Exemplo n.º 1
0
/* $Procedure SPKGPS ( S/P Kernel, geometric position ) */
/* Subroutine */ int spkgps_(integer *targ, doublereal *et, char *ref, 
	integer *obs, doublereal *pos, doublereal *lt, ftnlen ref_len)
{
    /* Initialized data */

    static logical first = TRUE_;

    /* System generated locals */
    integer i__1, i__2, i__3;

    /* Builtin functions */
    integer s_cmp(char *, char *, ftnlen, ftnlen), s_rnge(char *, integer, 
	    char *, integer);

    /* Local variables */
    extern /* Subroutine */ int vadd_(doublereal *, doublereal *, doublereal *
	    );
    integer cobs, legs;
    doublereal sobs[6];
    extern /* Subroutine */ int vsub_(doublereal *, doublereal *, doublereal *
	    ), vequ_(doublereal *, doublereal *), zznamfrm_(integer *, char *,
	     integer *, char *, integer *, ftnlen, ftnlen), zzctruin_(integer 
	    *);
    integer i__;
    extern /* Subroutine */ int etcal_(doublereal *, char *, ftnlen);
    integer refid;
    extern /* Subroutine */ int chkin_(char *, ftnlen);
    char oname[40];
    doublereal descr[5];
    integer ctarg[20];
    char ident[40], tname[40];
    extern /* Subroutine */ int errch_(char *, char *, ftnlen, ftnlen), 
	    moved_(doublereal *, integer *, doublereal *);
    logical found;
    extern /* Subroutine */ int repmi_(char *, char *, integer *, char *, 
	    ftnlen, ftnlen, ftnlen);
    doublereal starg[120]	/* was [6][20] */;
    logical nofrm;
    static char svref[32];
    doublereal stemp[6];
    integer ctpos;
    doublereal vtemp[6];
    extern doublereal vnorm_(doublereal *);
    extern /* Subroutine */ int bodc2n_(integer *, char *, logical *, ftnlen);
    static integer svctr1[2];
    extern logical failed_(void);
    extern /* Subroutine */ int cleard_(integer *, doublereal *);
    integer handle, cframe;
    extern /* Subroutine */ int refchg_(integer *, integer *, doublereal *, 
	    doublereal *);
    extern doublereal clight_(void);
    integer tframe[20];
    extern integer isrchi_(integer *, integer *, integer *);
    extern /* Subroutine */ int sigerr_(char *, ftnlen), chkout_(char *, 
	    ftnlen);
    static integer svrefi;
    extern /* Subroutine */ int irfnum_(char *, integer *, ftnlen), prefix_(
	    char *, integer *, char *, ftnlen, ftnlen), setmsg_(char *, 
	    ftnlen), suffix_(char *, integer *, char *, ftnlen, ftnlen);
    integer tmpfrm;
    extern /* Subroutine */ int irfrot_(integer *, integer *, doublereal *), 
	    spksfs_(integer *, doublereal *, integer *, doublereal *, char *, 
	    logical *, ftnlen);
    extern integer frstnp_(char *, ftnlen);
    extern logical return_(void);
    doublereal psxfrm[9]	/* was [3][3] */;
    extern /* Subroutine */ int spkpvn_(integer *, doublereal *, doublereal *,
	     integer *, doublereal *, integer *), intstr_(integer *, char *, 
	    ftnlen);
    integer nct;
    doublereal rot[9]	/* was [3][3] */;
    extern /* Subroutine */ int mxv_(doublereal *, doublereal *, doublereal *)
	    ;
    char tstring[80];

/* $ Abstract */

/*     Compute the geometric position of a target body relative to an */
/*     observing body. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Required_Reading */

/*     SPK */

/* $ Keywords */

/*     EPHEMERIS */

/* $ Declarations */
/* $ Abstract */

/*     This file contains the number of inertial reference */
/*     frames that are currently known by the SPICE toolkit */
/*     software. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Required_Reading */

/*     None. */

/* $ Keywords */

/*     FRAMES */

/* $ Declarations */
/* $ Brief_I/O */

/*     VARIABLE  I/O  DESCRIPTION */
/*     --------  ---  -------------------------------------------------- */
/*     NINERT     P   Number of known inertial reference frames. */

/* $ Parameters */

/*     NINERT     is the number of recognized inertial reference */
/*                frames.  This value is needed by both CHGIRF */
/*                ZZFDAT, and FRAMEX. */

/* $ Author_and_Institution */

/*     W.L. Taber      (JPL) */

/* $ Literature_References */

/*     None. */

/* $ Version */

/* -    SPICELIB Version 1.0.0, 10-OCT-1996 (WLT) */

/* -& */
/* $ Abstract */

/*     This include file defines the dimension of the counter */
/*     array used by various SPICE subsystems to uniquely identify */
/*     changes in their states. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Parameters */

/*     CTRSIZ      is the dimension of the counter array used by */
/*                 various SPICE subsystems to uniquely identify */
/*                 changes in their states. */

/* $ Author_and_Institution */

/*     B.V. Semenov    (JPL) */

/* $ Literature_References */

/*     None. */

/* $ Version */

/* -    SPICELIB Version 1.0.0, 29-JUL-2013 (BVS) */

/* -& */

/*     End of include file. */

/* $ Brief_I/O */

/*     Variable  I/O  Description */
/*     --------  ---  -------------------------------------------------- */
/*     TARG       I   Target body. */
/*     ET         I   Target epoch. */
/*     REF        I   Target reference frame. */
/*     OBS        I   Observing body. */
/*     POS        O   Position of target. */
/*     LT         O   Light time. */

/* $ Detailed_Input */

/*     TARG        is the standard NAIF ID code for a target body. */

/*     ET          is the epoch (ephemeris time) at which the position */
/*                 of the target body is to be computed. */

/*     REF         is the name of the reference frame to */
/*                 which the vectors returned by the routine should */
/*                 be rotated. This may be any frame supported by */
/*                 the SPICELIB subroutine REFCHG. */

/*     OBS         is the standard NAIF ID code for an observing body. */

/* $ Detailed_Output */

/*     POS         contains the position of the target */
/*                 body, relative to the observing body. This vector is */
/*                 rotated into the specified reference frame. Units */
/*                 are always km. */

/*     LT          is the one-way light time from the observing body */
/*                 to the geometric position of the target body at the */
/*                 specified epoch. */

/* $ Parameters */

/*     None. */

/* $ Exceptions */

/*     1) If insufficient ephemeris data has been loaded to compute */
/*        the necessary positions, the error SPICE(SPKINSUFFDATA) is */
/*        signalled. */

/* $ Files */

/*     See: $Restrictions. */

/* $ Particulars */

/*     SPKGPS computes the geometric position, T(t), of the target */
/*     body and the geometric position, O(t), of the observing body */
/*     relative to the first common center of motion.  Subtracting */
/*     O(t) from T(t) gives the geometric position of the target */
/*     body relative to the observer. */


/*        CENTER ----- O(t) */
/*            |      / */
/*            |     / */
/*            |    / */
/*            |   /  T(t) - O(t) */
/*            |  / */
/*           T(t) */


/*     The one-way light time, tau, is given by */


/*               | T(t) - O(t) | */
/*        tau = ----------------- */
/*                      c */


/*     For example, if the observing body is -94, the Mars Observer */
/*     spacecraft, and the target body is 401, Phobos, then the */
/*     first common center is probably 4, the Mars Barycenter. */
/*     O(t) is the position of -94 relative to 4 and T(t) is the */
/*     position of 401 relative to 4. */

/*     The center could also be the Solar System Barycenter, body 0. */
/*     For example, if the observer is 399, Earth, and the target */
/*     is 299, Venus, then O(t) would be the position of 399 relative */
/*     to 0 and T(t) would be the position of 299 relative to 0. */

/*     Ephemeris data from more than one segment may be required */
/*     to determine the positions of the target body and observer */
/*     relative to a common center.  SPKGPS reads as many segments */
/*     as necessary, from as many files as necessary, using files */
/*     that have been loaded by previous calls to SPKLEF (load */
/*     ephemeris file). */

/*     SPKGPS is similar to SPKGEO but returns geometric positions */
/*     only. */

/* $ Examples */

/*     The following code example computes the geometric */
/*     position of the moon with respect to the earth and */
/*     then prints the distance of the moon from the */
/*     the earth at a number of epochs. */

/*     Assume the SPK file SAMPLE.BSP contains ephemeris data */
/*     for the moon relative to earth over the time interval */
/*     from BEGIN to END. */

/*            INTEGER               EARTH */
/*            PARAMETER           ( EARTH = 399 ) */

/*            INTEGER               MOON */
/*            PARAMETER           ( MOON  = 301 ) */

/*            INTEGER               N */
/*            PARAMETER           ( N     = 100 ) */

/*            INTEGER               I */
/*            CHARACTER*(20)        UTC */
/*            DOUBLE PRECISION      BEGIN */
/*            DOUBLE PRECISION      DELTA */
/*            DOUBLE PRECISION      END */
/*            DOUBLE PRECISION      ET */
/*            DOUBLE PRECISION      POS ( 3 ) */
/*            DOUBLE PRECISION      LT */

/*            DOUBLE PRECISION      VNORM */

/*     C */
/*     C      Load the binary SPK ephemeris file. */
/*     C */
/*            CALL FURNSH ( 'SAMPLE.BSP' ) */

/*            . */
/*            . */
/*            . */

/*     C */
/*     C      Divide the interval of coverage [BEGIN,END] into */
/*     C      N steps.  At each step, compute the position, and */
/*     C      print out the epoch in UTC time and position norm. */
/*     C */
/*            DELTA = ( END - BEGIN ) / N */

/*            DO I = 0, N */

/*               ET = BEGIN + I*DELTA */

/*               CALL SPKGPS ( MOON, ET, 'J2000', EARTH, POS, LT ) */

/*               CALL ET2UTC ( ET, 'C', 0, UTC ) */

/*               WRITE (*,*) UTC, VNORM ( POS ) */

/*            END DO */

/* $ Restrictions */

/*     1) The ephemeris files to be used by SPKGPS must be loaded */
/*        by SPKLEF before SPKGPS is called. */

/* $ Literature_References */

/*     None. */

/* $ Author_and_Institution */

/*     N.J. Bachman  (JPL) */
/*     B.V. Semenov  (JPL) */
/*     W.L. Taber    (JPL) */

/* $ Version */

/* -    SPICELIB Version 2.0.0, 08-JAN-2014 (BVS) */

/*        Updated to save the input frame name and POOL state counter */
/*        and to do frame name-ID conversion only if the counter has */
/*        changed. */

/*        Updated to map the input frame name to its ID by first calling */
/*        ZZNAMFRM, and then calling IRFNUM. The side effect of this */
/*        change is that now the frame with the fixed name 'DEFAULT' */
/*        that can be associated with any code via CHGIRF's entry point */
/*        IRFDEF will be fully masked by a frame with indentical name */
/*        defined via a text kernel. Previously the CHGIRF's 'DEFAULT' */
/*        frame masked the text kernel frame with the same name. */

/*        Replaced SPKLEF with FURNSH and fixed errors in Examples. */

/* -    SPICELIB Version 1.2.0, 05-NOV-2005 (NJB) */

/*        Updated to remove non-standard use of duplicate arguments */
/*        in VADD calls. */

/* -    SPICELIB Version 1.1.0, 05-JAN-2005 (NJB) */

/*        Tests of routine FAILED() were added. */

/* -    SPICELIB Version 1.0.0, 9-JUL-1998 (WLT) */

/* -& */
/* $ Index_Entries */

/*     geometric position of one body relative to another */

/* -& */
/* $ Revisions */

/* -    SPICELIB Version 1.2.0, 05-NOV-2005 (NJB) */

/*        Updated to remove non-standard use of duplicate arguments */
/*        in VADD calls. */

/* -& */

/*     This is the idea: */

/*     Every body moves with respect to some center. The center */
/*     is itself a body, which in turn moves about some other */
/*     center.  If we begin at the target body (T), follow */
/*     the chain, */

/*                                   T */
/*                                     \ */
/*           SSB                        \ */
/*               \                     C[1] */
/*                \                     / */
/*                 \                   / */
/*                  \                 / */
/*                   \               / */
/*                  C[3]-----------C[2] */

/*     and avoid circular definitions (A moves about B, and B moves */
/*     about A), eventually we get the position relative to the solar */
/*     system barycenter (which, for our purposes, doesn't move). */
/*     Thus, */

/*        T    = T     + C[1]     + C[2]     + ... + C[n] */
/*         SSB    C[1]       C[2]       [C3]             SSB */

/*     where */

/*        X */
/*         Y */

/*     is the position of body X relative to body Y. */

/*     However, we don't want to follow each chain back to the SSB */
/*     if it isn't necessary.  Instead we will just follow the chain */
/*     of the target body and follow the chain of the observing body */
/*     until we find a common node in the tree. */

/*     In the example below, C is the first common node.  We compute */
/*     the position of TARG relative to C and the position of OBS */
/*     relative to C, then subtract the two positions. */

/*                                   TARG */
/*                                     \ */
/*           SSB                        \ */
/*               \                       A */
/*                \                     /            OBS */
/*                 \                   /              | */
/*                  \                 /               | */
/*                   \               /                | */
/*                    B-------------C-----------------D */




/*     SPICELIB functions */


/*     Local parameters */


/*     CHLEN is the maximum length of a chain.  That is, */
/*     it is the maximum number of bodies in the chain from */
/*     the target or observer to the SSB. */


/*     Saved frame name length. */


/*     Local variables */


/*     Saved frame name/ID item declarations. */


/*     Saved frame name/ID items. */


/*     Initial values. */


/*     In-line Function Definitions */


/*     Standard SPICE error handling. */

    if (return_()) {
	return 0;
    } else {
	chkin_("SPKGPS", (ftnlen)6);
    }

/*     Initialization. */

    if (first) {

/*        Initialize counter. */

	zzctruin_(svctr1);
	first = FALSE_;
    }

/*     We take care of the obvious case first.  It TARG and OBS are the */
/*     same we can just fill in zero. */

    if (*targ == *obs) {
	*lt = 0.;
	cleard_(&c__3, pos);
	chkout_("SPKGPS", (ftnlen)6);
	return 0;
    }

/*     CTARG contains the integer codes of the bodies in the */
/*     target body chain, beginning with TARG itself and then */
/*     the successive centers of motion. */

/*     STARG(1,I) is the position of the target body relative */
/*     to CTARG(I).  The id-code of the frame of this position is */
/*     stored in TFRAME(I). */

/*     COBS and SOBS will contain the centers and positions of the */
/*     observing body.  (They are single elements instead of arrays */
/*     because we only need the current center and position of the */
/*     observer relative to it.) */

/*     First, we construct CTARG and STARG.  CTARG(1) is */
/*     just the target itself, and STARG(1,1) is just a zero */
/*     vector, that is, the position of the target relative */
/*     to itself. */

/*     Then we follow the chain, filling up CTARG and STARG */
/*     as we go.  We use SPKSFS to search through loaded */
/*     files to find the first segment applicable to CTARG(1) */
/*     and time ET.  Then we use SPKPVN to compute the position */
/*     of the body CTARG(1) at ET in the segment that was found */
/*     and get its center and frame of motion (CTARG(2) and TFRAME(2). */

/*     We repeat the process for CTARG(2) and so on, until */
/*     there is no data found for some CTARG(I) or until we */
/*     reach the SSB. */

/*     Next, we find centers and positions in a similar manner */
/*     for the observer.  It's a similar construction as */
/*     described above, but I is always 1.  COBS and SOBS */
/*     are overwritten with each new center and position, */
/*     beginning at OBS.  However, we stop when we encounter */
/*     a common center of motion, that is when COBS is equal */
/*     to CTARG(I) for some I. */

/*     Finally, we compute the desired position of the target */
/*     relative to the observer by subtracting the position of */
/*     the observing body relative to the common node from */
/*     the position of the target body relative to the common */
/*     node. */

/*     CTPOS is the position in CTARG of the common node. */

/*     Since the upgrade to use hashes and counter bypass ZZNAMFRM */
/*     became more efficient in looking up frame IDs than IRFNUM. So the */
/*     original order of calls "IRFNUM first, NAMFRM second" was */
/*     switched to "ZZNAMFRM first, IRFNUM second". */

/*     The call to IRFNUM, now redundant for built-in inertial frames, */
/*     was preserved to for a sole reason -- to still support the */
/*     ancient and barely documented ability for the users to associate */
/*     a frame with the fixed name 'DEFAULT' with any CHGIRF inertial */
/*     frame code via CHGIRF's entry point IRFDEF. */

/*     Note that in the case of ZZNAMFRM's failure to resolve name and */
/*     IRFNUM's success to do so, the code returned by IRFNUM for */
/*     'DEFAULT' frame is *not* copied to the saved code SVREFI (which */
/*     would be set to 0 by ZZNAMFRM) to make sure that on subsequent */
/*     calls ZZNAMFRM does not do a bypass (as SVREFI always forced look */
/*     up) and calls IRFNUM again to reset the 'DEFAULT's frame ID */
/*     should it change between the calls. */

    zznamfrm_(svctr1, svref, &svrefi, ref, &refid, (ftnlen)32, ref_len);
    if (refid == 0) {
	irfnum_(ref, &refid, ref_len);
    }
    if (refid == 0) {
	if (frstnp_(ref, ref_len) > 0) {
	    setmsg_("The string supplied to specify the reference frame, ('#"
		    "') contains non-printing characters.  The two most commo"
		    "n causes for this kind of error are: 1. an error in the "
		    "call to SPKGPS; 2. an uninitialized variable. ", (ftnlen)
		    213);
	    errch_("#", ref, (ftnlen)1, ref_len);
	} else if (s_cmp(ref, " ", ref_len, (ftnlen)1) == 0) {
	    setmsg_("The string supplied to specify the reference frame is b"
		    "lank.  The most common cause for this kind of error is a"
		    "n uninitialized variable. ", (ftnlen)137);
	} else {
	    setmsg_("The string supplied to specify the reference frame was "
		    "'#'.  This frame is not recognized. Possible causes for "
		    "this error are: 1. failure to load the frame definition "
		    "into the kernel pool; 2. An out-of-date edition of the t"
		    "oolkit. ", (ftnlen)231);
	    errch_("#", ref, (ftnlen)1, ref_len);
	}
	sigerr_("SPICE(UNKNOWNFRAME)", (ftnlen)19);
	if (failed_()) {
	    chkout_("SPKGPS", (ftnlen)6);
	    return 0;
	}
    }

/*     Fill in CTARG and STARG until no more data is found */
/*     or until we reach the SSB.  If the chain gets too */
/*     long to fit in CTARG, that is if I equals CHLEN, */
/*     then overwrite the last elements of CTARG and STARG. */

/*     Note the check for FAILED in the loop.  If SPKSFS */
/*     or SPKPVN happens to fail during execution, and the */
/*     current error handling action is to NOT abort, then */
/*     FOUND may be stuck at TRUE, CTARG(I) will never */
/*     become zero, and the loop will execute indefinitely. */


/*     Construct CTARG and STARG.  Begin by assigning the */
/*     first elements:  TARG and the position of TARG relative */
/*     to itself. */

    i__ = 1;
    ctarg[(i__1 = i__ - 1) < 20 && 0 <= i__1 ? i__1 : s_rnge("ctarg", i__1, 
	    "spkgps_", (ftnlen)603)] = *targ;
    found = TRUE_;
    cleard_(&c__6, &starg[(i__1 = i__ * 6 - 6) < 120 && 0 <= i__1 ? i__1 : 
	    s_rnge("starg", i__1, "spkgps_", (ftnlen)606)]);
    while(found && i__ < 20 && ctarg[(i__1 = i__ - 1) < 20 && 0 <= i__1 ? 
	    i__1 : s_rnge("ctarg", i__1, "spkgps_", (ftnlen)608)] != *obs && 
	    ctarg[(i__2 = i__ - 1) < 20 && 0 <= i__2 ? i__2 : s_rnge("ctarg", 
	    i__2, "spkgps_", (ftnlen)608)] != 0) {

/*        Find a file and segment that has position */
/*        data for CTARG(I). */

	spksfs_(&ctarg[(i__1 = i__ - 1) < 20 && 0 <= i__1 ? i__1 : s_rnge(
		"ctarg", i__1, "spkgps_", (ftnlen)617)], et, &handle, descr, 
		ident, &found, (ftnlen)40);
	if (found) {

/*           Get the position of CTARG(I) relative to some */
/*           center of motion.  This new center goes in */
/*           CTARG(I+1) and the position is called STEMP. */

	    ++i__;
	    spkpvn_(&handle, descr, et, &tframe[(i__1 = i__ - 1) < 20 && 0 <= 
		    i__1 ? i__1 : s_rnge("tframe", i__1, "spkgps_", (ftnlen)
		    627)], &starg[(i__2 = i__ * 6 - 6) < 120 && 0 <= i__2 ? 
		    i__2 : s_rnge("starg", i__2, "spkgps_", (ftnlen)627)], &
		    ctarg[(i__3 = i__ - 1) < 20 && 0 <= i__3 ? i__3 : s_rnge(
		    "ctarg", i__3, "spkgps_", (ftnlen)627)]);

/*           Here's what we have.  STARG is the position of CTARG(I-1) */
/*           relative to CTARG(I) in reference frame TFRAME(I) */

/*           If one of the routines above failed during */
/*           execution, we just give up and check out. */

	    if (failed_()) {
		chkout_("SPKGPS", (ftnlen)6);
		return 0;
	    }
	}
    }
    tframe[0] = tframe[1];

/*     If the loop above ended because we ran out of */
/*     room in the arrays CTARG and STARG, then we */
/*     continue finding positions but we overwrite the */
/*     last elements of CTARG and STARG. */

/*     If, as a result, the first common node is */
/*     overwritten, we'll just have to settle for */
/*     the last common node.  This will cause a small */
/*     loss of precision, but it's better than other */
/*     alternatives. */

    if (i__ == 20) {
	while(found && ctarg[19] != 0 && ctarg[19] != *obs) {

/*           Find a file and segment that has position */
/*           data for CTARG(CHLEN). */

	    spksfs_(&ctarg[19], et, &handle, descr, ident, &found, (ftnlen)40)
		    ;
	    if (found) {

/*              Get the position of CTARG(CHLEN) relative to */
/*              some center of motion.  The new center */
/*              overwrites the old.  The position is called */
/*              STEMP. */

		spkpvn_(&handle, descr, et, &tmpfrm, stemp, &ctarg[19]);

/*              Add STEMP to the position of TARG relative to */
/*              the old center to get the position of TARG */
/*              relative to the new center.  Overwrite */
/*              the last element of STARG. */

		if (tframe[19] == tmpfrm) {
		    moved_(&starg[114], &c__3, vtemp);
		} else if (tmpfrm > 0 && tmpfrm <= 21 && tframe[19] > 0 && 
			tframe[19] <= 21) {
		    irfrot_(&tframe[19], &tmpfrm, rot);
		    mxv_(rot, &starg[114], vtemp);
		} else {
		    refchg_(&tframe[19], &tmpfrm, et, psxfrm);
		    if (failed_()) {
			chkout_("SPKGPS", (ftnlen)6);
			return 0;
		    }
		    mxv_(psxfrm, &starg[114], vtemp);
		}
		vadd_(vtemp, stemp, &starg[114]);
		tframe[19] = tmpfrm;

/*              If one of the routines above failed during */
/*              execution, we just give up and check out. */

		if (failed_()) {
		    chkout_("SPKGPS", (ftnlen)6);
		    return 0;
		}
	    }
	}
    }
    nct = i__;

/*     NCT is the number of elements in CTARG, */
/*     the chain length.  We have in hand the following information */

/*        STARG(1...3,K)  position of body */
/*        CTARG(K-1)      relative to body CTARG(K) in the frame */
/*        TFRAME(K) */


/*     For K = 2,..., NCT. */

/*     CTARG(1) = TARG */
/*     STARG(1...3,1) = ( 0, 0, 0 ) */
/*     TFRAME(1)      = TFRAME(2) */


/*     Now follow the observer's chain.  Assign */
/*     the first values for COBS and SOBS. */

    cobs = *obs;
    cleard_(&c__6, sobs);

/*     Perhaps we have a common node already. */
/*     If so it will be the last node on the */
/*     list CTARG. */

/*     We let CTPOS will be the position of the common */
/*     node in CTARG if one is found.  It will */
/*     be zero if COBS is not found in CTARG. */

    if (ctarg[(i__1 = nct - 1) < 20 && 0 <= i__1 ? i__1 : s_rnge("ctarg", 
	    i__1, "spkgps_", (ftnlen)762)] == cobs) {
	ctpos = nct;
	cframe = tframe[(i__1 = ctpos - 1) < 20 && 0 <= i__1 ? i__1 : s_rnge(
		"tframe", i__1, "spkgps_", (ftnlen)764)];
    } else {
	ctpos = 0;
    }

/*     Repeat the same loop as above, but each time */
/*     we encounter a new center of motion, check to */
/*     see if it is a common node.  (When CTPOS is */
/*     not zero, CTARG(CTPOS) is the first common node.) */

/*     Note that we don't need a centers array nor a */
/*     positions array, just a single center and position */
/*     is sufficient --- we just keep overwriting them. */
/*     When the common node is found, we have everything */
/*     we need in that one center (COBS) and position */
/*     (SOBS-position of the target relative to COBS). */

    found = TRUE_;
    nofrm = TRUE_;
    legs = 0;
    while(found && cobs != 0 && ctpos == 0) {

/*        Find a file and segment that has position */
/*        data for COBS. */

	spksfs_(&cobs, et, &handle, descr, ident, &found, (ftnlen)40);
	if (found) {

/*           Get the position of COBS; call it STEMP. */
/*           The center of motion of COBS becomes the */
/*           new COBS. */

	    if (legs == 0) {
		spkpvn_(&handle, descr, et, &tmpfrm, sobs, &cobs);
	    } else {
		spkpvn_(&handle, descr, et, &tmpfrm, stemp, &cobs);
	    }
	    if (nofrm) {
		nofrm = FALSE_;
		cframe = tmpfrm;
	    }

/*           Add STEMP to the position of OBS relative to */
/*           the old COBS to get the position of OBS */
/*           relative to the new COBS. */

	    if (cframe == tmpfrm) {

/*              On the first leg of the position of the observer, we */
/*              don't have to add anything, the position of the */
/*              observer is already in SOBS.  We only have to add when */
/*              the number of legs in the observer position is one or */
/*              greater. */

		if (legs > 0) {
		    vadd_(sobs, stemp, vtemp);
		    vequ_(vtemp, sobs);
		}
	    } else if (tmpfrm > 0 && tmpfrm <= 21 && cframe > 0 && cframe <= 
		    21) {
		irfrot_(&cframe, &tmpfrm, rot);
		mxv_(rot, sobs, vtemp);
		vadd_(vtemp, stemp, sobs);
		cframe = tmpfrm;
	    } else {
		refchg_(&cframe, &tmpfrm, et, psxfrm);
		if (failed_()) {
		    chkout_("SPKGPS", (ftnlen)6);
		    return 0;
		}
		mxv_(psxfrm, sobs, vtemp);
		vadd_(vtemp, stemp, sobs);
		cframe = tmpfrm;
	    }

/*           Check failed.  We don't want to loop */
/*           indefinitely. */

	    if (failed_()) {
		chkout_("SPKGPS", (ftnlen)6);
		return 0;
	    }

/*           We now have one more leg of the path for OBS.  Set */
/*           LEGS to reflect this.  Then see if the new center */
/*           is a common node. If not, repeat the loop. */

	    ++legs;
	    ctpos = isrchi_(&cobs, &nct, ctarg);
	}
    }

/*     If CTPOS is zero at this point, it means we */
/*     have not found a common node though we have */
/*     searched through all the available data. */

    if (ctpos == 0) {
	bodc2n_(targ, tname, &found, (ftnlen)40);
	if (found) {
	    prefix_("# (", &c__0, tname, (ftnlen)3, (ftnlen)40);
	    suffix_(")", &c__0, tname, (ftnlen)1, (ftnlen)40);
	    repmi_(tname, "#", targ, tname, (ftnlen)40, (ftnlen)1, (ftnlen)40)
		    ;
	} else {
	    intstr_(targ, tname, (ftnlen)40);
	}
	bodc2n_(obs, oname, &found, (ftnlen)40);
	if (found) {
	    prefix_("# (", &c__0, oname, (ftnlen)3, (ftnlen)40);
	    suffix_(")", &c__0, oname, (ftnlen)1, (ftnlen)40);
	    repmi_(oname, "#", obs, oname, (ftnlen)40, (ftnlen)1, (ftnlen)40);
	} else {
	    intstr_(obs, oname, (ftnlen)40);
	}
	setmsg_("Insufficient ephemeris data has been loaded to compute the "
		"position of TARG relative to OBS at the ephemeris epoch #. ", 
		(ftnlen)118);
	etcal_(et, tstring, (ftnlen)80);
	errch_("TARG", tname, (ftnlen)4, (ftnlen)40);
	errch_("OBS", oname, (ftnlen)3, (ftnlen)40);
	errch_("#", tstring, (ftnlen)1, (ftnlen)80);
	sigerr_("SPICE(SPKINSUFFDATA)", (ftnlen)20);
	chkout_("SPKGPS", (ftnlen)6);
	return 0;
    }

/*     If CTPOS is not zero, then we have reached a */
/*     common node, specifically, */

/*        CTARG(CTPOS) = COBS = CENTER */

/*     (in diagram below).  The POSITION of the target */
/*     (TARG) relative to the observer (OBS) is just */

/*        STARG(1,CTPOS) - SOBS. */



/*                     SOBS */
/*         CENTER ---------------->OBS */
/*            |                  . */
/*            |                . N */
/*         S  |              . O */
/*         T  |            . I */
/*         A  |          . T */
/*         R  |        . I */
/*         G  |      . S */
/*            |    . O */
/*            |  . P */
/*            V L */
/*           TARG */


/*     And the light-time between them is just */

/*               | POSITION | */
/*          LT = --------- */
/*                   c */


/*     Compute the position of the target relative to CTARG(CTPOS) */

    if (ctpos == 1) {
	tframe[0] = cframe;
    }
    i__1 = ctpos - 1;
    for (i__ = 2; i__ <= i__1; ++i__) {
	if (tframe[(i__2 = i__ - 1) < 20 && 0 <= i__2 ? i__2 : s_rnge("tframe"
		, i__2, "spkgps_", (ftnlen)960)] == tframe[(i__3 = i__) < 20 
		&& 0 <= i__3 ? i__3 : s_rnge("tframe", i__3, "spkgps_", (
		ftnlen)960)]) {
	    vadd_(&starg[(i__2 = i__ * 6 - 6) < 120 && 0 <= i__2 ? i__2 : 
		    s_rnge("starg", i__2, "spkgps_", (ftnlen)962)], &starg[(
		    i__3 = (i__ + 1) * 6 - 6) < 120 && 0 <= i__3 ? i__3 : 
		    s_rnge("starg", i__3, "spkgps_", (ftnlen)962)], stemp);
	    moved_(stemp, &c__3, &starg[(i__2 = (i__ + 1) * 6 - 6) < 120 && 0 
		    <= i__2 ? i__2 : s_rnge("starg", i__2, "spkgps_", (ftnlen)
		    963)]);
	} else if (tframe[(i__3 = i__) < 20 && 0 <= i__3 ? i__3 : s_rnge(
		"tframe", i__3, "spkgps_", (ftnlen)965)] > 0 && tframe[(i__3 =
		 i__) < 20 && 0 <= i__3 ? i__3 : s_rnge("tframe", i__3, "spk"
		"gps_", (ftnlen)965)] <= 21 && tframe[(i__2 = i__ - 1) < 20 && 
		0 <= i__2 ? i__2 : s_rnge("tframe", i__2, "spkgps_", (ftnlen)
		965)] > 0 && tframe[(i__2 = i__ - 1) < 20 && 0 <= i__2 ? i__2 
		: s_rnge("tframe", i__2, "spkgps_", (ftnlen)965)] <= 21) {
	    irfrot_(&tframe[(i__2 = i__ - 1) < 20 && 0 <= i__2 ? i__2 : 
		    s_rnge("tframe", i__2, "spkgps_", (ftnlen)967)], &tframe[(
		    i__3 = i__) < 20 && 0 <= i__3 ? i__3 : s_rnge("tframe", 
		    i__3, "spkgps_", (ftnlen)967)], rot);
	    mxv_(rot, &starg[(i__2 = i__ * 6 - 6) < 120 && 0 <= i__2 ? i__2 : 
		    s_rnge("starg", i__2, "spkgps_", (ftnlen)968)], stemp);
	    vadd_(stemp, &starg[(i__2 = (i__ + 1) * 6 - 6) < 120 && 0 <= i__2 
		    ? i__2 : s_rnge("starg", i__2, "spkgps_", (ftnlen)969)], 
		    vtemp);
	    moved_(vtemp, &c__3, &starg[(i__2 = (i__ + 1) * 6 - 6) < 120 && 0 
		    <= i__2 ? i__2 : s_rnge("starg", i__2, "spkgps_", (ftnlen)
		    970)]);
	} else {
	    refchg_(&tframe[(i__2 = i__ - 1) < 20 && 0 <= i__2 ? i__2 : 
		    s_rnge("tframe", i__2, "spkgps_", (ftnlen)974)], &tframe[(
		    i__3 = i__) < 20 && 0 <= i__3 ? i__3 : s_rnge("tframe", 
		    i__3, "spkgps_", (ftnlen)974)], et, psxfrm);
	    if (failed_()) {
		chkout_("SPKGPS", (ftnlen)6);
		return 0;
	    }
	    mxv_(psxfrm, &starg[(i__2 = i__ * 6 - 6) < 120 && 0 <= i__2 ? 
		    i__2 : s_rnge("starg", i__2, "spkgps_", (ftnlen)981)], 
		    stemp);
	    vadd_(stemp, &starg[(i__2 = (i__ + 1) * 6 - 6) < 120 && 0 <= i__2 
		    ? i__2 : s_rnge("starg", i__2, "spkgps_", (ftnlen)982)], 
		    vtemp);
	    moved_(vtemp, &c__3, &starg[(i__2 = (i__ + 1) * 6 - 6) < 120 && 0 
		    <= i__2 ? i__2 : s_rnge("starg", i__2, "spkgps_", (ftnlen)
		    983)]);
	}
    }

/*     To avoid unnecessary frame transformations we'll do */
/*     a bit of extra decision making here.  It's a lot */
/*     faster to make logical checks than it is to compute */
/*     frame transformations. */

    if (tframe[(i__1 = ctpos - 1) < 20 && 0 <= i__1 ? i__1 : s_rnge("tframe", 
	    i__1, "spkgps_", (ftnlen)996)] == cframe) {
	vsub_(&starg[(i__1 = ctpos * 6 - 6) < 120 && 0 <= i__1 ? i__1 : 
		s_rnge("starg", i__1, "spkgps_", (ftnlen)998)], sobs, pos);
    } else if (tframe[(i__1 = ctpos - 1) < 20 && 0 <= i__1 ? i__1 : s_rnge(
	    "tframe", i__1, "spkgps_", (ftnlen)1000)] == refid) {

/*        If the last frame associated with the target is already */
/*        in the requested output frame, we convert the position of */
/*        the observer to that frame and then subtract the position */
/*        of the observer from the position of the target. */

	if (refid > 0 && refid <= 21 && cframe > 0 && cframe <= 21) {
	    irfrot_(&cframe, &refid, rot);
	    mxv_(rot, sobs, stemp);
	} else {
	    refchg_(&cframe, &refid, et, psxfrm);
	    if (failed_()) {
		chkout_("SPKGPS", (ftnlen)6);
		return 0;
	    }
	    mxv_(psxfrm, sobs, stemp);
	}

/*        We've now transformed SOBS into the requested reference frame. */
/*        Set CFRAME to reflect this. */

	cframe = refid;
	vsub_(&starg[(i__1 = ctpos * 6 - 6) < 120 && 0 <= i__1 ? i__1 : 
		s_rnge("starg", i__1, "spkgps_", (ftnlen)1031)], stemp, pos);
    } else if (cframe > 0 && cframe <= 21 && tframe[(i__1 = ctpos - 1) < 20 &&
	     0 <= i__1 ? i__1 : s_rnge("tframe", i__1, "spkgps_", (ftnlen)
	    1034)] > 0 && tframe[(i__1 = ctpos - 1) < 20 && 0 <= i__1 ? i__1 :
	     s_rnge("tframe", i__1, "spkgps_", (ftnlen)1034)] <= 21) {

/*        If both frames are inertial we use IRFROT instead of */
/*        REFCHG to get things into a common frame. */

	irfrot_(&tframe[(i__1 = ctpos - 1) < 20 && 0 <= i__1 ? i__1 : s_rnge(
		"tframe", i__1, "spkgps_", (ftnlen)1040)], &cframe, rot);
	mxv_(rot, &starg[(i__1 = ctpos * 6 - 6) < 120 && 0 <= i__1 ? i__1 : 
		s_rnge("starg", i__1, "spkgps_", (ftnlen)1041)], stemp);
	vsub_(stemp, sobs, pos);
    } else {

/*        Use the more general routine REFCHG to make the transformation. */

	refchg_(&tframe[(i__1 = ctpos - 1) < 20 && 0 <= i__1 ? i__1 : s_rnge(
		"tframe", i__1, "spkgps_", (ftnlen)1048)], &cframe, et, 
		psxfrm);
	if (failed_()) {
	    chkout_("SPKGPS", (ftnlen)6);
	    return 0;
	}
	mxv_(psxfrm, &starg[(i__1 = ctpos * 6 - 6) < 120 && 0 <= i__1 ? i__1 :
		 s_rnge("starg", i__1, "spkgps_", (ftnlen)1055)], stemp);
	vsub_(stemp, sobs, pos);
    }

/*     Finally, rotate as needed into the requested frame. */

    if (cframe == refid) {

/*        We don't have to do anything in this case. */

    } else if (refid > 0 && refid <= 21 && cframe > 0 && cframe <= 21) {

/*        Since both frames are inertial, we use the more direct */
/*        routine IRFROT to get the transformation to REFID. */

	irfrot_(&cframe, &refid, rot);
	mxv_(rot, pos, stemp);
	moved_(stemp, &c__3, pos);
    } else {
	refchg_(&cframe, &refid, et, psxfrm);
	if (failed_()) {
	    chkout_("SPKGPS", (ftnlen)6);
	    return 0;
	}
	mxv_(psxfrm, pos, stemp);
	moved_(stemp, &c__3, pos);
    }
    *lt = vnorm_(pos) / clight_();
    chkout_("SPKGPS", (ftnlen)6);
    return 0;
} /* spkgps_ */
Exemplo n.º 2
0
/* $Procedure      BODMAT ( Return transformation matrix for a body ) */
/* Subroutine */ int bodmat_(integer *body, doublereal *et, doublereal *tipm)
{
    /* Initialized data */

    static logical first = TRUE_;
    static logical found = FALSE_;

    /* System generated locals */
    integer i__1, i__2, i__3;
    doublereal d__1;

    /* Builtin functions */
    integer s_rnge(char *, integer, char *, integer);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer i_dnnt(doublereal *);
    double sin(doublereal), cos(doublereal), d_mod(doublereal *, doublereal *)
	    ;

    /* Local variables */
    integer cent;
    char item[32];
    doublereal j2ref[9]	/* was [3][3] */;
    extern integer zzbodbry_(integer *);
    extern /* Subroutine */ int eul2m_(doublereal *, doublereal *, doublereal 
	    *, integer *, integer *, integer *, doublereal *);
    doublereal d__;
    integer i__, j;
    doublereal dcoef[3], t, w;
    extern /* Subroutine */ int etcal_(doublereal *, char *, ftnlen);
    integer refid;
    doublereal delta;
    extern /* Subroutine */ int chkin_(char *, ftnlen);
    doublereal epoch, rcoef[3], tcoef[200]	/* was [2][100] */, wcoef[3];
    extern /* Subroutine */ int errch_(char *, char *, ftnlen, ftnlen);
    doublereal theta;
    extern /* Subroutine */ int moved_(doublereal *, integer *, doublereal *),
	     repmi_(char *, char *, integer *, char *, ftnlen, ftnlen, ftnlen)
	    , errdp_(char *, doublereal *, ftnlen);
    doublereal costh[100];
    extern doublereal vdotg_(doublereal *, doublereal *, integer *);
    char dtype[1];
    doublereal sinth[100], tsipm[36]	/* was [6][6] */;
    extern doublereal twopi_(void);
    static integer j2code;
    doublereal ac[100], dc[100];
    integer na, nd;
    doublereal ra, wc[100];
    extern /* Subroutine */ int cleard_(integer *, doublereal *);
    extern logical bodfnd_(integer *, char *, ftnlen);
    extern /* Subroutine */ int bodvcd_(integer *, char *, integer *, integer 
	    *, doublereal *, ftnlen);
    integer frcode;
    extern doublereal halfpi_(void);
    extern /* Subroutine */ int ccifrm_(integer *, integer *, integer *, char 
	    *, integer *, logical *, ftnlen);
    integer nw;
    doublereal conepc, conref;
    extern /* Subroutine */ int pckmat_(integer *, doublereal *, integer *, 
	    doublereal *, logical *);
    integer ntheta;
    extern /* Subroutine */ int gdpool_(char *, integer *, integer *, integer 
	    *, doublereal *, logical *, ftnlen);
    char fixfrm[32], errmsg[1840];
    extern /* Subroutine */ int irfnum_(char *, integer *, ftnlen), dtpool_(
	    char *, logical *, integer *, char *, ftnlen, ftnlen);
    doublereal tmpmat[9]	/* was [3][3] */;
    extern /* Subroutine */ int setmsg_(char *, ftnlen), suffix_(char *, 
	    integer *, char *, ftnlen, ftnlen), errint_(char *, integer *, 
	    ftnlen), sigerr_(char *, ftnlen), chkout_(char *, ftnlen), 
	    irfrot_(integer *, integer *, doublereal *);
    extern logical return_(void);
    char timstr[35];
    extern doublereal j2000_(void);
    doublereal dec;
    integer dim, ref;
    doublereal phi;
    extern doublereal rpd_(void), spd_(void);
    extern /* Subroutine */ int mxm_(doublereal *, doublereal *, doublereal *)
	    ;

/* $ Abstract */

/*     Return the J2000 to body Equator and Prime Meridian coordinate */
/*     transformation matrix for a specified body. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Required_Reading */

/*     PCK */
/*     NAIF_IDS */
/*     TIME */

/* $ Keywords */

/*     CONSTANTS */

/* $ Declarations */
/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */


/*     Include File:  SPICELIB Error Handling Parameters */

/*        errhnd.inc  Version 2    18-JUN-1997 (WLT) */

/*           The size of the long error message was */
/*           reduced from 25*80 to 23*80 so that it */
/*           will be accepted by the Microsoft Power Station */
/*           FORTRAN compiler which has an upper bound */
/*           of 1900 for the length of a character string. */

/*        errhnd.inc  Version 1    29-JUL-1997 (NJB) */



/*     Maximum length of the long error message: */


/*     Maximum length of the short error message: */


/*     End Include File:  SPICELIB Error Handling Parameters */

/* $ Abstract */

/*     The parameters below form an enumerated list of the recognized */
/*     frame types.  They are: INERTL, PCK, CK, TK, DYN.  The meanings */
/*     are outlined below. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Parameters */

/*     INERTL      an inertial frame that is listed in the routine */
/*                 CHGIRF and that requires no external file to */
/*                 compute the transformation from or to any other */
/*                 inertial frame. */

/*     PCK         is a frame that is specified relative to some */
/*                 INERTL frame and that has an IAU model that */
/*                 may be retrieved from the PCK system via a call */
/*                 to the routine TISBOD. */

/*     CK          is a frame defined by a C-kernel. */

/*     TK          is a "text kernel" frame.  These frames are offset */
/*                 from their associated "relative" frames by a */
/*                 constant rotation. */

/*     DYN         is a "dynamic" frame.  These currently are */
/*                 parameterized, built-in frames where the full frame */
/*                 definition depends on parameters supplied via a */
/*                 frame kernel. */

/* $ Author_and_Institution */

/*     N.J. Bachman    (JPL) */
/*     W.L. Taber      (JPL) */

/* $ Literature_References */

/*     None. */

/* $ Version */

/* -    SPICELIB Version 3.0.0, 28-MAY-2004 (NJB) */

/*       The parameter DYN was added to support the dynamic frame class. */

/* -    SPICELIB Version 2.0.0, 12-DEC-1996 (WLT) */

/*        Various unused frames types were removed and the */
/*        frame time TK was added. */

/* -    SPICELIB Version 1.0.0, 10-DEC-1995 (WLT) */

/* -& */
/* $ Brief_I/O */

/*     VARIABLE  I/O  DESCRIPTION */
/*     --------  ---  -------------------------------------------------- */
/*     BODY       I   ID code of body. */
/*     ET         I   Epoch of transformation. */
/*     TIPM       O   Transformation from Inertial to PM for BODY at ET. */

/* $ Detailed_Input */

/*     BODY        is the integer ID code of the body for which the */
/*                 transformation is requested. Bodies are numbered */
/*                 according to the standard NAIF numbering scheme. */

/*     ET          is the epoch at which the transformation is */
/*                 requested. (This is typically the epoch of */
/*                 observation minus the one-way light time from */
/*                 the observer to the body at the epoch of */
/*                 observation.) */

/* $ Detailed_Output */

/*     TIPM        is the transformation matrix from Inertial to body */
/*                 Equator and Prime Meridian.  The X axis of the PM */
/*                 system is directed to the intersection of the */
/*                 equator and prime meridian. The Z axis points north. */

/* $ Parameters */

/*     None. */

/* $ Exceptions */

/*     1) If data required to define the body-fixed frame associated */
/*        with BODY are not found in the binary PCK system or the kernel */
/*        pool, the error SPICE(FRAMEDATANOTFOUND) is signaled. In */
/*        the case of IAU style body-fixed frames, the absence of */
/*        prime meridian polynomial data (which are required) is used */
/*        as an indicator of missing data. */

/*     2) If the test for exception (1) passes, but in fact requested */
/*        data are not available in the kernel pool, the error will be */
/*        signaled by routines in the call tree of this routine. */

/*     3) If the kernel pool does not contain all of the data required */
/*        to define the number of nutation precession angles */
/*        corresponding to the available nutation precession */
/*        coefficients, the error SPICE(INSUFFICIENTANGLES) is */
/*        signaled. */

/*     4) If the reference frame REF is not recognized, a routine */
/*        called by BODMAT will diagnose the condition and invoke the */
/*        SPICE error handling system. */

/*     5) If the specified body code BODY is not recognized, the */
/*        error is diagnosed by a routine called by BODMAT. */

/* $ Files */

/*     None. */

/* $ Particulars */

/*     This routine is related to the more general routine TIPBOD */
/*     which returns a matrix that transforms vectors from a */
/*     specified inertial reference frame to body equator and */
/*     prime meridian coordinates.  TIPBOD accepts an input argument */
/*     REF that allows the caller to specify an inertial reference */
/*     frame. */

/*     The transformation represented by BODMAT's output argument TIPM */
/*     is defined as follows: */

/*        TIPM = [W] [DELTA] [PHI] */
/*                 3        1     3 */

/*     If there exists high-precision binary PCK kernel information */
/*     for the body at the requested time, these angles, W, DELTA */
/*     and PHI are computed directly from that file.  The most */
/*     recently loaded binary PCK file has first priority followed */
/*     by previously loaded binary PCK files in backward time order. */
/*     If no binary PCK file has been loaded, the text P_constants */
/*     kernel file is used. */

/*     If there is only text PCK kernel information, it is */
/*     expressed in terms of RA, DEC and W (same W as above), where */

/*        RA    = PHI - HALFPI() */
/*        DEC   = HALFPI() - DELTA */

/*     RA, DEC, and W are defined as follows in the text PCK file: */

/*           RA  = RA0  + RA1*T  + RA2*T*T   + a  sin theta */
/*                                              i          i */

/*           DEC = DEC0 + DEC1*T + DEC2*T*T  + d  cos theta */
/*                                              i          i */

/*           W   = W0   + W1*d   + W2*d*d    + w  sin theta */
/*                                              i          i */

/*     where: */

/*           d = days past J2000. */

/*           T = Julian centuries past J2000. */

/*           a , d , and w  arrays apply to satellites only. */
/*            i   i       i */

/*           theta  = THETA0 * THETA1*T are specific to each planet. */
/*                i */

/*     These angles -- typically nodal rates -- vary in number and */
/*     definition from one planetary system to the next. */

/* $ Examples */

/*     In the following code fragment, BODMAT is used to rotate */
/*     the position vector (POS) from a target body (BODY) to a */
/*     spacecraft from inertial coordinates to body-fixed coordinates */
/*     at a specific epoch (ET), in order to compute the planetocentric */
/*     longitude (PCLONG) of the spacecraft. */

/*        CALL BODMAT ( BODY, ET, TIPM ) */
/*        CALL MXV    ( TIPM, POS, POS ) */
/*        CALL RECLAT ( POS, RADIUS, PCLONG, LAT ) */

/*     To compute the equivalent planetographic longitude (PGLONG), */
/*     it is necessary to know the direction of rotation of the target */
/*     body, as shown below. */

/*        CALL BODVCD ( BODY, 'PM', 3, DIM, VALUES ) */

/*        IF ( VALUES(2) .GT. 0.D0 ) THEN */
/*           PGLONG = PCLONG */
/*        ELSE */
/*           PGLONG = TWOPI() - PCLONG */
/*        END IF */

/*     Note that the items necessary to compute the transformation */
/*     TIPM must have been loaded into the kernel pool (by one or more */
/*     previous calls to FURNSH). */

/* $ Restrictions */

/*     None. */

/* $ Literature_References */

/*     1)  Refer to the NAIF_IDS required reading file for a complete */
/*         list of the NAIF integer ID codes for bodies. */

/* $ Author_and_Institution */

/*     N.J. Bachman    (JPL) */
/*     W.L. Taber      (JPL) */
/*     I.M. Underwood  (JPL) */
/*     K.S. Zukor      (JPL) */

/* $ Version */

/* -    SPICELIB Version 4.1.1, 01-FEB-2008 (NJB) */

/*        The routine was updated to improve the error messages created */
/*        when required PCK data are not found. Now in most cases the */
/*        messages are created locally rather than by the kernel pool */
/*        access routines. In particular missing binary PCK data will */
/*        be indicated with a reasonable error message. */

/* -    SPICELIB Version 4.1.0, 25-AUG-2005 (NJB) */

/*        Updated to remove non-standard use of duplicate arguments */
/*        in MXM call. */

/*         Calls to ZZBODVCD have been replaced with calls to */
/*         BODVCD. */

/* -     SPICELIB Version 4.0.0, 12-FEB-2004 (NJB) */

/*         Code has been updated to support satellite ID codes in the */
/*         range 10000 to 99999 and to allow nutation precession angles */
/*         to be associated with any object. */

/*         Implementation changes were made to improve robustness */
/*         of the code. */

/* -     SPICELIB Version 3.2.0, 22-MAR-1995 (KSZ) */

/*        Gets TSIPM matrix from PCKMAT (instead of Euler angles */
/*        from PCKEUL.) */

/* -     SPICELIB Version 3.0.0, 10-MAR-1994 (KSZ) */

/*        Ability to get Euler angles from binary PCK file added. */
/*        This uses the new routine PCKEUL. */

/* -     SPICELIB Version 2.0.1, 10-MAR-1992 (WLT) */

/*         Comment section for permuted index source lines was added */
/*         following the header. */

/* -     SPICELIB Version 2.0.0, 04-SEP-1991 (NJB) */

/*         Updated to handle P_constants referenced to different epochs */
/*         and inertial reference frames. */

/*         The header was updated to specify that the inertial reference */
/*         frame used by BODMAT is restricted to be J2000. */

/* -    SPICELIB Version 1.0.0, 31-JAN-1990 (WLT) (IMU) */

/* -& */
/* $ Index_Entries */

/*     fetch transformation matrix for a body */
/*     transformation from j2000 position to bodyfixed */
/*     transformation from j2000 to bodyfixed coordinates */

/* -& */
/* $ Revisions */

/* -    SPICELIB Version 4.1.0, 25-AUG-2005 (NJB) */

/*        Updated to remove non-standard use of duplicate arguments */
/*        in MXM call. */

/*         Calls to ZZBODVCD have been replaced with calls to */
/*         BODVCD. */

/* -     SPICELIB Version 4.0.0, 12-FEB-2004 (NJB) */

/*         Code has been updated to support satellite ID codes in the */
/*         range 10000 to 99999 and to allow nutation precession angles */
/*         to be associated with any object. */

/*         Calls to deprecated kernel pool access routine RTPOOL */
/*         were replaced by calls to GDPOOL. */

/*         Calls to BODVAR have been replaced with calls to */
/*         ZZBODVCD. */

/* -     SPICELIB Version 3.2.0, 22-MAR-1995 (KSZ) */

/*        BODMAT now get the TSIPM matrix from PCKMAT, and */
/*        unpacks TIPM from it.  Also the calculated but unused */
/*        variable LAMBDA was removed. */

/* -     SPICELIB Version 3.0.0, 10-MAR-1994 (KSZ) */

/*        BODMAT now uses new software to check for the */
/*        existence of binary PCK files, search the for */
/*        data corresponding to the requested body and time, */
/*        and return the appropriate Euler angles, using the */
/*        new routine PCKEUL.  Otherwise the code calculates */
/*        the Euler angles from the P_constants kernel file. */

/* -     SPICELIB Version 2.0.0, 04-SEP-1991 (NJB) */

/*         Updated to handle P_constants referenced to different epochs */
/*         and inertial reference frames. */

/*         The header was updated to specify that the inertial reference */
/*         frame used by BODMAT is restricted to be J2000. */

/*         BODMAT now checks the kernel pool for presence of the */
/*         variables */

/*            BODY#_CONSTANTS_REF_FRAME */

/*         and */

/*            BODY#_CONSTANTS_JED_EPOCH */

/*         where # is the NAIF integer code of the barycenter of a */
/*         planetary system or of a body other than a planet or */
/*         satellite.  If either or both of these variables are */
/*         present, the P_constants for BODY are presumed to be */
/*         referenced to the specified inertial frame or epoch. */
/*         If the epoch of the constants is not J2000, the input */
/*         time ET is converted to seconds past the reference epoch. */
/*         If the frame of the constants is not J2000, the rotation from */
/*         the P_constants' frame to body-fixed coordinates is */
/*         transformed to the rotation from J2000 coordinates to */
/*         body-fixed coordinates. */

/*         For efficiency reasons, this routine now duplicates much */
/*         of the code of BODEUL so that it doesn't have to call BODEUL. */
/*         In some cases, BODEUL must covert Euler angles to a matrix, */
/*         rotate the matrix, and convert the result back to Euler */
/*         angles.  If this routine called BODEUL, then in such cases */
/*         this routine would convert the transformed angles back to */
/*         a matrix.  That would be a bit much.... */


/* -    Beta Version 1.1.0, 16-FEB-1989 (IMU) (NJB) */

/*        Examples section completed.  Declaration of unused variable */
/*        FOUND removed. */

/* -& */

/*     SPICELIB functions */


/*     Local parameters */


/*     Local variables */


/*     Saved variables */


/*     Initial values */


/*     Standard SPICE Error handling. */

    if (return_()) {
	return 0;
    } else {
	chkin_("BODMAT", (ftnlen)6);
    }

/*     Get the code for the J2000 frame, if we don't have it yet. */

    if (first) {
	irfnum_("J2000", &j2code, (ftnlen)5);
	first = FALSE_;
    }

/*     Get Euler angles from high precision data file. */

    pckmat_(body, et, &ref, tsipm, &found);
    if (found) {
	for (i__ = 1; i__ <= 3; ++i__) {
	    for (j = 1; j <= 3; ++j) {
		tipm[(i__1 = i__ + j * 3 - 4) < 9 && 0 <= i__1 ? i__1 : 
			s_rnge("tipm", i__1, "bodmat_", (ftnlen)485)] = tsipm[
			(i__2 = i__ + j * 6 - 7) < 36 && 0 <= i__2 ? i__2 : 
			s_rnge("tsipm", i__2, "bodmat_", (ftnlen)485)];
	    }
	}
    } else {

/*        The data for the frame of interest are not available in a */
/*        loaded binary PCK file. This is not an error: the data may be */
/*        present in the kernel pool. */

/*        Conduct a non-error-signaling check for the presence of a */
/*        kernel variable that is required to implement an IAU style */
/*        body-fixed reference frame. If the data aren't available, we */
/*        don't want BODVCD to signal a SPICE(KERNELVARNOTFOUND) error; */
/*        we want to issue the error signal locally, with a better error */
/*        message. */

	s_copy(item, "BODY#_PM", (ftnlen)32, (ftnlen)8);
	repmi_(item, "#", body, item, (ftnlen)32, (ftnlen)1, (ftnlen)32);
	dtpool_(item, &found, &nw, dtype, (ftnlen)32, (ftnlen)1);
	if (! found) {

/*           Now we do have an error. */

/*           We don't have the data we'll need to produced the requested */
/*           state transformation matrix. In order to create an error */
/*           message understandable to the user, find, if possible, the */
/*           name of the reference frame associated with the input body. */
/*           Note that the body is really identified by a PCK frame class */
/*           ID code, though most of the documentation just calls it a */
/*           body ID code. */

	    ccifrm_(&c__2, body, &frcode, fixfrm, &cent, &found, (ftnlen)32);
	    etcal_(et, timstr, (ftnlen)35);
	    s_copy(errmsg, "PCK data required to compute the orientation of "
		    "the # # for epoch # TDB were not found. If these data we"
		    "re to be provided by a binary PCK file, then it is possi"
		    "ble that the PCK file does not have coverage for the spe"
		    "cified body-fixed frame at the time of interest. If the "
		    "data were to be provided by a text PCK file, then possib"
		    "ly the file does not contain data for the specified body"
		    "-fixed frame. In either case it is possible that a requi"
		    "red PCK file was not loaded at all.", (ftnlen)1840, (
		    ftnlen)475);

/*           Fill in the variable data in the error message. */

	    if (found) {

/*              The frame system knows the name of the body-fixed frame. */

		setmsg_(errmsg, (ftnlen)1840);
		errch_("#", "body-fixed frame", (ftnlen)1, (ftnlen)16);
		errch_("#", fixfrm, (ftnlen)1, (ftnlen)32);
		errch_("#", timstr, (ftnlen)1, (ftnlen)35);
	    } else {

/*              The frame system doesn't know the name of the */
/*              body-fixed frame, most likely due to a missing */
/*              frame kernel. */

		suffix_("#", &c__1, errmsg, (ftnlen)1, (ftnlen)1840);
		setmsg_(errmsg, (ftnlen)1840);
		errch_("#", "body-fixed frame associated with the ID code", (
			ftnlen)1, (ftnlen)44);
		errint_("#", body, (ftnlen)1);
		errch_("#", timstr, (ftnlen)1, (ftnlen)35);
		errch_("#", "Also, a frame kernel defining the body-fixed fr"
			"ame associated with body # may need to be loaded.", (
			ftnlen)1, (ftnlen)96);
		errint_("#", body, (ftnlen)1);
	    }
	    sigerr_("SPICE(FRAMEDATANOTFOUND)", (ftnlen)24);
	    chkout_("BODMAT", (ftnlen)6);
	    return 0;
	}

/*        Find the body code used to label the reference frame and epoch */
/*        specifiers for the orientation constants for BODY. */

/*        For planetary systems, the reference frame and epoch for the */
/*        orientation constants is associated with the system */
/*        barycenter, not with individual bodies in the system.  For any */
/*        other bodies, (the Sun or asteroids, for example) the body's */
/*        own code is used as the label. */

	refid = zzbodbry_(body);

/*        Look up the epoch of the constants.  The epoch is specified */
/*        as a Julian ephemeris date.  The epoch defaults to J2000. */

	s_copy(item, "BODY#_CONSTANTS_JED_EPOCH", (ftnlen)32, (ftnlen)25);
	repmi_(item, "#", &refid, item, (ftnlen)32, (ftnlen)1, (ftnlen)32);
	gdpool_(item, &c__1, &c__1, &dim, &conepc, &found, (ftnlen)32);
	if (found) {

/*           The reference epoch is returned as a JED.  Convert to */
/*           ephemeris seconds past J2000.  Then convert the input ET to */
/*           seconds past the reference epoch. */

	    conepc = spd_() * (conepc - j2000_());
	    epoch = *et - conepc;
	} else {
	    epoch = *et;
	}

/*        Look up the reference frame of the constants.  The reference */
/*        frame is specified by a code recognized by CHGIRF.  The */
/*        default frame is J2000, symbolized by the code J2CODE. */

	s_copy(item, "BODY#_CONSTANTS_REF_FRAME", (ftnlen)32, (ftnlen)25);
	repmi_(item, "#", &refid, item, (ftnlen)32, (ftnlen)1, (ftnlen)32);
	gdpool_(item, &c__1, &c__1, &dim, &conref, &found, (ftnlen)32);
	if (found) {
	    ref = i_dnnt(&conref);
	} else {
	    ref = j2code;
	}

/*        Whatever the body, it has quadratic time polynomials for */
/*        the RA and Dec of the pole, and for the rotation of the */
/*        Prime Meridian. */

	s_copy(item, "POLE_RA", (ftnlen)32, (ftnlen)7);
	cleard_(&c__3, rcoef);
	bodvcd_(body, item, &c__3, &na, rcoef, (ftnlen)32);
	s_copy(item, "POLE_DEC", (ftnlen)32, (ftnlen)8);
	cleard_(&c__3, dcoef);
	bodvcd_(body, item, &c__3, &nd, dcoef, (ftnlen)32);
	s_copy(item, "PM", (ftnlen)32, (ftnlen)2);
	cleard_(&c__3, wcoef);
	bodvcd_(body, item, &c__3, &nw, wcoef, (ftnlen)32);

/*        There may be additional nutation and libration (THETA) terms. */

	ntheta = 0;
	na = 0;
	nd = 0;
	nw = 0;
	s_copy(item, "NUT_PREC_ANGLES", (ftnlen)32, (ftnlen)15);
	if (bodfnd_(&refid, item, (ftnlen)32)) {
	    bodvcd_(&refid, item, &c__100, &ntheta, tcoef, (ftnlen)32);
	    ntheta /= 2;
	}
	s_copy(item, "NUT_PREC_RA", (ftnlen)32, (ftnlen)11);
	if (bodfnd_(body, item, (ftnlen)32)) {
	    bodvcd_(body, item, &c__100, &na, ac, (ftnlen)32);
	}
	s_copy(item, "NUT_PREC_DEC", (ftnlen)32, (ftnlen)12);
	if (bodfnd_(body, item, (ftnlen)32)) {
	    bodvcd_(body, item, &c__100, &nd, dc, (ftnlen)32);
	}
	s_copy(item, "NUT_PREC_PM", (ftnlen)32, (ftnlen)11);
	if (bodfnd_(body, item, (ftnlen)32)) {
	    bodvcd_(body, item, &c__100, &nw, wc, (ftnlen)32);
	}
/* Computing MAX */
	i__1 = max(na,nd);
	if (max(i__1,nw) > ntheta) {
	    setmsg_("Insufficient number of nutation/precession angles for b"
		    "ody * at time #.", (ftnlen)71);
	    errint_("*", body, (ftnlen)1);
	    errdp_("#", et, (ftnlen)1);
	    sigerr_("SPICE(KERNELVARNOTFOUND)", (ftnlen)24);
	    chkout_("BODMAT", (ftnlen)6);
	    return 0;
	}

/*        Evaluate the time polynomials at EPOCH. */

	d__ = epoch / spd_();
	t = d__ / 36525.;
	ra = rcoef[0] + t * (rcoef[1] + t * rcoef[2]);
	dec = dcoef[0] + t * (dcoef[1] + t * dcoef[2]);
	w = wcoef[0] + d__ * (wcoef[1] + d__ * wcoef[2]);

/*        Add nutation and libration as appropriate. */

	i__1 = ntheta;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    theta = (tcoef[(i__2 = (i__ << 1) - 2) < 200 && 0 <= i__2 ? i__2 :
		     s_rnge("tcoef", i__2, "bodmat_", (ftnlen)700)] + t * 
		    tcoef[(i__3 = (i__ << 1) - 1) < 200 && 0 <= i__3 ? i__3 : 
		    s_rnge("tcoef", i__3, "bodmat_", (ftnlen)700)]) * rpd_();
	    sinth[(i__2 = i__ - 1) < 100 && 0 <= i__2 ? i__2 : s_rnge("sinth",
		     i__2, "bodmat_", (ftnlen)702)] = sin(theta);
	    costh[(i__2 = i__ - 1) < 100 && 0 <= i__2 ? i__2 : s_rnge("costh",
		     i__2, "bodmat_", (ftnlen)703)] = cos(theta);
	}
	ra += vdotg_(ac, sinth, &na);
	dec += vdotg_(dc, costh, &nd);
	w += vdotg_(wc, sinth, &nw);

/*        Convert from degrees to radians and mod by two pi. */

	ra *= rpd_();
	dec *= rpd_();
	w *= rpd_();
	d__1 = twopi_();
	ra = d_mod(&ra, &d__1);
	d__1 = twopi_();
	dec = d_mod(&dec, &d__1);
	d__1 = twopi_();
	w = d_mod(&w, &d__1);

/*        Convert to Euler angles. */

	phi = ra + halfpi_();
	delta = halfpi_() - dec;

/*        Produce the rotation matrix defined by the Euler angles. */

	eul2m_(&w, &delta, &phi, &c__3, &c__1, &c__3, tipm);
    }

/*     Convert TIPM to the J2000-to-bodyfixed rotation, if is is not */
/*     already referenced to J2000. */

    if (ref != j2code) {

/*        Find the transformation from the J2000 frame to the frame */
/*        designated by REF.  Form the transformation from `REF' */
/*        coordinates to body-fixed coordinates.  Compose the */
/*        transformations to obtain the J2000-to-body-fixed */
/*        transformation. */

	irfrot_(&j2code, &ref, j2ref);
	mxm_(tipm, j2ref, tmpmat);
	moved_(tmpmat, &c__9, tipm);
    }

/*     TIPM now gives the transformation from J2000 to */
/*     body-fixed coordinates at epoch ET seconds past J2000, */
/*     regardless of the epoch and frame of the orientation constants */
/*     for the specified body. */

    chkout_("BODMAT", (ftnlen)6);
    return 0;
} /* bodmat_ */
Exemplo n.º 3
0
Arquivo: irftrn.c Projeto: Dbelsa/coft
/* $Procedure      IRFTRN ( Inertial reference frame transformation ) */
/* Subroutine */ int irftrn_(char *refa, char *refb, doublereal *rotab, 
	ftnlen refa_len, ftnlen refb_len)
{
    integer codea, codeb;
    extern /* Subroutine */ int chkin_(char *, ftnlen), chkout_(char *, 
	    ftnlen), irfnum_(char *, integer *, ftnlen), irfrot_(integer *, 
	    integer *, doublereal *);
    extern logical return_(void);

/* $ Abstract */

/*     Return the matrix that transforms vectors from one specified */
/*     inertial reference frame to another. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Required_Reading */

/*     SPK */

/* $ Keywords */

/*     CONVERSION */
/*     COORDINATES */
/*     FRAMES */
/*     MATRIX */
/*     ROTATION */
/*     TRANSFORMATION */

/* $ Declarations */
/* $ Brief_I/O */

/*     Variable  I/O  Description */
/*     --------  ---  -------------------------------------------------- */
/*     REFA       I   Name of reference frame to transform vectors FROM. */
/*     REFB       I   Name of reference frame to transform vectors TO. */
/*     ROTAB      O   REFA-to-REFB transformation matrix. */

/* $ Detailed_Input */

/*     REFA, */
/*     REFB           Names of two inertial reference frames.  Any names */
/*                    accepted by the routine IRFNUM may be used.  See */
/*                    $Particulars for a list of some of the more */
/*                    commonly used inertial reference frame names. */

/* $ Detailed_Output */

/*     ROTAB          is a rotation matrix that transforms the */
/*                    coordinates of a vector V relative to the */
/*                    reference frame specified by REFA to the */
/*                    coordinates of V relative to the reference frame */
/*                    specified by REFB.  The transformation is carried */
/*                    out by the matrix multiplication */

/*                       V = ROTAB * V. */
/* $ Parameters */

/*     None. */

/* $ Exceptions */

/*     1)  If either of the input reference frame names is invalid, the */
/*         error will be diagnosed by routines called by this routine. */

/* $ Files */

/*     None. */

/* $ Particulars */

/*     Normally applications should call the more general, higher level */
/*     routine PXFORM instead of this routine. */

/*     This routine is a macro that replaces the code fragment */

/*        CALL IRFNUM ( REFA,  CODEA        ) */
/*        CALL IRFNUM ( REFB,  CODEB        ) */
/*        CALL IRFROT ( CODEA, CODEB, ROTAB ) */


/*     Among the reference frame names accepted by IRFNUM are: */

/*        'J2000' */
/*        'B1950' */
/*        'FK4' */
/*        'DE-96' */
/*        'DE-102' */
/*        'DE-108' */
/*        'DE-111' */
/*        'DE-114' */
/*        'DE-118' */
/*        'DE-122' */
/*        'DE-125' */
/*        'DE-130' */
/*        'DE-200' */
/*        'DE-202' */
/*        'GALACTIC' */

/*     See the SPICELIB routine GHGIRF for details. */


/* $ Examples */

/*     1)  Transform a vector V1950 from the B1950 to the J2000 */
/*         reference frame. */

/*            C */
/*            C     Ask IRFTRN for the matrix that transforms vectors */
/*            C     from the B1950 to the J2000 reference frame. */
/*            C */
/*                  CALL IRFTRN ( 'B1950', 'J2000', TRANS ) */

/*            C */
/*            C     Now transform V1950 to the J2000 reference frame. */
/*            C */
/*                  CALL MXV ( TRANS, V1950, V2000 ) */

/* $ Restrictions */

/*     None. */

/* $ Literature_References */

/*     None. */

/* $ Author_and_Institution */

/*     N.J. Bachman   (JPL) */

/* $ Version */

/* -    SPICELIB Version 1.0.2, 28-SEP-2004 (NJB) */

/*        Corrected comment in code example in header.  Made other minor */
/*        updates to header. */

/* -    SPICELIB Version 1.0.1, 10-MAR-1992 (WLT) */

/*        Comment section for permuted index source lines was added */
/*        following the header. */

/* -    SPICELIB Version 1.0.0, 30-AUG-1991 (NJB) */

/* -& */
/* $ Index_Entries */

/*     tranformation from one inertial frame to another */

/* -& */

/*     SPICELIB functions */


/*     Local variables */


/*     Standard SPICE error handling. */

    if (return_()) {
	return 0;
    } else {
	chkin_("IRFTRN", (ftnlen)6);
    }

/*     Encode the reference frame names, and find the transformation */
/*     matrix. */

    irfnum_(refa, &codea, refa_len);
    irfnum_(refb, &codeb, refb_len);
    irfrot_(&codea, &codeb, rotab);
    chkout_("IRFTRN", (ftnlen)6);
    return 0;
} /* irftrn_ */