int meibo_input(LPMYDATA lp) { int index = index_input(); if (index == -1) return -1; LPMYDATA lp_target = lp + index; printf("-- INPUT [%d]--\n", index); printf("your name:"); gets(lp_target->name); printf("your email:"); gets(lp_target->email); }
int meibo_output(LPMYDATA lp) { int index = index_input(); if (index == -1) return -1; LPMYDATA lp_target = lp + index; printf("-- OUTPUT [%d]--\n", index); if (strcmp(lp_target->name ,"") == 0) { printf("NO DATA\n"); return -1; } printf("name : %s\n", lp_target->name); printf("email : %s\n", lp_target->email); }
// Solves turning point equations via classic Salinger bordering // The first m columns of input_x and input_null store the RHS while // the last column stores df/dp, d(Jn)/dp respectively. Note however // input_param has only m columns (not m+1). result_x, result_null, // are result_param have the same dimensions as their input counterparts NOX::Abstract::Group::ReturnType LOCA::TurningPoint::MooreSpence::PhippsBordering::solveTransposeContiguous( Teuchos::ParameterList& params, const NOX::Abstract::MultiVector& input_x, const NOX::Abstract::MultiVector& input_null, const NOX::Abstract::MultiVector::DenseMatrix& input_param, NOX::Abstract::MultiVector& result_x, NOX::Abstract::MultiVector& result_null, NOX::Abstract::MultiVector::DenseMatrix& result_param) const { std::string callingFunction = "LOCA::TurningPoint::MooreSpence::PhippsBordering::solveTransposeContiguous()"; NOX::Abstract::Group::ReturnType finalStatus = NOX::Abstract::Group::Ok; NOX::Abstract::Group::ReturnType status; int m = input_x.numVectors()-2; std::vector<int> index_input(m); std::vector<int> index_input_dp(m+1); std::vector<int> index_null(1); std::vector<int> index_dp(1); for (int i=0; i<m; i++) { index_input[i] = i; index_input_dp[i] = i; } index_input_dp[m] = m; index_dp[0] = m; index_null[0] = m+1; NOX::Abstract::MultiVector::DenseMatrix tmp_mat_1(1, m+1); NOX::Abstract::MultiVector::DenseMatrix tmp_mat_2(1, m+2); // Create view of first m+1 columns of input_null, result_null Teuchos::RCP<NOX::Abstract::MultiVector> input_null_view = input_null.subView(index_input_dp); Teuchos::RCP<NOX::Abstract::MultiVector> result_null_view = result_null.subView(index_input_dp); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J^T v||A B| = |G -phi| // |u^T 0||a b| |0 0 | status = transposeBorderedSolver->applyInverseTranspose(params, input_null_view.get(), NULL, *result_null_view, tmp_mat_1); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> A = result_null.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> B = result_null.subView(index_dp); double b = tmp_mat_1(0,m); // compute (Jv)_x^T[A B u] result_null[m+1] = *uVector; Teuchos::RCP<NOX::Abstract::MultiVector> tmp = result_null.clone(NOX::ShapeCopy); status = group->computeDwtJnDxMulti(result_null, *nullVector, *tmp); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); // compute [F 0 0] - (Jv)_x^T[A B u] tmp->update(1.0, input_x, -1.0); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J^T v||C D E| = |F - (Jv)_x^T A -(Jv)_x^T B -(Jv)_x^T u| // |u^T 0||c d e| | 0 0 0 | status = transposeBorderedSolver->applyInverseTranspose(params, tmp.get(), NULL, result_x, tmp_mat_2); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> C = result_x.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> D = result_x.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> E = result_x.subView(index_null); double d = tmp_mat_2(0, m); double e = tmp_mat_2(0, m+1); // compute (Jv)_p^T*[A B u] NOX::Abstract::MultiVector::DenseMatrix t1(1,m+2); result_null.multiply(1.0, *dJndp, t1); // compute f_p^T*[C D E] NOX::Abstract::MultiVector::DenseMatrix t2(1,m+2); result_x.multiply(1.0, *dfdp, t2); // compute f_p^T*u double fptu = uVector->innerProduct((*dfdp)[0]); // Fill coefficient arrays double M[9]; M[0] = st; M[1] = -e; M[2] = t1(0,m+1) + t2(0,m+1); M[3] = 0.0; M[4] = st; M[5] = fptu; M[6] = -b; M[7] = -d; M[8] = t1(0,m) + t2(0,m); // Compute RHS double *R = new double[3*m]; for (int i=0; i<m; i++) { R[3*i] = tmp_mat_1(0,i); R[3*i+1] = tmp_mat_2(0,i); R[3*i+2] = result_param(0,i) - t1(0,i) - t2(0,i); } // Solve M*P = R int three = 3; int piv[3]; int info; Teuchos::LAPACK<int,double> L; L.GESV(three, m, M, three, piv, R, three, &info); if (info != 0) { globalData->locaErrorCheck->throwError( callingFunction, "Solve of 3x3 coefficient matrix failed!"); return NOX::Abstract::Group::Failed; } NOX::Abstract::MultiVector::DenseMatrix alpha(1,m); NOX::Abstract::MultiVector::DenseMatrix beta(1,m); for (int i=0; i<m; i++) { alpha(0,i) = R[3*i]; beta(0,i) = R[3*i+1]; result_param(0,i) = R[3*i+2]; } // compute A = A + B*z + alpha*u (remember A is a sub-view of result_null) A->update(Teuchos::NO_TRANS, 1.0, *B, result_param, 1.0); A->update(Teuchos::NO_TRANS, 1.0, *uMultiVector, alpha, 1.0); // compute C = C + D*z + alpha*E + beta*u // (remember C is a sub-view of result_x) C->update(Teuchos::NO_TRANS, 1.0, *D, result_param, 1.0); C->update(Teuchos::NO_TRANS, 1.0, *E, alpha, 1.0); C->update(Teuchos::NO_TRANS, 1.0, *uMultiVector, beta, 1.0); delete [] R; return finalStatus; }
// Solves turning point equations via Phipps modified bordering // The first m columns of input_x and input_null store the RHS while // the last column stores df/dp, d(Jn)/dp respectively. Note however // input_param has only m columns (not m+1). result_x, result_null, // are result_param have the same dimensions as their input counterparts NOX::Abstract::Group::ReturnType LOCA::TurningPoint::MooreSpence::PhippsBordering::solveContiguous( Teuchos::ParameterList& params, const NOX::Abstract::MultiVector& input_x, const NOX::Abstract::MultiVector& input_null, const NOX::Abstract::MultiVector::DenseMatrix& input_param, NOX::Abstract::MultiVector& result_x, NOX::Abstract::MultiVector& result_null, NOX::Abstract::MultiVector::DenseMatrix& result_param) const { std::string callingFunction = "LOCA::TurningPoint::MooreSpence::PhippsBordering::solveContiguous()"; NOX::Abstract::Group::ReturnType finalStatus = NOX::Abstract::Group::Ok; NOX::Abstract::Group::ReturnType status; int m = input_x.numVectors()-2; std::vector<int> index_input(m); std::vector<int> index_input_dp(m+1); std::vector<int> index_null(1); std::vector<int> index_dp(1); for (int i=0; i<m; i++) { index_input[i] = i; index_input_dp[i] = i; } index_input_dp[m] = m; index_dp[0] = m; index_null[0] = m+1; NOX::Abstract::MultiVector::DenseMatrix tmp_mat_1(1, m+1); NOX::Abstract::MultiVector::DenseMatrix tmp_mat_2(1, m+2); // Create view of first m+1 columns of input_x, result_x Teuchos::RCP<NOX::Abstract::MultiVector> input_x_view = input_x.subView(index_input_dp); Teuchos::RCP<NOX::Abstract::MultiVector> result_x_view = result_x.subView(index_input_dp); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J u||A B| = |F df/dp| // |v^T 0||a b| |0 0 | status = borderedSolver->applyInverse(params, input_x_view.get(), NULL, *result_x_view, tmp_mat_1); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> A = result_x.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> B = result_x.subView(index_dp); double b = tmp_mat_1(0,m); // compute (Jv)_x[A B v] result_x[m+1] = *nullVector; Teuchos::RCP<NOX::Abstract::MultiVector> tmp = result_x.clone(NOX::ShapeCopy); status = group->computeDJnDxaMulti(*nullVector, *JnVector, result_x, *tmp); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); // compute (Jv)_x[A B v] - [G d(Jn)/dp 0] tmp->update(-1.0, input_null, 1.0); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J u||C D E| = |(Jv)_x A - G (Jv)_x B - d(Jv)/dp (Jv)_x v| // |v^T 0||c d e| | 0 0 0 | status = borderedSolver->applyInverse(params, tmp.get(), NULL, result_null, tmp_mat_2); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> C = result_null.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> D = result_null.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> E = result_null.subView(index_null); double d = tmp_mat_2(0, m); double e = tmp_mat_2(0, m+1); // Fill coefficient arrays double M[9]; M[0] = s; M[1] = e; M[2] = -tpGroup->lTransNorm((*E)[0]); M[3] = 0.0; M[4] = s; M[5] = tpGroup->lTransNorm(*nullVector); M[6] = b; M[7] = -d; M[8] = tpGroup->lTransNorm((*D)[0]); // compute h + phi^T C tpGroup->lTransNorm(*C, result_param); result_param += input_param; double *R = new double[3*m]; for (int i=0; i<m; i++) { R[3*i] = tmp_mat_1(0,i); R[3*i+1] = -tmp_mat_2(0,i); R[3*i+2] = result_param(0,i); } // Solve M*P = R int three = 3; int piv[3]; int info; Teuchos::LAPACK<int,double> L; L.GESV(three, m, M, three, piv, R, three, &info); if (info != 0) { globalData->locaErrorCheck->throwError( callingFunction, "Solve of 3x3 coefficient matrix failed!"); return NOX::Abstract::Group::Failed; } NOX::Abstract::MultiVector::DenseMatrix alpha(1,m); NOX::Abstract::MultiVector::DenseMatrix beta(1,m); for (int i=0; i<m; i++) { alpha(0,i) = R[3*i]; beta(0,i) = R[3*i+1]; result_param(0,i) = R[3*i+2]; } // compute A = A - B*z + v*alpha (remember A is a sub-view of result_x) A->update(Teuchos::NO_TRANS, -1.0, *B, result_param, 1.0); A->update(Teuchos::NO_TRANS, 1.0, *nullMultiVector, alpha, 1.0); // compute C = -C + d*z - E*alpha + v*beta // (remember C is a sub-view of result_null) C->update(Teuchos::NO_TRANS, 1.0, *D, result_param, -1.0); C->update(Teuchos::NO_TRANS, -1.0, *E, alpha, 1.0); C->update(Teuchos::NO_TRANS, 1.0, *nullMultiVector, beta, 1.0); delete [] R; return finalStatus; }
NOX::Abstract::Group::ReturnType LOCA::TurningPoint::MooreSpence::PhippsBordering::solveTranspose( Teuchos::ParameterList& params, const LOCA::TurningPoint::MooreSpence::ExtendedMultiVector& input, LOCA::TurningPoint::MooreSpence::ExtendedMultiVector& result) const { std::string callingFunction = "LOCA::TurningPoint::MooreSpence::PhippsBordering::solveTranspose()"; NOX::Abstract::Group::ReturnType status; // Get components of input Teuchos::RCP<const NOX::Abstract::MultiVector> input_x = input.getXMultiVec(); Teuchos::RCP<const NOX::Abstract::MultiVector> input_null = input.getNullMultiVec(); Teuchos::RCP<const NOX::Abstract::MultiVector::DenseMatrix> input_param = input.getScalars(); // Get components of result Teuchos::RCP<NOX::Abstract::MultiVector> result_x = result.getXMultiVec(); Teuchos::RCP<NOX::Abstract::MultiVector> result_null = result.getNullMultiVec(); Teuchos::RCP<NOX::Abstract::MultiVector::DenseMatrix> result_param = result.getScalars(); int m = input.numVectors(); std::vector<int> index_input(m); for (int i=0; i<m; i++) index_input[i] = i; // Create new multivectors with m+2 columns // First m columns store input_x, input_null, result_x, result_null // respectively, next column stores 0, -phi, J^-T tmp , -J^-T phi // respectively, last column is for solving (Jv)_x^T u Teuchos::RCP<NOX::Abstract::MultiVector> cont_input_x = input_x->clone(m+2); Teuchos::RCP<NOX::Abstract::MultiVector> cont_input_null = input_null->clone(m+2); Teuchos::RCP<NOX::Abstract::MultiVector> cont_result_x = result_x->clone(m+2); Teuchos::RCP<NOX::Abstract::MultiVector> cont_result_null = result_null->clone(m+2); // Set first m columns to input_x cont_input_x->setBlock(*input_x, index_input); // Set last two columns to 0 (*cont_input_x)[m].init(0); (*cont_input_x)[m+1].init(0); // Set first m columns to input_null cont_input_null->setBlock(*input_null, index_input); // Set next column to -phi Teuchos::RCP<NOX::Abstract::Vector> phi = tpGroup->getLengthVector(); (*cont_input_null)[m].update(-1.0, *phi, 0.0); // Set last column to 0 (*cont_input_null)[m].init(0); // Initialize result multivectors to 0 cont_result_x->init(0.0); cont_result_null->init(0.0); // Solve status = solveTransposeContiguous(params, *cont_input_x, *cont_input_null, *input_param, *cont_result_x, *cont_result_null, *result_param); // Create views of first m columns for result_x, result_null Teuchos::RCP<NOX::Abstract::MultiVector> cont_result_x_view = cont_result_x->subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> cont_result_null_view = cont_result_null->subView(index_input); // Copy first m columns back into result_x, result_null *result_x = *cont_result_x_view; *result_null = *cont_result_null_view; return status; }
// Solves Hopf equations via classic Salinger bordering // The first m columns of input_x, input_y, input_z store the RHS, the // next column stores df/dp, (Jy-wBz)_p and (Jz+wBy)_p respectively, the // last column of input_y and input_z store Bz and -By respectively. Note // input_x has m+1 columns, input_y and input_z have m+2, and input_w and // input_p have m columns. result_x, result_y, result_z, result_w and // result_param have the same dimensions as their input counterparts NOX::Abstract::Group::ReturnType LOCA::Hopf::MooreSpence::SalingerBordering::solveContiguous( Teuchos::ParameterList& params, const NOX::Abstract::MultiVector& input_x, const NOX::Abstract::MultiVector& input_y, const NOX::Abstract::MultiVector& input_z, const NOX::Abstract::MultiVector::DenseMatrix& input_w, const NOX::Abstract::MultiVector::DenseMatrix& input_p, NOX::Abstract::MultiVector& result_x, NOX::Abstract::MultiVector& result_y, NOX::Abstract::MultiVector& result_z, NOX::Abstract::MultiVector::DenseMatrix& result_w, NOX::Abstract::MultiVector::DenseMatrix& result_p) const { std::string callingFunction = "LOCA::Hopf::MooreSpence::SalingerBordering::solveContiguous()"; NOX::Abstract::Group::ReturnType finalStatus = NOX::Abstract::Group::Ok; NOX::Abstract::Group::ReturnType status; int m = input_x.numVectors()-1; std::vector<int> index_input(m); std::vector<int> index_dp(1); std::vector<int> index_B(1); std::vector<int> index_ip(m+1); for (int i=0; i<m; i++) { index_input[i] = i; index_ip[i] = i; } index_ip[m] = m; index_dp[0] = m; index_B[0] = m+1; // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // compute [A b] = J^-1 [F df/dp] status = group->applyJacobianInverseMultiVector(params, input_x, result_x); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> A = result_x.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> b = result_x.subView(index_dp); // verify underlying complex matrix is valid if (!group->isComplex()) { status = group->computeComplex(w); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // compute (J+iwB)(y+iz)_x [A b] Teuchos::RCP<NOX::Abstract::MultiVector> tmp_real = result_y.clone(NOX::ShapeCopy); Teuchos::RCP<NOX::Abstract::MultiVector> tmp_real_sub = tmp_real->subView(index_ip); Teuchos::RCP<NOX::Abstract::MultiVector> tmp_imag = result_y.clone(NOX::ShapeCopy); Teuchos::RCP<NOX::Abstract::MultiVector> tmp_imag_sub = tmp_imag->subView(index_ip); tmp_real->init(0.0); tmp_imag->init(0.0); status = group->computeDCeDxa(*yVector, *zVector, w, result_x, *CeRealVector, *CeImagVector, *tmp_real_sub, *tmp_imag_sub); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); // compute [G+iH d(J+iwB)(y+iz)/dp iB(y+iz)] - [(J+iwB)_x[A b] 0+i0] tmp_real->update(1.0, input_y, -1.0); tmp_imag->update(1.0, input_z, -1.0); // verify underlying complex matrix is valid if (!group->isComplex()) { status = group->computeComplex(w); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // compute [C+iD e+if g+ih] = (J+iwB)^-1 (tmp_real + i tmp_imag) status = group->applyComplexInverseMultiVector(params, *tmp_real, *tmp_imag, result_y, result_z); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> C = result_y.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> D = result_z.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> e = result_y.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> f = result_z.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> g = result_y.subView(index_B); Teuchos::RCP<NOX::Abstract::MultiVector> h = result_z.subView(index_B); // compute lambda = ((phi^T h)(phi^T C-u) - (phi^T g)(phi^T D-v)) / // ((phi^T h)(phi^T e)-(phi^T g)(phi^T f)) NOX::Abstract::MultiVector::DenseMatrix ltC(1,m); NOX::Abstract::MultiVector::DenseMatrix ltD(1,m); double lte = hopfGroup->lTransNorm((*e)[0]); double ltf = hopfGroup->lTransNorm((*f)[0]); double ltg = hopfGroup->lTransNorm((*g)[0]); double lth = hopfGroup->lTransNorm((*h)[0]); double denom = lth*lte - ltg*ltf; hopfGroup->lTransNorm(*C, ltC); ltC -= input_w; ltC.scale(lth); hopfGroup->lTransNorm(*D, ltD); ltD -= input_p; result_p.assign(ltD); result_p.scale(-ltg); result_p += ltC; result_p.scale(1.0/denom); // compute omega = (phi^T D-v - (phi^T f)lambda)/(phi^T h) result_w.assign(result_p); result_w.scale(-ltf); result_w += ltD; result_w.scale(1.0/lth); // compute A = A - b*lambda (remember A is a sub-view of result_x) A->update(Teuchos::NO_TRANS, -1.0, *b, result_p, 1.0); // compute C = C - e*lambda - g*omega (remember C is a sub-view of result_y) C->update(Teuchos::NO_TRANS, -1.0, *e, result_p, 1.0); C->update(Teuchos::NO_TRANS, -1.0, *g, result_w, 1.0); // compute D = D - f*lambda - h*omega (remember D is a sub-view of result_z) D->update(Teuchos::NO_TRANS, -1.0, *f, result_p, 1.0); D->update(Teuchos::NO_TRANS, -1.0, *h, result_w, 1.0); return finalStatus; }
NOX::Abstract::Group::ReturnType LOCA::Hopf::MooreSpence::SalingerBordering::solve( Teuchos::ParameterList& params, const LOCA::Hopf::MooreSpence::ExtendedMultiVector& input, LOCA::Hopf::MooreSpence::ExtendedMultiVector& result) const { std::string callingFunction = "LOCA::Hopf::MooreSpence::SalingerBordering::solve()"; NOX::Abstract::Group::ReturnType status; // Get components of input Teuchos::RCP<const NOX::Abstract::MultiVector> input_x = input.getXMultiVec(); Teuchos::RCP<const NOX::Abstract::MultiVector> input_y = input.getRealEigenMultiVec(); Teuchos::RCP<const NOX::Abstract::MultiVector> input_z = input.getImagEigenMultiVec(); Teuchos::RCP<const NOX::Abstract::MultiVector::DenseMatrix> input_w = input.getFrequencies(); Teuchos::RCP<const NOX::Abstract::MultiVector::DenseMatrix> input_p = input.getBifParams(); // Get components of result Teuchos::RCP<NOX::Abstract::MultiVector> result_x = result.getXMultiVec(); Teuchos::RCP<NOX::Abstract::MultiVector> result_y = result.getRealEigenMultiVec(); Teuchos::RCP<NOX::Abstract::MultiVector> result_z = result.getImagEigenMultiVec(); Teuchos::RCP<NOX::Abstract::MultiVector::DenseMatrix> result_w = result.getFrequencies(); Teuchos::RCP<NOX::Abstract::MultiVector::DenseMatrix> result_p = result.getBifParams(); int m = input.numVectors(); std::vector<int> index_input(m); for (int i=0; i<m; i++) index_input[i] = i; // Create new multivectors with m+2 columns // First m columns store input_x, input_y, input_z, result_x, result_y, // and result_z respectively, next column stores df/dp, (Jy-wBz)_p, // (Jz+wBy)_p, J^-1 dfdp, C^-1 (Jy-wBz)_p, C^-1 (Jz+wBy)_p // respectively. Last column stores -Bz, By C^-1 (-Bz) and C^-1 (By) Teuchos::RCP<NOX::Abstract::MultiVector> cont_input_x = input_x->clone(m+1); Teuchos::RCP<NOX::Abstract::MultiVector> cont_input_y = input_y->clone(m+2); Teuchos::RCP<NOX::Abstract::MultiVector> cont_input_z = input_z->clone(m+2); Teuchos::RCP<NOX::Abstract::MultiVector> cont_result_x = result_x->clone(m+1); Teuchos::RCP<NOX::Abstract::MultiVector> cont_result_y = result_y->clone(m+2); Teuchos::RCP<NOX::Abstract::MultiVector> cont_result_z = result_y->clone(m+2); // Set first m columns to input_x cont_input_x->setBlock(*input_x, index_input); // Set last column to dfdp (*cont_input_x)[m] = *dfdp; // Set first m columns to input_y cont_input_y->setBlock(*input_y, index_input); // Set next column to (Jy-wBz)_p (*cont_input_y)[m] = *dCedpReal; // Set last column to -Bz (*cont_input_y)[m+1] = *minusBzVector; // Set first m columns to input_z cont_input_z->setBlock(*input_z, index_input); // Set next column to (Jz+wBy)_p (*cont_input_z)[m] = *dCedpImag; // Set last column to By (*cont_input_z)[m+1] = *ByVector; // Initialize result multivectors to 0 cont_result_x->init(0.0); cont_result_y->init(0.0); cont_result_z->init(0.0); // Solve status = solveContiguous(params, *cont_input_x, *cont_input_y, *cont_input_z, *input_w, *input_p, *cont_result_x, *cont_result_y, *cont_result_z, *result_w, *result_p); // Create views of first m columns for result_x, result_y, result_z Teuchos::RCP<NOX::Abstract::MultiVector> cont_result_x_view = cont_result_x->subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> cont_result_y_view = cont_result_y->subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> cont_result_z_view = cont_result_z->subView(index_input); // Copy first m columns back into result_x, result_null *result_x = *cont_result_x_view; *result_y = *cont_result_y_view; *result_z = *cont_result_z_view; return status; }
NOX::Abstract::Group::ReturnType LOCA::TurningPoint::MooreSpence::PhippsBordering::solve( Teuchos::ParameterList& params, const LOCA::TurningPoint::MooreSpence::ExtendedMultiVector& input, LOCA::TurningPoint::MooreSpence::ExtendedMultiVector& result) const { string callingFunction = "LOCA::TurningPoint::MooreSpence::PhippsBordering::solve()"; NOX::Abstract::Group::ReturnType status; // Get components of input Teuchos::RCP<const NOX::Abstract::MultiVector> input_x = input.getXMultiVec(); Teuchos::RCP<const NOX::Abstract::MultiVector> input_null = input.getNullMultiVec(); Teuchos::RCP<const NOX::Abstract::MultiVector::DenseMatrix> input_param = input.getScalars(); // Get components of result Teuchos::RCP<NOX::Abstract::MultiVector> result_x = result.getXMultiVec(); Teuchos::RCP<NOX::Abstract::MultiVector> result_null = result.getNullMultiVec(); Teuchos::RCP<NOX::Abstract::MultiVector::DenseMatrix> result_param = result.getScalars(); int m = input.numVectors(); vector<int> index_input(m); for (int i=0; i<m; i++) index_input[i] = i; // Create new multivectors with m+2 columns // First m columns store input_x, input_null, result_x, result_null // respectively, next column stores dfdp, dJndp, J^-1 dfdp, J^-1 dJndp // respectively. Last column is for solving (Jv)_x v Teuchos::RCP<NOX::Abstract::MultiVector> cont_input_x = input_x->clone(m+2); Teuchos::RCP<NOX::Abstract::MultiVector> cont_input_null = input_null->clone(m+2); Teuchos::RCP<NOX::Abstract::MultiVector> cont_result_x = result_x->clone(m+2); Teuchos::RCP<NOX::Abstract::MultiVector> cont_result_null = result_null->clone(m+2); // Set first m columns to input_x cont_input_x->setBlock(*input_x, index_input); // Set column m+1 to dfdp (*cont_input_x)[m] = (*dfdp)[0]; // Initialize column m+2 to 0 (*cont_input_x)[m+1].init(0.0); // Set first m columns to input_null cont_input_null->setBlock(*input_null, index_input); // Set column m+1 to dJndp (*cont_input_null)[m] = (*dJndp)[0]; // Initialize column m+2 to 0 (*cont_input_null)[m+1].init(0.0); // Initialize result multivectors to 0 cont_result_x->init(0.0); cont_result_null->init(0.0); // Solve status = solveContiguous(params, *cont_input_x, *cont_input_null, *input_param, *cont_result_x, *cont_result_null, *result_param); // Create views of first m columns for result_x, result_null Teuchos::RCP<NOX::Abstract::MultiVector> cont_result_x_view = cont_result_x->subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> cont_result_null_view = cont_result_null->subView(index_input); // Copy first m columns back into result_x, result_null *result_x = *cont_result_x_view; *result_null = *cont_result_null_view; return status; }
// Solves pitchfork equations via Phipps modified bordering // The first m columns of input_x and input_null store the RHS, // column m+1 stores df/dp, d(Jn)/dp, column m+2 stores psi and 0, // and the last column provides space for solving (Jv_x) v. Note however // input_param has only m columns. result_x, result_null, // are result_param have the same dimensions as their input counterparts NOX::Abstract::Group::ReturnType LOCA::Pitchfork::MooreSpence::PhippsBordering::solveContiguous( Teuchos::ParameterList& params, const NOX::Abstract::MultiVector& input_x, const NOX::Abstract::MultiVector& input_null, const NOX::Abstract::MultiVector::DenseMatrix& input_slack, const NOX::Abstract::MultiVector::DenseMatrix& input_param, NOX::Abstract::MultiVector& result_x, NOX::Abstract::MultiVector& result_null, NOX::Abstract::MultiVector::DenseMatrix& result_slack, NOX::Abstract::MultiVector::DenseMatrix& result_param) const { string callingFunction = "LOCA::Pitchfork::MooreSpence::PhippsBordering::solveContiguous()"; NOX::Abstract::Group::ReturnType finalStatus = NOX::Abstract::Group::Ok; NOX::Abstract::Group::ReturnType status; int m = input_x.numVectors()-3; vector<int> index_input(m); vector<int> index_input_dp(m+2); vector<int> index_null(1); vector<int> index_dp(1); vector<int> index_s(1); for (int i=0; i<m; i++) { index_input[i] = i; index_input_dp[i] = i; } index_input_dp[m] = m; index_input_dp[m+1] = m+1; index_dp[0] = m; index_s[0] = m+1; index_null[0] = m+2; NOX::Abstract::MultiVector::DenseMatrix tmp_mat_1(1, m+2); NOX::Abstract::MultiVector::DenseMatrix tmp_mat_2(1, m+3); // Create view of first m+2 columns of input_x, result_x Teuchos::RCP<NOX::Abstract::MultiVector> input_x_view = input_x.subView(index_input_dp); Teuchos::RCP<NOX::Abstract::MultiVector> result_x_view = result_x.subView(index_input_dp); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J u||A B C| = |F df/dp psi| // |v^T 0||a b c| |0 0 0 | status = borderedSolver->applyInverse(params, input_x_view.get(), NULL, *result_x_view, tmp_mat_1); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> A = result_x.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> B = result_x.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> C = result_x.subView(index_s); double b = tmp_mat_1(0,m); double c = tmp_mat_1(0,m+1); // compute (Jv)_x[A B C v] result_x[m+2] = *nullVector; Teuchos::RCP<NOX::Abstract::MultiVector> tmp = result_x.clone(NOX::ShapeCopy); status = group->computeDJnDxaMulti(*nullVector, *JnVector, result_x, *tmp); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); // compute [G d(Jn)/dp 0 0] - (Jv)_x[A B C v] tmp->update(1.0, input_null, -1.0); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J u||D E K L| = |G-(Jv)_xA d(Jv)/dp-(Jv)_xB -(Jv)_xC -(Jv)_xv| // |v^T 0||d e k l| | 0 0 0 0 | status = borderedSolver->applyInverse(params, tmp.get(), NULL, result_null, tmp_mat_2); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> D = result_null.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> E = result_null.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> K = result_null.subView(index_s); Teuchos::RCP<NOX::Abstract::MultiVector> L = result_null.subView(index_null); double e = tmp_mat_2(0, m); double k = tmp_mat_2(0, m+1); double l = tmp_mat_2(0, m+2); double ltE = pfGroup->lTransNorm((*E)[0]); double ltK = pfGroup->lTransNorm((*K)[0]); double ltL = pfGroup->lTransNorm((*L)[0]); double ltv = pfGroup->lTransNorm(*nullVector); double ipv = group->innerProduct(*nullVector, *asymVector); double ipB = group->innerProduct((*B)[0], *asymVector); double ipC = group->innerProduct((*C)[0], *asymVector); // Fill coefficient arrays double M[16]; M[0] = sigma; M[1] = -l; M[2] = ipv; M[3] = ltL; M[4] = 0.0; M[5] = sigma; M[6] = 0.0; M[7] = ltv; M[8] = b; M[9] = e; M[10] = -ipB; M[11] = -ltE; M[12] = c; M[13] = k; M[14] = -ipC; M[15] = -ltK; // compute s - <A,psi> NOX::Abstract::MultiVector::DenseMatrix tmp_mat_3(1, m); group->innerProduct(*asymMultiVector, *A, tmp_mat_3); tmp_mat_3 -= input_slack; tmp_mat_3.scale(-1.0); // compute h - phi^T D NOX::Abstract::MultiVector::DenseMatrix tmp_mat_4(1, m); pfGroup->lTransNorm(*D, tmp_mat_4); tmp_mat_4 -= input_param; tmp_mat_4.scale(-1.0); double *R = new double[4*m]; for (int i=0; i<m; i++) { R[4*i] = tmp_mat_1(0,i); R[4*i+1] = tmp_mat_2(0,i); R[4*i+2] = tmp_mat_3(0,i); R[4*i+3] = tmp_mat_4(0,i); } // Solve M*P = R int piv[4]; int info; Teuchos::LAPACK<int,double> dlapack; dlapack.GESV(4, m, M, 4, piv, R, 4, &info); if (info != 0) { globalData->locaErrorCheck->throwError( callingFunction, "Solve of 4x4 coefficient matrix failed!"); return NOX::Abstract::Group::Failed; } NOX::Abstract::MultiVector::DenseMatrix alpha(1,m); NOX::Abstract::MultiVector::DenseMatrix beta(1,m); for (int i=0; i<m; i++) { alpha(0,i) = R[4*i]; beta(0,i) = R[4*i+1]; result_param(0,i) = R[4*i+2]; result_slack(0,i) = R[4*i+3]; } // compute A = A - B*z -C*w + v*alpha (remember A is a sub-view of result_x) A->update(Teuchos::NO_TRANS, -1.0, *B, result_param, 1.0); A->update(Teuchos::NO_TRANS, -1.0, *C, result_slack, 1.0); A->update(Teuchos::NO_TRANS, 1.0, *nullMultiVector, alpha, 1.0); // compute D = D - E*z - K*w + L*alpha + v*beta // (remember D is a sub-view of result_null) D->update(Teuchos::NO_TRANS, -1.0, *E, result_param, 1.0); D->update(Teuchos::NO_TRANS, -1.0, *K, result_slack, 1.0); D->update(Teuchos::NO_TRANS, 1.0, *L, alpha, 1.0); D->update(Teuchos::NO_TRANS, 1.0, *nullMultiVector, beta, 1.0); delete [] R; return finalStatus; }