Exemplo n.º 1
0
static void activateConfig(void)
{
    activateControlRateConfig();

    resetAdjustmentStates();

    useRcControlsConfig(modeActivationProfile()->modeActivationConditions);

    pidInitFilters(pidProfile());

#ifdef GPS
    gpsUsePIDs(pidProfile());
#endif

    useFailsafeConfig();
    setAccelerationTrims(&sensorTrims()->accZero);
    accelerationFilterInit(accelerometerConfig()->acc_cut_hz);

#ifdef USE_SERVOS
    mixerUseConfigs(servoProfile()->servoConf);
#endif

#ifdef GPS
    recalculateMagneticDeclination();
#endif

#ifdef VTX
    initVTXState();
#endif

    static imuRuntimeConfig_t imuRuntimeConfig;
    imuRuntimeConfig.dcm_kp = imuConfig()->dcm_kp / 10000.0f;
    imuRuntimeConfig.dcm_ki = imuConfig()->dcm_ki / 10000.0f;
    imuRuntimeConfig.acc_cut_hz = accelerometerConfig()->acc_cut_hz;
    imuRuntimeConfig.acc_unarmedcal = accelerometerConfig()->acc_unarmedcal;
    imuRuntimeConfig.small_angle = imuConfig()->small_angle;

    imuConfigure(
        &imuRuntimeConfig,
        &accelerometerConfig()->accDeadband,
        accelerometerConfig()->accz_lpf_cutoff,
        throttleCorrectionConfig()->throttle_correction_angle
    );
}
Exemplo n.º 2
0
// Function for loop trigger
void taskMainPidLoopChecker(void) {
    // getTaskDeltaTime() returns delta time freezed at the moment of entering the scheduler. currentTime is freezed at the very same point. 
    // To make busy-waiting timeout work we need to account for time spent within busy-waiting loop
    uint32_t currentDeltaTime = getTaskDeltaTime(TASK_SELF);

    if (imuConfig()->gyroSync) {
        while (1) {
            if (gyroSyncCheckUpdate() || ((currentDeltaTime + (micros() - currentTime)) >= (targetLooptime + GYRO_WATCHDOG_DELAY))) {
                break;
            }
        }
    }

    taskMainPidLoop();
}
Exemplo n.º 3
0
void subTaskPidController(void)
{
    const uint32_t startTime = micros();

    // PID - note this is function pointer set by setPIDController()
    pidLuxFloat(
        pidProfile(),
        currentControlRateProfile,
        imuConfig()->max_angle_inclination,
        &accelerometerConfig()->accelerometerTrims,
        rxConfig()
    );

    if (debugMode == DEBUG_PIDLOOP) {debug[2] = micros() - startTime;}
}
Exemplo n.º 4
0
void taskMainPidLoop(void)
{
    cycleTime = getTaskDeltaTime(TASK_SELF);
    dT = (float)cycleTime * 0.000001f;

    // Calculate average cycle time and average jitter
    filteredCycleTime = filterApplyPt1(cycleTime, &filteredCycleTimeState, 1, dT);
    
    debug[0] = cycleTime;
    debug[1] = cycleTime - filteredCycleTime;

    imuUpdateGyroAndAttitude();

    annexCode();

    if (rxConfig()->rcSmoothing) {
        filterRc();
    }

#if defined(BARO) || defined(SONAR)
    haveProcessedAnnexCodeOnce = true;
#endif

#ifdef MAG
        if (sensors(SENSOR_MAG)) {
            updateMagHold();
        }
#endif

#if defined(BARO) || defined(SONAR)
        if (sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)) {
            if (FLIGHT_MODE(BARO_MODE) || FLIGHT_MODE(SONAR_MODE)) {
                applyAltHold();
            }
        }
#endif

    // If we're armed, at minimum throttle, and we do arming via the
    // sticks, do not process yaw input from the rx.  We do this so the
    // motors do not spin up while we are trying to arm or disarm.
    // Allow yaw control for tricopters if the user wants the servo to move even when unarmed.
    if (isUsingSticksForArming() && rcData[THROTTLE] <= rxConfig()->mincheck
#ifndef USE_QUAD_MIXER_ONLY
#ifdef USE_SERVOS
                && !((mixerConfig()->mixerMode == MIXER_TRI || mixerConfig()->mixerMode == MIXER_CUSTOM_TRI) && mixerConfig()->tri_unarmed_servo)
#endif
                && mixerConfig()->mixerMode != MIXER_AIRPLANE
                && mixerConfig()->mixerMode != MIXER_FLYING_WING
#endif
    ) {
        rcCommand[YAW] = 0;
    }

    if (throttleCorrectionConfig()->throttle_correction_value && (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE))) {
        rcCommand[THROTTLE] += calculateThrottleAngleCorrection(throttleCorrectionConfig()->throttle_correction_value);
    }

#ifdef GPS
    if (sensors(SENSOR_GPS)) {
        if ((FLIGHT_MODE(GPS_HOME_MODE) || FLIGHT_MODE(GPS_HOLD_MODE)) && STATE(GPS_FIX_HOME)) {
            updateGpsStateForHomeAndHoldMode();
        }
    }
#endif

    // PID - note this is function pointer set by setPIDController()
    pid_controller(
        pidProfile(),
        currentControlRateProfile,
        imuConfig()->max_angle_inclination,
        &accelerometerConfig()->accelerometerTrims,
        rxConfig()
    );

    mixTable();

#ifdef USE_SERVOS
    filterServos();
    writeServos();
#endif

    if (motorControlEnable) {
        writeMotors();
    }

#ifdef USE_SDCARD
        afatfs_poll();
#endif

#ifdef BLACKBOX
    if (!cliMode && feature(FEATURE_BLACKBOX)) {
        handleBlackbox();
    }
#endif
}
Exemplo n.º 5
0
void init(void)
{
    drv_pwm_config_t pwm_params;

    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;

#ifdef STM32F303
    // start fpu
    SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2));
#endif

#ifdef STM32F303xC
    SetSysClock();
#endif
#ifdef STM32F10X
    // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
    // Configure the Flash Latency cycles and enable prefetch buffer
    SetSysClock(systemConfig()->emf_avoidance);
#endif
    i2cSetOverclock(systemConfig()->i2c_highspeed);

    systemInit();

#ifdef USE_HARDWARE_REVISION_DETECTION
    detectHardwareRevision();
#endif

    // Latch active features to be used for feature() in the remainder of init().
    latchActiveFeatures();
#ifdef ALIENFLIGHTF3
    if (hardwareRevision == AFF3_REV_1) {
        ledInit(false);
    } else {
        ledInit(true);
    }
#else
    ledInit(false);
#endif

#ifdef BEEPER
    beeperConfig_t beeperConfig = {
        .gpioPeripheral = BEEP_PERIPHERAL,
        .gpioPin = BEEP_PIN,
        .gpioPort = BEEP_GPIO,
#ifdef BEEPER_INVERTED
        .gpioMode = Mode_Out_PP,
        .isInverted = true
#else
        .gpioMode = Mode_Out_OD,
        .isInverted = false
#endif
    };
#ifdef NAZE
    if (hardwareRevision >= NAZE32_REV5) {
        // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
        beeperConfig.gpioMode = Mode_Out_PP;
        beeperConfig.isInverted = true;
    }
#endif

    beeperInit(&beeperConfig);
#endif

#ifdef BUTTONS
    buttonsInit();

    if (!isMPUSoftReset()) {
        buttonsHandleColdBootButtonPresses();
    }
#endif

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (rxConfig()->serialrx_provider) {
        case SERIALRX_SPEKTRUM1024:
        case SERIALRX_SPEKTRUM2048:
            // Spektrum satellite binding if enabled on startup.
            // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
            // The rest of Spektrum initialization will happen later - via spektrumInit()
            spektrumBind(rxConfig());
            break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

    dmaInit();


    serialInit(feature(FEATURE_SOFTSERIAL));

    mixerInit(customMotorMixer(0));
#ifdef USE_SERVOS
    mixerInitServos(customServoMixer(0));
#endif

    memset(&pwm_params, 0, sizeof(pwm_params));

#ifdef SONAR
    const sonarHardware_t *sonarHardware = NULL;

    if (feature(FEATURE_SONAR)) {
        sonarHardware = sonarGetHardwareConfiguration(batteryConfig()->currentMeterType);
        sonarGPIOConfig_t sonarGPIOConfig = {
            .gpio = SONAR_GPIO,
            .triggerPin = sonarHardware->echo_pin,
            .echoPin = sonarHardware->trigger_pin,
        };
        pwm_params.sonarGPIOConfig = &sonarGPIOConfig;
    }
#endif

    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (mixerConfig()->mixerMode == MIXER_AIRPLANE || mixerConfig()->mixerMode == MIXER_FLYING_WING || mixerConfig()->mixerMode == MIXER_CUSTOM_AIRPLANE)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
#if defined(USE_UART2) && defined(STM32F10X)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_UART2);
#endif
#if defined(USE_UART3)
    pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_UART3);
#endif
#if defined(USE_UART4)
    pwm_params.useUART4 = doesConfigurationUsePort(SERIAL_PORT_UART4);
#endif
#if defined(USE_UART5)
    pwm_params.useUART5 = doesConfigurationUsePort(SERIAL_PORT_UART5);
#endif
    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = (
                                        feature(FEATURE_CURRENT_METER)
                                        && batteryConfig()->currentMeterType == CURRENT_SENSOR_ADC
                                    );
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL);
#ifdef SONAR
    pwm_params.useSonar = feature(FEATURE_SONAR);
#endif

#ifdef USE_SERVOS
    pwm_params.useServos = isMixerUsingServos();
    pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING);
    pwm_params.servoCenterPulse = motorAndServoConfig()->servoCenterPulse;
    pwm_params.servoPwmRate = motorAndServoConfig()->servo_pwm_rate;
#endif

    pwm_params.useOneshot = feature(FEATURE_ONESHOT125);
    pwm_params.motorPwmRate = motorAndServoConfig()->motor_pwm_rate;
    pwm_params.idlePulse = motorAndServoConfig()->mincommand;
    if (feature(FEATURE_3D))
        pwm_params.idlePulse = motor3DConfig()->neutral3d;
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors

    pwmRxInit();

    // pwmInit() needs to be called as soon as possible for ESC compatibility reasons
    pwmIOConfiguration_t *pwmIOConfiguration = pwmInit(&pwm_params);

    mixerUsePWMIOConfiguration(pwmIOConfiguration);

#ifdef DEBUG_PWM_CONFIGURATION
    debug[2] = pwmIOConfiguration->pwmInputCount;
    debug[3] = pwmIOConfiguration->ppmInputCount;
#endif

    if (!feature(FEATURE_ONESHOT125))
        motorControlEnable = true;

    systemState |= SYSTEM_STATE_MOTORS_READY;

#ifdef INVERTER
    initInverter();
#endif


#ifdef USE_SPI
    spiInit(SPI1);
    spiInit(SPI2);
#ifdef STM32F303xC
#ifdef ALIENFLIGHTF3
    if (hardwareRevision == AFF3_REV_2) {
        spiInit(SPI3);
    }
#else
    spiInit(SPI3);
#endif
#endif
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    updateHardwareRevision();
#endif

#if defined(NAZE)
    if (hardwareRevision == NAZE32_SP) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    } else  {
        serialRemovePort(SERIAL_PORT_UART3);
    }
#endif

#if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    }
#endif

#if defined(SPRACINGF3MINI) && defined(SONAR) && defined(USE_SOFTSERIAL1)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL1);
    }
#endif


#ifdef USE_I2C
#if defined(NAZE)
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    } else {
        if (!doesConfigurationUsePort(SERIAL_PORT_UART3)) {
            i2cInit(I2C_DEVICE);
        }
    }
#elif defined(CC3D)
    if (!doesConfigurationUsePort(SERIAL_PORT_UART3)) {
        i2cInit(I2C_DEVICE);
    }
#else
    i2cInit(I2C_DEVICE);
#endif
#endif

#ifdef USE_ADC
    drv_adc_config_t adc_params;

    adc_params.enableVBat = feature(FEATURE_VBAT);
    adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
    adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
    adc_params.enableExternal1 = false;
#ifdef OLIMEXINO
    adc_params.enableExternal1 = true;
#endif
#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5);
#endif

    adcInit(&adc_params);
#endif

    initBoardAlignment();

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit();
    }
#endif

    gyroSetSampleRate(imuConfig()->looptime, gyroConfig()->gyro_lpf, imuConfig()->gyroSync, imuConfig()->gyroSyncDenominator);   // Set gyro sampling rate divider before initialization

    if (!sensorsAutodetect()) {
        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(FAILURE_MISSING_ACC);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    flashLedsAndBeep();

#ifdef USE_SERVOS
    mixerInitialiseServoFiltering(targetLooptime);
#endif

#ifdef MAG
    if (sensors(SENSOR_MAG))
        compassInit();
#endif

    imuInit();

    mspInit();
    mspSerialInit();

#ifdef USE_CLI
    cliInit();
#endif

    failsafeInit();

    rxInit(modeActivationProfile()->modeActivationConditions);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit();
        navigationInit(pidProfile());
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        sonarInit(sonarHardware);
    }
#endif

#ifdef LED_STRIP
    ledStripInit();

    if (feature(FEATURE_LED_STRIP)) {
        ledStripEnable();
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }
#endif

#ifdef USB_CABLE_DETECTION
    usbCableDetectInit();
#endif

#ifdef TRANSPONDER
    if (feature(FEATURE_TRANSPONDER)) {
        transponderInit(transponderConfig()->data);
        transponderEnable();
        transponderStartRepeating();
        systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED;
    }
#endif

#ifdef USE_FLASHFS
#ifdef NAZE
    if (hardwareRevision == NAZE32_REV5) {
        m25p16_init();
    }
#elif defined(USE_FLASH_M25P16)
    m25p16_init();
#endif

    flashfsInit();
#endif

#ifdef USE_SDCARD
    bool sdcardUseDMA = false;

    sdcardInsertionDetectInit();

#ifdef SDCARD_DMA_CHANNEL_TX

#if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL)
    // Ensure the SPI Tx DMA doesn't overlap with the led strip
    sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL;
#else
    sdcardUseDMA = true;
#endif

#endif

    sdcard_init(sdcardUseDMA);

    afatfs_init();
#endif

#ifdef BLACKBOX
    initBlackbox();
#endif

    if (mixerConfig()->mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES);
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif

    // Now that everything has powered up the voltage and cell count be determined.

    if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER))
        batteryInit();

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayResetPageCycling();
        displayEnablePageCycling();
#endif
    }
#endif

#ifdef CJMCU
    LED2_ON;
#endif

    // Latch active features AGAIN since some may be modified by init().
    latchActiveFeatures();
    motorControlEnable = true;

    systemState |= SYSTEM_STATE_READY;
}

#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
    if (loopbackPort) {
        uint8_t bytesWaiting;
        while ((bytesWaiting = serialRxBytesWaiting(loopbackPort))) {
            uint8_t b = serialRead(loopbackPort);
            serialWrite(loopbackPort, b);
        };
    }
}
#else
#define processLoopback()
#endif

int main(void) {
    init();

    // Setup scheduler
    schedulerInit();
    setTaskEnabled(TASK_GYROPID, true);
    rescheduleTask(TASK_GYROPID, imuConfig()->gyroSync ? targetLooptime - INTERRUPT_WAIT_TIME : targetLooptime);
    setTaskEnabled(TASK_ACCEL, sensors(SENSOR_ACC));
    setTaskEnabled(TASK_SERIAL, true);
#ifdef BEEPER
    setTaskEnabled(TASK_BEEPER, true);
#endif
    setTaskEnabled(TASK_BATTERY, feature(FEATURE_VBAT) || feature(FEATURE_CURRENT_METER));
    setTaskEnabled(TASK_RX, true);
#ifdef GPS
    setTaskEnabled(TASK_GPS, feature(FEATURE_GPS));
#endif
#ifdef MAG
    setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG));
#if defined(MPU6500_SPI_INSTANCE) && defined(USE_MAG_AK8963)
    // fixme temporary solution for AK6983 via slave I2C on MPU9250
    rescheduleTask(TASK_COMPASS, 1000000 / 40);
#endif
#endif
#ifdef BARO
    setTaskEnabled(TASK_BARO, sensors(SENSOR_BARO));
#endif
#ifdef SONAR
    setTaskEnabled(TASK_SONAR, sensors(SENSOR_SONAR));
#endif
#if defined(BARO) || defined(SONAR)
    setTaskEnabled(TASK_ALTITUDE, sensors(SENSOR_BARO) || sensors(SENSOR_SONAR));
#endif
#ifdef DISPLAY
    setTaskEnabled(TASK_DISPLAY, feature(FEATURE_DISPLAY));
#endif
#ifdef TELEMETRY
    setTaskEnabled(TASK_TELEMETRY, feature(FEATURE_TELEMETRY));
#endif
#ifdef LED_STRIP
    setTaskEnabled(TASK_LEDSTRIP, feature(FEATURE_LED_STRIP));
#endif
#ifdef TRANSPONDER
    setTaskEnabled(TASK_TRANSPONDER, feature(FEATURE_TRANSPONDER));
#endif

    while (true) {
        scheduler();
        processLoopback();
    }
}

void HardFault_Handler(void)
{
    // fall out of the sky
    uint8_t requiredStateForMotors = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_MOTORS_READY;
    if ((systemState & requiredStateForMotors) == requiredStateForMotors) {
        stopMotors();
    }
#ifdef TRANSPONDER
    // prevent IR LEDs from burning out.
    uint8_t requiredStateForTransponder = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_TRANSPONDER_ENABLED;
    if ((systemState & requiredStateForTransponder) == requiredStateForTransponder) {
        transponderIrDisable();
    }
#endif

    while (1);
}
Exemplo n.º 6
0
// Default settings
STATIC_UNIT_TESTED void resetConf(void)
{
    pgResetAll(MAX_PROFILE_COUNT);

    setProfile(0);
    pgActivateProfile(0);

    setControlRateProfile(0);

    featureClearAll();

    featureSet(DEFAULT_RX_FEATURE);

#ifdef BOARD_HAS_VOLTAGE_DIVIDER
    // only enable the VBAT feature by default if the board has a voltage divider otherwise
    // the user may see incorrect readings and unexpected issues with pin mappings may occur.
    featureSet(FEATURE_VBAT);
#endif

    featureSet(FEATURE_FAILSAFE);

    parseRcChannels("AETR1234", rxConfig());

    featureSet(FEATURE_BLACKBOX);

#if defined(COLIBRI_RACE)
    // alternative defaults settings for COLIBRI RACE targets
    imuConfig()->looptime = 1000;
    featureSet(FEATURE_ONESHOT125);
    featureSet(FEATURE_LED_STRIP);
#endif

#ifdef SPRACINGF3EVO
    featureSet(FEATURE_TRANSPONDER);
    featureSet(FEATURE_RSSI_ADC);
    featureSet(FEATURE_CURRENT_METER);
    featureSet(FEATURE_TELEMETRY);
#endif

    // alternative defaults settings for ALIENWIIF1 and ALIENWIIF3 targets
#ifdef ALIENWII32
    featureSet(FEATURE_RX_SERIAL);
    featureSet(FEATURE_MOTOR_STOP);
# ifdef ALIENWIIF3
    serialConfig()->portConfigs[2].functionMask = FUNCTION_RX_SERIAL;
    batteryConfig()->vbatscale = 20;
# else
    serialConfig()->portConfigs[1].functionMask = FUNCTION_RX_SERIAL;
# endif
    rxConfig()->serialrx_provider = SERIALRX_SPEKTRUM2048;
    rxConfig()->spektrum_sat_bind = 5;
    motorAndServoConfig()->minthrottle = 1000;
    motorAndServoConfig()->maxthrottle = 2000;
    motorAndServoConfig()->motor_pwm_rate = 32000;
    imuConfig()->looptime = 2000;
    pidProfile()->pidController = 3;
    pidProfile()->P8[PIDROLL] = 36;
    pidProfile()->P8[PIDPITCH] = 36;
    failsafeConfig()->failsafe_delay = 2;
    failsafeConfig()->failsafe_off_delay = 0;
    currentControlRateProfile->rcRate8 = 130;
    currentControlRateProfile->rates[ROLL] = 20;
    currentControlRateProfile->rates[PITCH] = 20;
    currentControlRateProfile->rates[YAW] = 100;
    parseRcChannels("TAER1234", rxConfig());
    *customMotorMixer(0) = (motorMixer_t){ 1.0f, -0.414178f,  1.0f, -1.0f };    // REAR_R
    *customMotorMixer(1) = (motorMixer_t){ 1.0f, -0.414178f, -1.0f,  1.0f };    // FRONT_R
    *customMotorMixer(2) = (motorMixer_t){ 1.0f,  0.414178f,  1.0f,  1.0f };    // REAR_L
    *customMotorMixer(3) = (motorMixer_t){ 1.0f,  0.414178f, -1.0f, -1.0f };    // FRONT_L
    *customMotorMixer(4) = (motorMixer_t){ 1.0f, -1.0f, -0.414178f, -1.0f };    // MIDFRONT_R
    *customMotorMixer(5) = (motorMixer_t){ 1.0f,  1.0f, -0.414178f,  1.0f };    // MIDFRONT_L
    *customMotorMixer(6) = (motorMixer_t){ 1.0f, -1.0f,  0.414178f,  1.0f };    // MIDREAR_R
    *customMotorMixer(7) = (motorMixer_t){ 1.0f,  1.0f,  0.414178f, -1.0f };    // MIDREAR_L
#endif

    // copy first profile into remaining profile
    PG_FOREACH_PROFILE(reg) {
        for (int i = 1; i < MAX_PROFILE_COUNT; i++) {
            memcpy(reg->address + i * pgSize(reg), reg->address, pgSize(reg));
        }
    }
    for (int i = 1; i < MAX_PROFILE_COUNT; i++) {
        configureRateProfileSelection(i, i % MAX_CONTROL_RATE_PROFILE_COUNT);
    }
}
Exemplo n.º 7
0
void validateAndFixConfig(void)
{
    if (!(featureConfigured(FEATURE_RX_PARALLEL_PWM) || featureConfigured(FEATURE_RX_PPM) || featureConfigured(FEATURE_RX_SERIAL) || featureConfigured(FEATURE_RX_MSP))) {
        featureSet(DEFAULT_RX_FEATURE);
    }

    if (featureConfigured(FEATURE_RX_PPM)) {
        featureClear(FEATURE_RX_PARALLEL_PWM | FEATURE_RX_SERIAL | FEATURE_RX_MSP);
    }

    if (featureConfigured(FEATURE_RX_MSP)) {
        featureClear(FEATURE_RX_SERIAL | FEATURE_RX_PARALLEL_PWM | FEATURE_RX_PPM);
    }

    if (featureConfigured(FEATURE_RX_SERIAL)) {
        featureClear(FEATURE_RX_PARALLEL_PWM | FEATURE_RX_MSP | FEATURE_RX_PPM);
    }

    if (featureConfigured(FEATURE_RX_PARALLEL_PWM)) {
        featureClear(FEATURE_RX_SERIAL | FEATURE_RX_MSP | FEATURE_RX_PPM);
    }

#ifdef STM32F10X
    // avoid overloading the CPU on F1 targets when using gyro sync and GPS.
    if (imuConfig()->gyroSync && imuConfig()->gyroSyncDenominator < 2 && featureConfigured(FEATURE_GPS)) {
        imuConfig()->gyroSyncDenominator = 2;
    }
#endif

#if defined(LED_STRIP) && (defined(USE_SOFTSERIAL1) || defined(USE_SOFTSERIAL2))
    if (featureConfigured(FEATURE_SOFTSERIAL) && (
            0
#ifdef USE_SOFTSERIAL1
            || (LED_STRIP_TIMER == SOFTSERIAL_1_TIMER)
#endif
#ifdef USE_SOFTSERIAL2
            || (LED_STRIP_TIMER == SOFTSERIAL_2_TIMER)
#endif
    )) {
        // led strip needs the same timer as softserial
        featureClear(FEATURE_LED_STRIP);
    }
#endif

#if defined(CC3D) && defined(DISPLAY) && defined(USE_UART3)
    if (doesConfigurationUsePort(SERIAL_PORT_UART3) && featureConfigured(FEATURE_DISPLAY)) {
        featureClear(FEATURE_DISPLAY);
    }
#endif

#ifdef STM32F303xC
    // hardware supports serial port inversion, make users life easier for those that want to connect SBus RX's
#ifdef TELEMETRY
    telemetryConfig()->telemetry_inversion = 1;
#endif
#endif

    /*
     * The retarded_arm setting is incompatible with pid_at_min_throttle because full roll causes the craft to roll over on the ground.
     * The pid_at_min_throttle implementation ignores yaw on the ground, but doesn't currently ignore roll when retarded_arm is enabled.
     */
    if (armingConfig()->retarded_arm && mixerConfig()->pid_at_min_throttle) {
        mixerConfig()->pid_at_min_throttle = 0;
    }

#if defined(LED_STRIP) && defined(TRANSPONDER) && !defined(UNIT_TEST)
    if ((WS2811_DMA_TC_FLAG == TRANSPONDER_DMA_TC_FLAG) && featureConfigured(FEATURE_TRANSPONDER) && featureConfigured(FEATURE_LED_STRIP)) {
        featureClear(FEATURE_LED_STRIP);
    }
#endif

#if defined(CC3D) && defined(SONAR) && defined(USE_SOFTSERIAL1) && defined(RSSI_ADC_GPIO)
    // shared pin
    if ((featureConfigured(FEATURE_SONAR) + featureConfigured(FEATURE_SOFTSERIAL) + featureConfigured(FEATURE_RSSI_ADC)) > 1) {
    	featureClear(FEATURE_SONAR);
    	featureClear(FEATURE_SOFTSERIAL);
    	featureClear(FEATURE_RSSI_ADC);
    }
#endif

#if defined(COLIBRI_RACE)
    serialConfig()->portConfigs[0].functionMask = FUNCTION_MSP;
    if (featureConfigured(FEATURE_RX_SERIAL)) {
        serialConfig()->portConfigs[2].functionMask = FUNCTION_RX_SERIAL;
    }
#endif

    if (!isSerialConfigValid(serialConfig())) {
        PG_RESET_CURRENT(serialConfig);
    }

#if defined(USE_VCP)
    serialConfig()->portConfigs[0].functionMask = FUNCTION_MSP;
#endif
}