Exemplo n.º 1
0
int main (void) {
    cout << __FILE__ << endl;
  CoolComplex circuit;
  circuit = in_series (resistor (1.0),
                       in_parallel (in_series (resistor (100.0),
                                               inductor (0.2)),
                                    in_parallel (capacitor (0.000001),
                                                 resistor (10000000.0))));
  cout << "Circuit impedence is " << circuit << " at frequency " << FREQUENCY << "\n";
  return 0;                                     // Exit with OK status
}
Exemplo n.º 2
0
/**
 * Utility function to throw an error if a vector is of unequal length.
 * \param[in] gl_sarray of type vector 
 */
void check_vector_equal_size(const gl_sarray& in) {
  // Initialize. 
  DASSERT_TRUE(in.dtype() == flex_type_enum::VECTOR); 
  size_t n_threads = thread::cpu_count();
  n_threads = std::max(n_threads, size_t(1));
  size_t m_size = in.size();
          
  // Throw the following error. 
  auto throw_error = [] (size_t row_number, size_t expected, size_t current) {
    std::stringstream ss;
    ss << "Vectors must be of the same size. Row " << row_number 
       << " contains a vector of size " << current << ". Expected a vector of"
       << " size " << expected << "." << std::endl;
    log_and_throw(ss.str());
  };
  
  // Within each block of the SArray, check that the vectors have the same size.
  std::vector<size_t> expected_sizes (n_threads, size_t(-1));
  in_parallel([&](size_t thread_idx, size_t n_threads) {
    size_t start_row = thread_idx * m_size / n_threads; 
    size_t end_row = (thread_idx + 1) * m_size / n_threads;
    size_t expected_size = size_t(-1);
    size_t row_number = start_row;
    for (const auto& v: in.range_iterator(start_row, end_row)) {
      if (v != FLEX_UNDEFINED) {
        if (expected_size == size_t(-1)) {
          expected_size = v.size();
          expected_sizes[thread_idx] = expected_size; 
        } else {
          DASSERT_TRUE(v.get_type() == flex_type_enum::VECTOR);
          if (expected_size != v.size()) {
            throw_error(row_number, expected_size, v.size());
          }
        }
      }
      row_number++;
    }
  });

  // Make sure sizes accross blocks are also the same. 
  size_t vector_size = size_t(-1);
  for (size_t thread_idx = 0; thread_idx < n_threads; thread_idx++) {
    // If this block contains all None values, skip it.
    if (expected_sizes[thread_idx] != size_t(-1)) {

      if (vector_size == size_t(-1)) {
          vector_size = expected_sizes[thread_idx]; 
      } else {
         if (expected_sizes[thread_idx] != vector_size) {
           throw_error(thread_idx * m_size / n_threads, 
                              vector_size, expected_sizes[thread_idx]);
         } 
      }
    }
  }
}
Exemplo n.º 3
0
gl_sframe grouped_sframe::group_info() const {
  if (m_group_names.size() == 0) {
    log_and_throw("No groups present. Cannot obtain group info.");
  }
 
  // Return column names. 
  std::vector<std::string> ret_column_names = m_key_col_names;
  ret_column_names.push_back("group_size");
  DASSERT_EQ(ret_column_names.size(), m_key_col_names.size() + 1);

  // Return column types from the first group info. 
  DASSERT_TRUE(m_group_names.size() > 1);
  std::vector<flex_type_enum> ret_column_types;
  flexible_type first_key = m_group_names[0];
  flex_type_enum key_type = first_key.get_type();
  if (key_type == flex_type_enum::LIST) {
    for (size_t k = 0; k < first_key.size(); k++) {
      ret_column_types.push_back(first_key.array_at(k).get_type());
    }
  } else {
    ret_column_types.push_back(key_type);
  }
  ret_column_types.push_back(flex_type_enum::INTEGER);
  DASSERT_EQ(ret_column_types.size(), ret_column_names.size());
  
  // Prepare for writing.
  size_t num_segments = thread::cpu_count();
  gl_sframe_writer writer(ret_column_names, ret_column_types, num_segments);
  size_t range_dir_size = m_range_directory.size();

  // Write the group info.
  in_parallel([&](size_t thread_idx, size_t num_threads) {

    size_t start_idx = range_dir_size * thread_idx / num_threads;
    size_t end_idx = range_dir_size * (thread_idx + 1) / num_threads;

    for (size_t i = start_idx; i < end_idx; i++) { 
      size_t range_start = m_range_directory[i];
      size_t range_end = 0;
      if((i + 1) == m_range_directory.size()) {
        range_end = m_grouped_sf.size();
      } else {
        range_end = m_range_directory[i + 1];
      }
      size_t num_rows = range_end - range_start;
      std::vector<flexible_type> vals = m_group_names[i];
      vals.push_back(num_rows);
      DASSERT_EQ(vals.size(), ret_column_names.size());
      writer.write(vals, thread_idx);
    }
    return writer.close(); 
  });
}
Exemplo n.º 4
0
gl_sarray gl_sarray::cumulative_aggregate(
     std::shared_ptr<group_aggregate_value> aggregator) const { 
  
  flex_type_enum input_type = this->dtype();
  flex_type_enum output_type = aggregator->set_input_types({input_type});
  if (! aggregator->support_type(input_type)) {
    std::stringstream ss;
    ss << "Cannot perform this operation on an SArray of type "
       << flex_type_enum_to_name(input_type) << "." << std::endl;
    log_and_throw(ss.str());
  } 

  // Empty case.  
  size_t m_size = this->size();
  if (m_size == 0) {
    return gl_sarray({}, output_type);
  }
  
  // Make a copy of an newly initialize aggregate for each thread.
  size_t n_threads = thread::cpu_count();
  gl_sarray_writer writer(output_type, n_threads);
  std::vector<std::shared_ptr<group_aggregate_value>> aggregators;
  for (size_t i = 0; i < n_threads; i++) {
      aggregators.push_back(
          std::shared_ptr<group_aggregate_value>(aggregator->new_instance()));
  } 

  // Skip Phases 1,2 when single threaded or more threads than rows.
  if ((n_threads > 1) && (m_size > n_threads)) {
    
    // Phase 1: Compute prefix-sums for each block.
    in_parallel([&](size_t thread_idx, size_t n_threads) {
      size_t start_row = thread_idx * m_size / n_threads; 
      size_t end_row = (thread_idx + 1) * m_size / n_threads;
      for (const auto& v: this->range_iterator(start_row, end_row)) {
        DASSERT_TRUE(thread_idx < aggregators.size());
        if (v != FLEX_UNDEFINED) {
          aggregators[thread_idx]->add_element_simple(v);
        }
      }
    });

    // Phase 2: Combine prefix-sum(s) at the end of each block.
    for (size_t i = n_threads - 1; i > 0; i--) {
      for (size_t j = 0; j < i; j++) {
        DASSERT_TRUE(i < aggregators.size());
        DASSERT_TRUE(j < aggregators.size());
        aggregators[i]->combine(*aggregators[j]);
      }
    }
  }
  
  // Phase 3: Reaggregate with an re-intialized prefix-sum from previous blocks. 
  auto reagg_fn = [&](size_t thread_idx, size_t n_threads) {
    flexible_type y = FLEX_UNDEFINED;
    size_t start_row = thread_idx * m_size / n_threads; 
    size_t end_row = (thread_idx + 1) * m_size / n_threads;
    std::shared_ptr<group_aggregate_value> re_aggregator (
                                              aggregator->new_instance());
  
    // Initialize with the merged value. 
    if (thread_idx >= 1) {
      DASSERT_TRUE(thread_idx - 1 < aggregators.size());
      y = aggregators[thread_idx - 1]->emit();
      re_aggregator->combine(*aggregators[thread_idx - 1]);
    }

    // Write prefix-sum
    for (const auto& v: this->range_iterator(start_row, end_row)) {
      if (v != FLEX_UNDEFINED) {
        re_aggregator->add_element_simple(v);
        y = re_aggregator->emit();
      }
      writer.write(y, thread_idx);
    }
  };
  
  // Run single threaded if more threads than rows. 
  if (m_size > n_threads) {
    in_parallel(reagg_fn);
  } else {
    reagg_fn(0, 1);   
  }
  return writer.close();
}