------------------------------% */
/*        | Compute the B-norm of the corrected residual r_{j}. | */
/*        %-----------------------------------------------------% */

    if (*(unsigned char *)bmat == 'G') {
	rnorm1 = igraphddot_(n, &resid[1], &c__1, &workd[ipj], &c__1);
	rnorm1 = sqrt((abs(rnorm1)));
    } else if (*(unsigned char *)bmat == 'I') {
	rnorm1 = igraphdnrm2_(n, &resid[1], &c__1);
    }

    if (msglvl > 0 && iter > 0) {
	igraphivout_(&debug_1.logfil, &c__1, &j, &debug_1.ndigit, "_naitr: Iterati"
		"ve refinement for Arnoldi residual");
	if (msglvl > 2) {
	    xtemp[0] = *rnorm;
	    xtemp[1] = rnorm1;
	    igraphdvout_(&debug_1.logfil, &c__2, xtemp, &debug_1.ndigit, "_naitr: "
		    "iterative refinement ; rnorm and rnorm1 are");
	}
    }

/*        %-----------------------------------------% */
/*        | Determine if we need to perform another | */
/*        | step of re-orthogonalization.           | */
/*        %-----------------------------------------% */

    if (rnorm1 > *rnorm * .717f) {

/*           %---------------------------------------% */
/*           | No need for further refinement.       | */
/*           | The cosine of the angle between the   | */
/*           | corrected residual vector and the old | */
/*           | residual vector is greater than 0.717 | */
/*           | In other words the corrected residual | */
/*           | and the old residual vector share an  | */
/*           | angle of less than arcCOS(0.717)      | */
/*           %---------------------------------------% */

	*rnorm = rnorm1;

    } else {

/*           %-------------------------------------------% */
/*           | Another step of iterative refinement step | */
/*           | is required. NITREF is used by stat.h     | */
/*           %-------------------------------------------% */

	++timing_1.nitref;
	*rnorm = rnorm1;
	++iter;
	if (iter <= 1) {
	    goto L80;
	}

/*           %-------------------------------------------------% */
/*           | Otherwise RESID is numerically in the span of V | */
/*           %-------------------------------------------------% */

	i__1 = *n;
	for (jj = 1; jj <= i__1; ++jj) {
	    resid[jj] = 0.;
/* L95: */
	}
	*rnorm = 0.;
    }

/*        %----------------------------------------------% */
/*        | Branch here directly if iterative refinement | */
/*        | wasn't necessary or after at most NITER_REF  | */
/*        | steps of iterative refinement.               | */
/*        %----------------------------------------------% */

L100:

    rstart = FALSE_;
    orth2 = FALSE_;

    igraphsecond_(&t5);
    timing_1.titref += t5 - t4;

/*        %------------------------------------% */
/*        | STEP 6: Update  j = j+1;  Continue | */
/*        %------------------------------------% */

    ++j;
    if (j > *k + *np) {
	igraphsecond_(&t1);
	timing_1.tnaitr += t1 - t0;
	*ido = 99;
	i__1 = *k + *np - 1;
	for (i__ = max(1,*k); i__ <= i__1; ++i__) {

/*              %--------------------------------------------% */
/*              | Check for splitting and deflation.         | */
/*              | Use a standard test as in the QR algorithm | */
/*              | REFERENCE: LAPACK subroutine dlahqr        | */
/*              %--------------------------------------------% */

	    tst1 = (d__1 = h__[i__ + i__ * h_dim1], abs(d__1)) + (d__2 = h__[
		    i__ + 1 + (i__ + 1) * h_dim1], abs(d__2));
	    if (tst1 == 0.) {
		i__2 = *k + *np;
		tst1 = igraphdlanhs_("1", &i__2, &h__[h_offset], ldh, &workd[*n + 1]);
	    }
/* Computing MAX */
	    d__2 = ulp * tst1;
	    if ((d__1 = h__[i__ + 1 + i__ * h_dim1], abs(d__1)) <= max(d__2,
		    smlnum)) {
		h__[i__ + 1 + i__ * h_dim1] = 0.;
	    }
/* L110: */
	}

	if (msglvl > 2) {
	    i__1 = *k + *np;
	    i__2 = *k + *np;
	    igraphdmout_(&debug_1.logfil, &i__1, &i__2, &h__[h_offset], ldh, &
		    debug_1.ndigit, "_naitr: Final upper Hessenberg matrix H"
		    " of order K+NP");
	}

	goto L9000;
    }

/*        %--------------------------------------------------------% */
/*        | Loop back to extend the factorization by another step. | */
/*        %--------------------------------------------------------% */

    goto L1000;

/*     %---------------------------------------------------------------% */
/*     |                                                               | */
/*     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  | */
/*     |                                                               | */
/*     %---------------------------------------------------------------% */

L9000:
    return 0;

/*     %---------------% */
/*     | End of igraphdnaitr | */
/*     %---------------% */

} /* igraphdnaitr_ */
Exemplo n.º 3
0
/* Subroutine */ int igraphdgeevx_(char *balanc, char *jobvl, char *jobvr, char *
	sense, integer *n, doublereal *a, integer *lda, doublereal *wr, 
	doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr, 
	integer *ldvr, integer *ilo, integer *ihi, doublereal *scale, 
	doublereal *abnrm, doublereal *rconde, doublereal *rcondv, doublereal 
	*work, integer *lwork, integer *iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
	    i__2, i__3;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, k;
    doublereal r__, cs, sn;
    char job[1];
    doublereal scl, dum[1], eps;
    char side[1];
    doublereal anrm;
    integer ierr, itau;
    extern /* Subroutine */ int igraphdrot_(integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *);
    integer iwrk, nout;
    extern doublereal igraphdnrm2_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    integer icond;
    extern logical igraphlsame_(char *, char *);
    extern doublereal igraphdlapy2_(doublereal *, doublereal *);
    extern /* Subroutine */ int igraphdlabad_(doublereal *, doublereal *), igraphdgebak_(
	    char *, char *, integer *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *), 
	    igraphdgebal_(char *, integer *, doublereal *, integer *, integer *, 
	    integer *, doublereal *, integer *);
    logical scalea;
    extern doublereal igraphdlamch_(char *);
    doublereal cscale;
    extern doublereal igraphdlange_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int igraphdgehrd_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), igraphdlascl_(char *, integer *, integer *, doublereal *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *);
    extern integer igraphidamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    igraphdlartg_(doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *), igraphxerbla_(char *, integer *, ftnlen);
    logical select[1];
    extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    doublereal bignum;
    extern /* Subroutine */ int igraphdorghr_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), igraphdhseqr_(char *, char *, integer *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *), igraphdtrevc_(char *, char *, logical *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, integer *, doublereal *, integer *), igraphdtrsna_(char *, char *, logical *, integer *, doublereal 
	    *, integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *, integer *);
    integer minwrk, maxwrk;
    logical wantvl, wntsnb;
    integer hswork;
    logical wntsne;
    doublereal smlnum;
    logical lquery, wantvr, wntsnn, wntsnv;


/*  -- LAPACK driver routine (version 3.3.1) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
    -- April 2011                                                      --   


    Purpose   
    =======   

    DGEEVX computes for an N-by-N real nonsymmetric matrix A, the   
    eigenvalues and, optionally, the left and/or right eigenvectors.   

    Optionally also, it computes a balancing transformation to improve   
    the conditioning of the eigenvalues and eigenvectors (ILO, IHI,   
    SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues   
    (RCONDE), and reciprocal condition numbers for the right   
    eigenvectors (RCONDV).   

    The right eigenvector v(j) of A satisfies   
                     A * v(j) = lambda(j) * v(j)   
    where lambda(j) is its eigenvalue.   
    The left eigenvector u(j) of A satisfies   
                  u(j)**T * A = lambda(j) * u(j)**T   
    where u(j)**T denotes the transpose of u(j).   

    The computed eigenvectors are normalized to have Euclidean norm   
    equal to 1 and largest component real.   

    Balancing a matrix means permuting the rows and columns to make it   
    more nearly upper triangular, and applying a diagonal similarity   
    transformation D * A * D**(-1), where D is a diagonal matrix, to   
    make its rows and columns closer in norm and the condition numbers   
    of its eigenvalues and eigenvectors smaller.  The computed   
    reciprocal condition numbers correspond to the balanced matrix.   
    Permuting rows and columns will not change the condition numbers   
    (in exact arithmetic) but diagonal scaling will.  For further   
    explanation of balancing, see section 4.10.2 of the LAPACK   
    Users' Guide.   

    Arguments   
    =========   

    BALANC  (input) CHARACTER*1   
            Indicates how the input matrix should be diagonally scaled   
            and/or permuted to improve the conditioning of its   
            eigenvalues.   
            = 'N': Do not diagonally scale or permute;   
            = 'P': Perform permutations to make the matrix more nearly   
                   upper triangular. Do not diagonally scale;   
            = 'S': Diagonally scale the matrix, i.e. replace A by   
                   D*A*D**(-1), where D is a diagonal matrix chosen   
                   to make the rows and columns of A more equal in   
                   norm. Do not permute;   
            = 'B': Both diagonally scale and permute A.   

            Computed reciprocal condition numbers will be for the matrix   
            after balancing and/or permuting. Permuting does not change   
            condition numbers (in exact arithmetic), but balancing does.   

    JOBVL   (input) CHARACTER*1   
            = 'N': left eigenvectors of A are not computed;   
            = 'V': left eigenvectors of A are computed.   
            If SENSE = 'E' or 'B', JOBVL must = 'V'.   

    JOBVR   (input) CHARACTER*1   
            = 'N': right eigenvectors of A are not computed;   
            = 'V': right eigenvectors of A are computed.   
            If SENSE = 'E' or 'B', JOBVR must = 'V'.   

    SENSE   (input) CHARACTER*1   
            Determines which reciprocal condition numbers are computed.   
            = 'N': None are computed;   
            = 'E': Computed for eigenvalues only;   
            = 'V': Computed for right eigenvectors only;   
            = 'B': Computed for eigenvalues and right eigenvectors.   

            If SENSE = 'E' or 'B', both left and right eigenvectors   
            must also be computed (JOBVL = 'V' and JOBVR = 'V').   

    N       (input) INTEGER   
            The order of the matrix A. N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the N-by-N matrix A.   
            On exit, A has been overwritten.  If JOBVL = 'V' or   
            JOBVR = 'V', A contains the real Schur form of the balanced   
            version of the input matrix A.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    WR      (output) DOUBLE PRECISION array, dimension (N)   
    WI      (output) DOUBLE PRECISION array, dimension (N)   
            WR and WI contain the real and imaginary parts,   
            respectively, of the computed eigenvalues.  Complex   
            conjugate pairs of eigenvalues will appear consecutively   
            with the eigenvalue having the positive imaginary part   
            first.   

    VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)   
            If JOBVL = 'V', the left eigenvectors u(j) are stored one   
            after another in the columns of VL, in the same order   
            as their eigenvalues.   
            If JOBVL = 'N', VL is not referenced.   
            If the j-th eigenvalue is real, then u(j) = VL(:,j),   
            the j-th column of VL.   
            If the j-th and (j+1)-st eigenvalues form a complex   
            conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and   
            u(j+1) = VL(:,j) - i*VL(:,j+1).   

    LDVL    (input) INTEGER   
            The leading dimension of the array VL.  LDVL >= 1; if   
            JOBVL = 'V', LDVL >= N.   

    VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)   
            If JOBVR = 'V', the right eigenvectors v(j) are stored one   
            after another in the columns of VR, in the same order   
            as their eigenvalues.   
            If JOBVR = 'N', VR is not referenced.   
            If the j-th eigenvalue is real, then v(j) = VR(:,j),   
            the j-th column of VR.   
            If the j-th and (j+1)-st eigenvalues form a complex   
            conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and   
            v(j+1) = VR(:,j) - i*VR(:,j+1).   

    LDVR    (input) INTEGER   
            The leading dimension of the array VR.  LDVR >= 1, and if   
            JOBVR = 'V', LDVR >= N.   

    ILO     (output) INTEGER   
    IHI     (output) INTEGER   
            ILO and IHI are integer values determined when A was   
            balanced.  The balanced A(i,j) = 0 if I > J and   
            J = 1,...,ILO-1 or I = IHI+1,...,N.   

    SCALE   (output) DOUBLE PRECISION array, dimension (N)   
            Details of the permutations and scaling factors applied   
            when balancing A.  If P(j) is the index of the row and column   
            interchanged with row and column j, and D(j) is the scaling   
            factor applied to row and column j, then   
            SCALE(J) = P(J),    for J = 1,...,ILO-1   
                     = D(J),    for J = ILO,...,IHI   
                     = P(J)     for J = IHI+1,...,N.   
            The order in which the interchanges are made is N to IHI+1,   
            then 1 to ILO-1.   

    ABNRM   (output) DOUBLE PRECISION   
            The one-norm of the balanced matrix (the maximum   
            of the sum of absolute values of elements of any column).   

    RCONDE  (output) DOUBLE PRECISION array, dimension (N)   
            RCONDE(j) is the reciprocal condition number of the j-th   
            eigenvalue.   

    RCONDV  (output) DOUBLE PRECISION array, dimension (N)   
            RCONDV(j) is the reciprocal condition number of the j-th   
            right eigenvector.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   If SENSE = 'N' or 'E',   
            LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',   
            LWORK >= 3*N.  If SENSE = 'V' or 'B', LWORK >= N*(N+6).   
            For good performance, LWORK must generally be larger.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    IWORK   (workspace) INTEGER array, dimension (2*N-2)   
            If SENSE = 'N' or 'E', not referenced.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  if INFO = i, the QR algorithm failed to compute all the   
                  eigenvalues, and no eigenvectors or condition numbers   
                  have been computed; elements 1:ILO-1 and i+1:N of WR   
                  and WI contain eigenvalues which have converged.   

    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --wr;
    --wi;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --scale;
    --rconde;
    --rcondv;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1;
    wantvl = igraphlsame_(jobvl, "V");
    wantvr = igraphlsame_(jobvr, "V");
    wntsnn = igraphlsame_(sense, "N");
    wntsne = igraphlsame_(sense, "E");
    wntsnv = igraphlsame_(sense, "V");
    wntsnb = igraphlsame_(sense, "B");
    if (! (igraphlsame_(balanc, "N") || igraphlsame_(balanc, "S") || igraphlsame_(balanc, "P") 
	    || igraphlsame_(balanc, "B"))) {
	*info = -1;
    } else if (! wantvl && ! igraphlsame_(jobvl, "N")) {
	*info = -2;
    } else if (! wantvr && ! igraphlsame_(jobvr, "N")) {
	*info = -3;
    } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb) 
	    && ! (wantvl && wantvr)) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
	*info = -11;
    } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
	*info = -13;
    }

/*     Compute workspace   
        (Note: Comments in the code beginning "Workspace:" describe the   
         minimal amount of workspace needed at that point in the code,   
         as well as the preferred amount for good performance.   
         NB refers to the optimal block size for the immediately   
         following subroutine, as returned by ILAENV.   
         HSWORK refers to the workspace preferred by DHSEQR, as   
         calculated below. HSWORK is computed assuming ILO=1 and IHI=N,   
         the worst case.) */

    if (*info == 0) {
	if (*n == 0) {
	    minwrk = 1;
	    maxwrk = 1;
	} else {
	    maxwrk = *n + *n * igraphilaenv_(&c__1, "DGEHRD", " ", n, &c__1, n, &
		    c__0, (ftnlen)6, (ftnlen)1);

	    if (wantvl) {
		igraphdhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
			1], &vl[vl_offset], ldvl, &work[1], &c_n1, info);
	    } else if (wantvr) {
		igraphdhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
			1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
	    } else {
		if (wntsnn) {
		    igraphdhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], 
			    &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, 
			    info);
		} else {
		    igraphdhseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], 
			    &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, 
			    info);
		}
	    }
	    hswork = (integer) work[1];

	    if (! wantvl && ! wantvr) {
		minwrk = *n << 1;
		if (! wntsnn) {
/* Computing MAX */
		    i__1 = minwrk, i__2 = *n * *n + *n * 6;
		    minwrk = max(i__1,i__2);
		}
		maxwrk = max(maxwrk,hswork);
		if (! wntsnn) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *n * *n + *n * 6;
		    maxwrk = max(i__1,i__2);
		}
	    } else {
		minwrk = *n * 3;
		if (! wntsnn && ! wntsne) {
/* Computing MAX */
		    i__1 = minwrk, i__2 = *n * *n + *n * 6;
		    minwrk = max(i__1,i__2);
		}
		maxwrk = max(maxwrk,hswork);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n + (*n - 1) * igraphilaenv_(&c__1, "DORGHR",
			 " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
		maxwrk = max(i__1,i__2);
		if (! wntsnn && ! wntsne) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *n * *n + *n * 6;
		    maxwrk = max(i__1,i__2);
		}
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n * 3;
		maxwrk = max(i__1,i__2);
	    }
	    maxwrk = max(maxwrk,minwrk);
	}
	work[1] = (doublereal) maxwrk;

	if (*lwork < minwrk && ! lquery) {
	    *info = -21;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DGEEVX", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = igraphdlamch_("P");
    smlnum = igraphdlamch_("S");
    bignum = 1. / smlnum;
    igraphdlabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1. / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    icond = 0;
    anrm = igraphdlange_("M", n, n, &a[a_offset], lda, dum);
    scalea = FALSE_;
    if (anrm > 0. && anrm < smlnum) {
	scalea = TRUE_;
	cscale = smlnum;
    } else if (anrm > bignum) {
	scalea = TRUE_;
	cscale = bignum;
    }
    if (scalea) {
	igraphdlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
		ierr);
    }

/*     Balance the matrix and compute ABNRM */

    igraphdgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
    *abnrm = igraphdlange_("1", n, n, &a[a_offset], lda, dum);
    if (scalea) {
	dum[0] = *abnrm;
	igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
		ierr);
	*abnrm = dum[0];
    }

/*     Reduce to upper Hessenberg form   
       (Workspace: need 2*N, prefer N+N*NB) */

    itau = 1;
    iwrk = itau + *n;
    i__1 = *lwork - iwrk + 1;
    igraphdgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
	    ierr);

    if (wantvl) {

/*        Want left eigenvectors   
          Copy Householder vectors to VL */

	*(unsigned char *)side = 'L';
	igraphdlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
		;

/*        Generate orthogonal matrix in VL   
          (Workspace: need 2*N-1, prefer N+(N-1)*NB) */

	i__1 = *lwork - iwrk + 1;
	igraphdorghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
		i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VL   
          (Workspace: need 1, prefer HSWORK (see comments) ) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	igraphdhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vl[
		vl_offset], ldvl, &work[iwrk], &i__1, info);

	if (wantvr) {

/*           Want left and right eigenvectors   
             Copy Schur vectors to VR */

	    *(unsigned char *)side = 'B';
	    igraphdlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
	}

    } else if (wantvr) {

/*        Want right eigenvectors   
          Copy Householder vectors to VR */

	*(unsigned char *)side = 'R';
	igraphdlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
		;

/*        Generate orthogonal matrix in VR   
          (Workspace: need 2*N-1, prefer N+(N-1)*NB) */

	i__1 = *lwork - iwrk + 1;
	igraphdorghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
		i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VR   
          (Workspace: need 1, prefer HSWORK (see comments) ) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	igraphdhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);

    } else {

/*        Compute eigenvalues only   
          If condition numbers desired, compute Schur form */

	if (wntsnn) {
	    *(unsigned char *)job = 'E';
	} else {
	    *(unsigned char *)job = 'S';
	}

/*        (Workspace: need 1, prefer HSWORK (see comments) ) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	igraphdhseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);
    }

/*     If INFO > 0 from DHSEQR, then quit */

    if (*info > 0) {
	goto L50;
    }

    if (wantvl || wantvr) {

/*        Compute left and/or right eigenvectors   
          (Workspace: need 3*N) */

	igraphdtrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl,
		 &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &ierr);
    }

/*     Compute condition numbers if desired   
       (Workspace: need N*N+6*N unless SENSE = 'E') */

    if (! wntsnn) {
	igraphdtrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset], 
		ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout, 
		&work[iwrk], n, &iwork[1], &icond);
    }

    if (wantvl) {

/*        Undo balancing of left eigenvectors */

	igraphdgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl, 
		&ierr);

/*        Normalize left eigenvectors and make largest component real */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (wi[i__] == 0.) {
		scl = 1. / igraphdnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
	    } else if (wi[i__] > 0.) {
		d__1 = igraphdnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
		d__2 = igraphdnrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
		scl = 1. / igraphdlapy2_(&d__1, &d__2);
		igraphdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
		i__2 = *n;
		for (k = 1; k <= i__2; ++k) {
/* Computing 2nd power */
		    d__1 = vl[k + i__ * vl_dim1];
/* Computing 2nd power */
		    d__2 = vl[k + (i__ + 1) * vl_dim1];
		    work[k] = d__1 * d__1 + d__2 * d__2;
/* L10: */
		}
		k = igraphidamax_(n, &work[1], &c__1);
		igraphdlartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1], 
			&cs, &sn, &r__);
		igraphdrot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) * 
			vl_dim1 + 1], &c__1, &cs, &sn);
		vl[k + (i__ + 1) * vl_dim1] = 0.;
	    }
/* L20: */
	}
    }

    if (wantvr) {

/*        Undo balancing of right eigenvectors */

	igraphdgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr, 
		&ierr);

/*        Normalize right eigenvectors and make largest component real */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (wi[i__] == 0.) {
		scl = 1. / igraphdnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
	    } else if (wi[i__] > 0.) {
		d__1 = igraphdnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
		d__2 = igraphdnrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
		scl = 1. / igraphdlapy2_(&d__1, &d__2);
		igraphdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
		i__2 = *n;
		for (k = 1; k <= i__2; ++k) {
/* Computing 2nd power */
		    d__1 = vr[k + i__ * vr_dim1];
/* Computing 2nd power */
		    d__2 = vr[k + (i__ + 1) * vr_dim1];
		    work[k] = d__1 * d__1 + d__2 * d__2;
/* L30: */
		}
		k = igraphidamax_(n, &work[1], &c__1);
		igraphdlartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1], 
			&cs, &sn, &r__);
		igraphdrot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) * 
			vr_dim1 + 1], &c__1, &cs, &sn);
		vr[k + (i__ + 1) * vr_dim1] = 0.;
	    }
/* L40: */
	}
    }

/*     Undo scaling if necessary */

L50:
    if (scalea) {
	i__1 = *n - *info;
/* Computing MAX */
	i__3 = *n - *info;
	i__2 = max(i__3,1);
	igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info + 
		1], &i__2, &ierr);
	i__1 = *n - *info;
/* Computing MAX */
	i__3 = *n - *info;
	i__2 = max(i__3,1);
	igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info + 
		1], &i__2, &ierr);
	if (*info == 0) {
	    if ((wntsnv || wntsnb) && icond == 0) {
		igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
			1], n, &ierr);
	    }
	} else {
	    i__1 = *ilo - 1;
	    igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1], 
		    n, &ierr);
	    i__1 = *ilo - 1;
	    igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1], 
		    n, &ierr);
	}
    }

    work[1] = (doublereal) maxwrk;
    return 0;

/*     End of DGEEVX */

} /* igraphdgeevx_ */
Exemplo n.º 4
0
   Subroutine */ int igraphdsteqr_(char *compz, integer *n, doublereal *d__, 
	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 
	integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal), d_sign(doublereal *, doublereal *);

    /* Local variables */
    doublereal b, c__, f, g;
    integer i__, j, k, l, m;
    doublereal p, r__, s;
    integer l1, ii, mm, lm1, mm1, nm1;
    doublereal rt1, rt2, eps;
    integer lsv;
    doublereal tst, eps2;
    integer lend, jtot;
    extern /* Subroutine */ int igraphdlae2_(doublereal *, doublereal *, doublereal 
	    *, doublereal *, doublereal *);
    extern logical igraphlsame_(char *, char *);
    extern /* Subroutine */ int igraphdlasr_(char *, char *, char *, integer *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *);
    doublereal anorm;
    extern /* Subroutine */ int igraphdswap_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), igraphdlaev2_(doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *);
    integer lendm1, lendp1;
    extern doublereal igraphdlapy2_(doublereal *, doublereal *), igraphdlamch_(char *);
    integer iscale;
    extern /* Subroutine */ int igraphdlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), igraphdlaset_(char *, integer *, integer 
	    *, doublereal *, doublereal *, doublereal *, integer *);
    doublereal safmin;
    extern /* Subroutine */ int igraphdlartg_(doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *);
    doublereal safmax;
    extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen);
    extern doublereal igraphdlanst_(char *, integer *, doublereal *, doublereal *);
    extern /* Subroutine */ int igraphdlasrt_(char *, integer *, doublereal *, 
	    integer *);
    integer lendsv;
    doublereal ssfmin;
    integer nmaxit, icompz;
    doublereal ssfmax;


/*  -- LAPACK computational routine (version 3.4.0) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
       November 2011   


    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    --d__;
    --e;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    *info = 0;

    if (igraphlsame_(compz, "N")) {
	icompz = 0;
    } else if (igraphlsame_(compz, "V")) {
	icompz = 1;
    } else if (igraphlsame_(compz, "I")) {
	icompz = 2;
    } else {
	icompz = -1;
    }
    if (icompz < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DSTEQR", &i__1, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (icompz == 2) {
	    z__[z_dim1 + 1] = 1.;
	}
	return 0;
    }

/*     Determine the unit roundoff and over/underflow thresholds. */

    eps = igraphdlamch_("E");
/* Computing 2nd power */
    d__1 = eps;
    eps2 = d__1 * d__1;
    safmin = igraphdlamch_("S");
    safmax = 1. / safmin;
    ssfmax = sqrt(safmax) / 3.;
    ssfmin = sqrt(safmin) / eps2;

/*     Compute the eigenvalues and eigenvectors of the tridiagonal   
       matrix. */

    if (icompz == 2) {
	igraphdlaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz);
    }

    nmaxit = *n * 30;
    jtot = 0;

/*     Determine where the matrix splits and choose QL or QR iteration   
       for each block, according to whether top or bottom diagonal   
       element is smaller. */

    l1 = 1;
    nm1 = *n - 1;

L10:
    if (l1 > *n) {
	goto L160;
    }
    if (l1 > 1) {
	e[l1 - 1] = 0.;
    }
    if (l1 <= nm1) {
	i__1 = nm1;
	for (m = l1; m <= i__1; ++m) {
	    tst = (d__1 = e[m], abs(d__1));
	    if (tst == 0.) {
		goto L30;
	    }
	    if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m 
		    + 1], abs(d__2))) * eps) {
		e[m] = 0.;
		goto L30;
	    }
/* L20: */
	}
    }
    m = *n;

L30:
    l = l1;
    lsv = l;
    lend = m;
    lendsv = lend;
    l1 = m + 1;
    if (lend == l) {
	goto L10;
    }

/*     Scale submatrix in rows and columns L to LEND */

    i__1 = lend - l + 1;
    anorm = igraphdlanst_("M", &i__1, &d__[l], &e[l]);
    iscale = 0;
    if (anorm == 0.) {
	goto L10;
    }
    if (anorm > ssfmax) {
	iscale = 1;
	i__1 = lend - l + 1;
	igraphdlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, 
		info);
	i__1 = lend - l;
	igraphdlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, 
		info);
    } else if (anorm < ssfmin) {
	iscale = 2;
	i__1 = lend - l + 1;
	igraphdlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, 
		info);
	i__1 = lend - l;
	igraphdlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, 
		info);
    }

/*     Choose between QL and QR iteration */

    if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
	lend = lsv;
	l = lendsv;
    }

    if (lend > l) {

/*        QL Iteration   

          Look for small subdiagonal element. */

L40:
	if (l != lend) {
	    lendm1 = lend - 1;
	    i__1 = lendm1;
	    for (m = l; m <= i__1; ++m) {
/* Computing 2nd power */
		d__2 = (d__1 = e[m], abs(d__1));
		tst = d__2 * d__2;
		if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m 
			+ 1], abs(d__2)) + safmin) {
		    goto L60;
		}
/* L50: */
	    }
	}

	m = lend;

L60:
	if (m < lend) {
	    e[m] = 0.;
	}
	p = d__[l];
	if (m == l) {
	    goto L80;
	}

/*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2   
          to compute its eigensystem. */

	if (m == l + 1) {
	    if (icompz > 0) {
		igraphdlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
		work[l] = c__;
		work[*n - 1 + l] = s;
		igraphdlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
			z__[l * z_dim1 + 1], ldz);
	    } else {
		igraphdlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
	    }
	    d__[l] = rt1;
	    d__[l + 1] = rt2;
	    e[l] = 0.;
	    l += 2;
	    if (l <= lend) {
		goto L40;
	    }
	    goto L140;
	}

	if (jtot == nmaxit) {
	    goto L140;
	}
	++jtot;

/*        Form shift. */

	g = (d__[l + 1] - p) / (e[l] * 2.);
	r__ = igraphdlapy2_(&g, &c_b10);
	g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));

	s = 1.;
	c__ = 1.;
	p = 0.;

/*        Inner loop */

	mm1 = m - 1;
	i__1 = l;
	for (i__ = mm1; i__ >= i__1; --i__) {
	    f = s * e[i__];
	    b = c__ * e[i__];
	    igraphdlartg_(&g, &f, &c__, &s, &r__);
	    if (i__ != m - 1) {
		e[i__ + 1] = r__;
	    }
	    g = d__[i__ + 1] - p;
	    r__ = (d__[i__] - g) * s + c__ * 2. * b;
	    p = s * r__;
	    d__[i__ + 1] = g + p;
	    g = c__ * r__ - b;

/*           If eigenvectors are desired, then save rotations. */

	    if (icompz > 0) {
		work[i__] = c__;
		work[*n - 1 + i__] = -s;
	    }

/* L70: */
	}

/*        If eigenvectors are desired, then apply saved rotations. */

	if (icompz > 0) {
	    mm = m - l + 1;
	    igraphdlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l 
		    * z_dim1 + 1], ldz);
	}

	d__[l] -= p;
	e[l] = g;
	goto L40;

/*        Eigenvalue found. */

L80:
	d__[l] = p;

	++l;
	if (l <= lend) {
	    goto L40;
	}
	goto L140;

    } else {

/*        QR Iteration   

          Look for small superdiagonal element. */

L90:
	if (l != lend) {
	    lendp1 = lend + 1;
	    i__1 = lendp1;
	    for (m = l; m >= i__1; --m) {
/* Computing 2nd power */
		d__2 = (d__1 = e[m - 1], abs(d__1));
		tst = d__2 * d__2;
		if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m 
			- 1], abs(d__2)) + safmin) {
		    goto L110;
		}
/* L100: */
	    }
	}

	m = lend;

L110:
	if (m > lend) {
	    e[m - 1] = 0.;
	}
	p = d__[l];
	if (m == l) {
	    goto L130;
	}

/*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2   
          to compute its eigensystem. */

	if (m == l - 1) {
	    if (icompz > 0) {
		igraphdlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
			;
		work[m] = c__;
		work[*n - 1 + m] = s;
		igraphdlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
			z__[(l - 1) * z_dim1 + 1], ldz);
	    } else {
		igraphdlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
	    }
	    d__[l - 1] = rt1;
	    d__[l] = rt2;
	    e[l - 1] = 0.;
	    l += -2;
	    if (l >= lend) {
		goto L90;
	    }
	    goto L140;
	}

	if (jtot == nmaxit) {
	    goto L140;
	}
	++jtot;

/*        Form shift. */

	g = (d__[l - 1] - p) / (e[l - 1] * 2.);
	r__ = igraphdlapy2_(&g, &c_b10);
	g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));

	s = 1.;
	c__ = 1.;
	p = 0.;

/*        Inner loop */

	lm1 = l - 1;
	i__1 = lm1;
	for (i__ = m; i__ <= i__1; ++i__) {
	    f = s * e[i__];
	    b = c__ * e[i__];
	    igraphdlartg_(&g, &f, &c__, &s, &r__);
	    if (i__ != m) {
		e[i__ - 1] = r__;
	    }
	    g = d__[i__] - p;
	    r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
	    p = s * r__;
	    d__[i__] = g + p;
	    g = c__ * r__ - b;

/*           If eigenvectors are desired, then save rotations. */

	    if (icompz > 0) {
		work[i__] = c__;
		work[*n - 1 + i__] = s;
	    }

/* L120: */
	}

/*        If eigenvectors are desired, then apply saved rotations. */

	if (icompz > 0) {
	    mm = l - m + 1;
	    igraphdlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m 
		    * z_dim1 + 1], ldz);
	}

	d__[l] -= p;
	e[lm1] = g;
	goto L90;

/*        Eigenvalue found. */

L130:
	d__[l] = p;

	--l;
	if (l >= lend) {
	    goto L90;
	}
	goto L140;

    }

/*     Undo scaling if necessary */

L140:
    if (iscale == 1) {
	i__1 = lendsv - lsv + 1;
	igraphdlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], 
		n, info);
	i__1 = lendsv - lsv;
	igraphdlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n, 
		info);
    } else if (iscale == 2) {
	i__1 = lendsv - lsv + 1;
	igraphdlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], 
		n, info);
	i__1 = lendsv - lsv;
	igraphdlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n, 
		info);
    }

/*     Check for no convergence to an eigenvalue after a total   
       of N*MAXIT iterations. */

    if (jtot < nmaxit) {
	goto L10;
    }
    i__1 = *n - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (e[i__] != 0.) {
	    ++(*info);
	}
/* L150: */
    }
    goto L190;

/*     Order eigenvalues and eigenvectors. */

L160:
    if (icompz == 0) {

/*        Use Quick Sort */

	igraphdlasrt_("I", n, &d__[1], info);

    } else {

/*        Use Selection Sort to minimize swaps of eigenvectors */

	i__1 = *n;
	for (ii = 2; ii <= i__1; ++ii) {
	    i__ = ii - 1;
	    k = i__;
	    p = d__[i__];
	    i__2 = *n;
	    for (j = ii; j <= i__2; ++j) {
		if (d__[j] < p) {
		    k = j;
		    p = d__[j];
		}
/* L170: */
	    }
	    if (k != i__) {
		d__[k] = d__[i__];
		d__[i__] = p;
		igraphdswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
			 &c__1);
	    }
/* L180: */
	}
    }

L190:
    return 0;

/*     End of DSTEQR */

} /* igraphdsteqr_ */