Exemplo n.º 1
0
void FitMultigroup::init()
{
	auto *oo = this;
	FitMultigroup *mg =this;

	SEXP rObj = oo->rObj;
	if (!rObj) return;

	if (mg->fits.size()) return; // hack to prevent double initialization, remove TOOD

	oo->units = FIT_UNITS_UNINITIALIZED;
	oo->gradientAvailable = TRUE;
	oo->hessianAvailable = TRUE;
	oo->canDuplicate = true;

	omxState *os = oo->matrix->currentState;

	ProtectedSEXP Rverb(R_do_slot(rObj, Rf_install("verbose")));
	mg->verbose = Rf_asInteger(Rverb);

	ProtectedSEXP Rgroups(R_do_slot(rObj, Rf_install("groups")));
	int *fits = INTEGER(Rgroups);
	for(int gx = 0; gx < Rf_length(Rgroups); gx++) {
		if (isErrorRaised()) break;
		omxMatrix *mat;
		if (fits[gx] >= 0) {
			mat = os->algebraList[fits[gx]];
		} else {
			mxThrow("Can only add algebra and fitfunction");
		}
		if (mat == oo->matrix) mxThrow("Cannot add multigroup to itself");
		mg->fits.push_back(mat);
		if (mat->fitFunction) {
			omxCompleteFitFunction(mat);
			oo->gradientAvailable = (oo->gradientAvailable && mat->fitFunction->gradientAvailable);
			oo->hessianAvailable = (oo->hessianAvailable && mat->fitFunction->hessianAvailable);
		} else {
			oo->gradientAvailable = FALSE;
			oo->hessianAvailable = FALSE;
		}
	}
}
Exemplo n.º 2
0
void omxComputeNumericDeriv::computeImpl(FitContext *fc)
{
	if (fc->fitUnits == FIT_UNITS_SQUARED_RESIDUAL ||
	    fc->fitUnits == FIT_UNITS_SQUARED_RESIDUAL_CHISQ) {  // refactor TODO
		numParams = 0;
		if (verbose >= 1) mxLog("%s: derivatives %s units are meaningless",
					name, fitUnitsToName(fc->fitUnits));
		return; //Possible TODO: calculate Hessian anyway?
	}

	int newWanted = fc->wanted | FF_COMPUTE_GRADIENT;
	if (wantHessian) newWanted |= FF_COMPUTE_HESSIAN;

	int nf = fc->calcNumFree();
	if (numParams != 0 && numParams != nf) {
		mxThrow("%s: number of parameters changed from %d to %d",
			 name, numParams, nf);
	}

	numParams = nf;
	if (numParams <= 0) { complainNoFreeParam(); return; }

	optima.resize(numParams);
	fc->copyEstToOptimizer(optima);
	paramMap.resize(numParams);
	for (int px=0,ex=0; px < numParams; ++ex) {
		if (fc->profiledOut[ex]) continue;
		paramMap[px++] = ex;
	}

	omxAlgebraPreeval(fitMat, fc);
	fc->createChildren(fitMat); // allow FIML rowwiseParallel even when parallel=false

	fc->state->countNonlinearConstraints(fc->state->numEqC, fc->state->numIneqC, false);
	int c_n = fc->state->numEqC + fc->state->numIneqC;
	fc->constraintFunVals.resize(c_n);
	fc->constraintJacobian.resize(c_n, numParams);
	if(c_n){
		omxCalcFinalConstraintJacobian(fc, numParams);
	}
	// TODO: Allow more than one hessian value for calculation

	int numChildren = 1;
	if (parallel && !fc->openmpUser && fc->childList.size()) numChildren = fc->childList.size();

	if (!fc->haveReferenceFit(fitMat)) return;

	minimum = fc->fit;

	hessWorkVector = new hess_struct[numChildren];
	if (numChildren == 1) {
		omxPopulateHessianWork(hessWorkVector, fc);
	} else {
		for(int i = 0; i < numChildren; i++) {
			omxPopulateHessianWork(hessWorkVector + i, fc->childList[i]);
		}
	}
	if(verbose >= 1) mxLog("Numerical Hessian approximation (%d children, ref fit %.2f)",
			       numChildren, minimum);

	hessian = NULL;
	if (wantHessian) {
		hessian = fc->getDenseHessUninitialized();
		Eigen::Map< Eigen::MatrixXd > eH(hessian, numParams, numParams);
		eH.setConstant(NA_REAL);

		if (knownHessian) {
			int khSize = int(khMap.size());
			Eigen::Map< Eigen::MatrixXd > kh(knownHessian, khSize, khMap.size());
			for (int rx=0; rx < khSize; ++rx) {
				for (int cx=0; cx < khSize; ++cx) {
					if (khMap[rx] < 0 || khMap[cx] < 0) continue;
					eH(khMap[rx], khMap[cx]) = kh(rx, cx);
				}
			}
		}
	}

	if (detail) {
		recordDetail = false; // already done it once
	} else {
		Rf_protect(detail = Rf_allocVector(VECSXP, 4));
		SET_VECTOR_ELT(detail, 0, Rf_allocVector(LGLSXP, numParams));
		for (int gx=0; gx < 3; ++gx) {
			SET_VECTOR_ELT(detail, 1+gx, Rf_allocVector(REALSXP, numParams));
		}
		SEXP detailCols;
		Rf_protect(detailCols = Rf_allocVector(STRSXP, 4));
		Rf_setAttrib(detail, R_NamesSymbol, detailCols);
		SET_STRING_ELT(detailCols, 0, Rf_mkChar("symmetric"));
		SET_STRING_ELT(detailCols, 1, Rf_mkChar("forward"));
		SET_STRING_ELT(detailCols, 2, Rf_mkChar("central"));
		SET_STRING_ELT(detailCols, 3, Rf_mkChar("backward"));

		SEXP detailRowNames;
		Rf_protect(detailRowNames = Rf_allocVector(STRSXP, numParams));
		Rf_setAttrib(detail, R_RowNamesSymbol, detailRowNames);
		for (int nx=0; nx < int(numParams); ++nx) {
			SET_STRING_ELT(detailRowNames, nx, Rf_mkChar(fc->varGroup->vars[nx]->name));
		}
		markAsDataFrame(detail);
	}

	gforward = REAL(VECTOR_ELT(detail, 1));
	gcentral = REAL(VECTOR_ELT(detail, 2));
	gbackward = REAL(VECTOR_ELT(detail, 3));
	Eigen::Map< Eigen::ArrayXd > Gf(gforward, numParams);
	Eigen::Map< Eigen::ArrayXd > Gc(gcentral, numParams);
	Eigen::Map< Eigen::ArrayXd > Gb(gbackward, numParams);
	Gf.setConstant(NA_REAL);
	Gc.setConstant(NA_REAL);
	Gb.setConstant(NA_REAL);

	calcHessianEntry che(this);
	CovEntrywiseParallel(numChildren, che);

	for(int i = 0; i < numChildren; i++) {
		struct hess_struct *hw = hessWorkVector + i;
		totalProbeCount += hw->probeCount;
	}
	delete [] hessWorkVector;
	if (isErrorRaised()) return;

	Eigen::Map< Eigen::ArrayXi > Gsymmetric(LOGICAL(VECTOR_ELT(detail, 0)), numParams);
	double gradNorm = 0.0;
	
	double feasibilityTolerance = Global->feasibilityTolerance;
	for (int px=0; px < numParams; ++px) {
		// factor out simliar code in ComputeNR
		omxFreeVar &fv = *fc->varGroup->vars[ paramMap[px] ];
		if ((fabs(optima[px] - fv.lbound) < feasibilityTolerance && Gc[px] > 0) ||
		    (fabs(optima[px] - fv.ubound) < feasibilityTolerance && Gc[px] < 0)) {
			Gsymmetric[px] = false;
			continue;
		}
		gradNorm += Gc[px] * Gc[px];
		double relsym = 2 * fabs(Gf[px] + Gb[px]) / (Gb[px] - Gf[px]);
		Gsymmetric[px] = (Gf[px] < 0 && 0 < Gb[px] && relsym < 1.5);
		if (checkGradient && verbose >= 2 && !Gsymmetric[px]) {
			mxLog("%s: param[%d] %d %f", name, px, Gsymmetric[px], relsym);
		}
	}
	
	fc->grad.resize(fc->numParam);
	fc->grad.setZero();
	fc->copyGradFromOptimizer(Gc);
	
	if(c_n){
		fc->inequality.resize(fc->state->numIneqC);
		fc->analyticIneqJacTmp.resize(fc->state->numIneqC, numParams);
		fc->myineqFun(true, verbose, omxConstraint::LESS_THAN, false);
	}

	gradNorm = sqrt(gradNorm);
	double gradThresh = Global->getGradientThreshold(minimum);
	//The gradient will generally not be near zero at a local minimum if there are equality constraints 
	//or active inequality constraints:
	if ( checkGradient && gradNorm > gradThresh && !(fc->state->numEqC || fc->inequality.array().sum()) ) {
		if (verbose >= 1) {
			mxLog("Some gradient entries are too large, norm %f", gradNorm);
		}
		if (fc->getInform() < INFORM_NOT_AT_OPTIMUM) fc->setInform(INFORM_NOT_AT_OPTIMUM);
	}

	fc->setEstFromOptimizer(optima);
	// auxillary information like per-row likelihoods need a refresh
	ComputeFit(name, fitMat, FF_COMPUTE_FIT, fc);
	fc->wanted = newWanted;
}
Exemplo n.º 3
0
void omxCompleteExpectation(omxExpectation *ox) {
	
	if(ox->isComplete) return;

	if (ox->rObj) {
		omxState *os = ox->currentState;
		SEXP rObj = ox->rObj;
		SEXP slot;
		{ScopedProtect(slot, R_do_slot(rObj, Rf_install("container")));
		if (Rf_length(slot) == 1) {
			int ex = INTEGER(slot)[0];
			ox->container = os->expectationList.at(ex);
		}
		}

		{ScopedProtect(slot, R_do_slot(rObj, Rf_install("submodels")));
		if (Rf_length(slot)) {
			int numSubmodels = Rf_length(slot);
			int *submodel = INTEGER(slot);
			for (int ex=0; ex < numSubmodels; ex++) {
				int sx = submodel[ex];
				ox->submodels.push_back(omxExpectationFromIndex(sx, os));
			}
		}
		}
	}

	omxExpectationProcessDataStructures(ox, ox->rObj);

	int numSubmodels = (int) ox->submodels.size();
	for (int ex=0; ex < numSubmodels; ex++) {
		omxCompleteExpectation(ox->submodels[ex]);
	}

	ox->initFun(ox);

	if(ox->computeFun == NULL) {
		if (isErrorRaised()) {
			Rf_error("Failed to initialize '%s' of type %s: %s", ox->name, ox->expType, Global->getBads());
		} else {
			Rf_error("Failed to initialize '%s' of type %s", ox->name, ox->expType);
		}
	}

	if (OMX_DEBUG) {
		omxData *od = ox->data;
		omxState *state = ox->currentState;
		std::string msg = string_snprintf("Expectation '%s' of type '%s' has"
						  " %d definition variables:\n", ox->name, ox->expType,
						  int(od->defVars.size()));
		for (int dx=0; dx < int(od->defVars.size()); ++dx) {
			omxDefinitionVar &dv = od->defVars[dx];
			msg += string_snprintf("[%d] column '%s' ->", dx, omxDataColumnName(od, dv.column));
			for (int lx=0; lx < dv.numLocations; ++lx) {
				msg += string_snprintf(" %s[%d,%d]", state->matrixToName(~dv.matrices[lx]),
						       dv.rows[lx], dv.cols[lx]);
			}
			msg += "\n  dirty:";
			for (int mx=0; mx < dv.numDeps; ++mx) {
				msg += string_snprintf(" %s", state->matrixToName(dv.deps[mx]));
			}
			msg += "\n";
		}
		mxLogBig(msg);
	}

	ox->isComplete = TRUE;
}
Exemplo n.º 4
0
void omxSD(GradientOptimizerContext &rf)
{
	int maxIter = rf.maxMajorIterations;
	if (maxIter == -1) maxIter = 50000;

	Eigen::VectorXd currEst(rf.numFree);
	rf.copyToOptimizer(currEst.data());

    int iter = 0;
	double priorSpeed = 1.0, shrinkage = 0.7;
    rf.setupSimpleBounds();
    rf.informOut = INFORM_UNINITIALIZED;

    {
	    int mode = 0;
	    rf.solFun(currEst.data(), &mode);
	    if (mode == -1) {
		    rf.informOut = INFORM_STARTING_VALUES_INFEASIBLE;
		    return;
	    }
    }
    double refFit = rf.getFit();

    rf.grad.resize(rf.numFree);

    fit_functional ff(rf);
    Eigen::VectorXd majorEst = currEst;

    while(++iter < maxIter && !isErrorRaised()) {
	    gradient_with_ref(rf.gradientAlgo, 1, rf.gradientIterations, rf.gradientStepSize,
			      ff, refFit, majorEst, rf.grad);

	    if (rf.verbose >= 3) mxPrintMat("grad", rf.grad);

        if(rf.grad.norm() == 0)
        {
            rf.informOut = INFORM_CONVERGED_OPTIMUM;
            if(rf.verbose >= 2) mxLog("After %i iterations, gradient achieves zero!", iter);
            break;
        }

        int retries = 300;
        double speed = std::min(priorSpeed, 1.0);
	double bestSpeed = speed;
	bool foundBetter = false;
	Eigen::VectorXd bestEst(majorEst.size());
	Eigen::VectorXd prevEst(majorEst.size());
	Eigen::VectorXd searchDir = rf.grad;
	searchDir /= searchDir.norm();
	prevEst.setConstant(nan("uninit"));
        while (--retries > 0 && !isErrorRaised()){
		Eigen::VectorXd nextEst = majorEst - speed * searchDir;
		nextEst = nextEst.cwiseMax(rf.solLB).cwiseMin(rf.solUB);

		if (nextEst == prevEst) break;
		prevEst = nextEst;

		rf.checkActiveBoxConstraints(nextEst);

		int mode = 0;
		double fit = rf.solFun(nextEst.data(), &mode);
		if (fit < refFit) {
			foundBetter = true;
			refFit = rf.getFit();
			bestSpeed = speed;
			bestEst = nextEst;
			break;
		}
		speed *= shrinkage;
        }

	if (false && foundBetter) {
		// In some tests, this did not help so it is not enabled.
		// It might be worth testing more.
		mxLog("trying larger step size");
		retries = 3;
		while (--retries > 0 && !isErrorRaised()){
			speed *= 1.01;
			Eigen::VectorXd nextEst = majorEst - speed * searchDir;
			nextEst = nextEst.cwiseMax(rf.solLB).cwiseMin(rf.solUB);
			rf.checkActiveBoxConstraints(nextEst);
			int mode = 0;
			double fit = rf.solFun(nextEst.data(), &mode);
			if (fit < refFit) {
				foundBetter = true;
				refFit = rf.getFit();
				bestSpeed = speed;
				bestEst = nextEst;
			}
		}
	}

        if (!foundBetter) {
            rf.informOut = INFORM_CONVERGED_OPTIMUM;
            if(rf.verbose >= 2) mxLog("After %i iterations, cannot find better estimation along the gradient direction", iter);
            break;
        }

	if (rf.verbose >= 2) mxLog("major fit %f bestSpeed %g", refFit, bestSpeed);
	majorEst = bestEst;
	priorSpeed = bestSpeed * 1.1;
    }
    rf.est = majorEst;
    if ((rf.grad.array().abs() > 0.1).any()) {
	    rf.informOut = INFORM_NOT_AT_OPTIMUM;
    }
    if (iter >= maxIter - 1) {
            rf.informOut = INFORM_ITERATION_LIMIT;
            if(rf.verbose >= 2) mxLog("Maximum iteration achieved!");
    }
    if(rf.verbose >= 1) mxLog("Status code : %i", rf.informOut);
}
Exemplo n.º 5
0
void omxInitExpectationBA81(omxExpectation* oo) {
	omxState* currentState = oo->currentState;	
	SEXP rObj = oo->rObj;
	SEXP tmp;
	
	if(OMX_DEBUG) {
		mxLog("Initializing %s.", oo->name);
	}
	if (!Glibrpf_model) {
#if USE_EXTERNAL_LIBRPF
		get_librpf_t get_librpf = (get_librpf_t) R_GetCCallable("rpf", "get_librpf_model_GPL");
		(*get_librpf)(LIBIFA_RPF_API_VERSION, &Glibrpf_numModels, &Glibrpf_model);
#else
		// if linking against included source code
		Glibrpf_numModels = librpf_numModels;
		Glibrpf_model = librpf_model;
#endif
	}
	
	BA81Expect *state = new BA81Expect;

	// These two constants should be as identical as possible
	state->name = oo->name;
	if (0) {
		state->LogLargestDouble = 0.0;
		state->LargestDouble = 1.0;
	} else {
		state->LogLargestDouble = log(std::numeric_limits<double>::max()) - 1;
		state->LargestDouble = exp(state->LogLargestDouble);
		ba81NormalQuad &quad = state->getQuad();
		quad.setOne(state->LargestDouble);
	}

	state->expectedUsed = false;

	state->estLatentMean = NULL;
	state->estLatentCov = NULL;
	state->type = EXPECTATION_OBSERVED;
	state->itemParam = NULL;
	state->EitemParam = NULL;
	state->itemParamVersion = 0;
	state->latentParamVersion = 0;
	oo->argStruct = (void*) state;

	{ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("data")));
	state->data = omxDataLookupFromState(tmp, currentState);
	}

	if (strcmp(omxDataType(state->data), "raw") != 0) {
		omxRaiseErrorf("%s unable to handle data type %s", oo->name, omxDataType(state->data));
		return;
	}

	{ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("verbose")));
	state->verbose = Rf_asInteger(tmp);
	}

	int targetQpoints;
	{ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("qpoints")));
		targetQpoints = Rf_asInteger(tmp);
	}

	{ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("qwidth")));
	state->grp.setGridFineness(Rf_asReal(tmp), targetQpoints);
	}

	{ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("ItemSpec")));
	state->grp.importSpec(tmp);
	if (state->verbose >= 2) mxLog("%s: found %d item specs", oo->name, state->numItems());
	}

	state->_latentMeanOut = omxNewMatrixFromSlot(rObj, currentState, "mean");
	state->_latentCovOut  = omxNewMatrixFromSlot(rObj, currentState, "cov");

	state->itemParam = omxNewMatrixFromSlot(rObj, currentState, "item");
	state->grp.param = state->itemParam->data; // algebra not allowed yet TODO

	const int numItems = state->itemParam->cols;
	if (state->numItems() != numItems) {
		omxRaiseErrorf("ItemSpec length %d must match the number of item columns (%d)",
			       state->numItems(), numItems);
		return;
	}
	if (state->itemParam->rows != state->grp.impliedParamRows) {
		omxRaiseErrorf("item matrix must have %d rows", state->grp.impliedParamRows);
		return;
	}
	state->grp.paramRows = state->itemParam->rows;

	// for algebra item param, will need to defer until later?
	state->grp.learnMaxAbilities();

	int maxAbilities = state->grp.itemDims;
	state->grp.setFactorNames(state->itemParam->rownames);

	{
		ProtectedSEXP tmp2(R_do_slot(rObj, Rf_install(".detectIndependence")));
		state->grp.detectIndependence = Rf_asLogical(tmp2);
	}

	{ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("EstepItem")));
	if (!Rf_isNull(tmp)) {
		int rows, cols;
		getMatrixDims(tmp, &rows, &cols);
		if (rows != state->itemParam->rows || cols != state->itemParam->cols) {
			Rf_error("EstepItem must have the same dimensions as the item MxMatrix");
		}
		state->EitemParam = REAL(tmp);
	}
	}

	oo->computeFun = ba81compute;
	oo->setVarGroup = ignoreSetVarGroup;
	oo->destructFun = ba81Destroy;
	oo->populateAttrFun = ba81PopulateAttributes;
	oo->componentFun = getComponent;
	oo->canDuplicate = false;
	
	// TODO: Exactly identical rows do not contribute any information.
	// The sorting algorithm ought to remove them so we get better cache behavior.
	// The following summary stats would be cheaper to calculate too.

	omxData *data = state->data;
	if (data->hasDefinitionVariables()) Rf_error("%s: not implemented yet", oo->name);

	std::vector<int> &rowMap = state->grp.rowMap;

	int weightCol;
	{ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("weightColumn")));
		weightCol = INTEGER(tmp)[0];
	}

	if (weightCol == NA_INTEGER) {
		// Should rowMap be part of omxData? This is essentially a
		// generic compression step that shouldn't be specific to IFA models.
		state->grp.rowWeight = (double*) R_alloc(data->rows, sizeof(double));
		rowMap.resize(data->rows);
		int numUnique = 0;
		for (int rx=0; rx < data->rows; ) {
			int rw = 1;
			state->grp.rowWeight[numUnique] = rw;
			rowMap[numUnique] = rx;
			rx += rw;
			++numUnique;
		}
		rowMap.resize(numUnique);
		state->weightSum = state->data->rows;
	}
	else {
		if (omxDataColumnIsFactor(data, weightCol)) {
			omxRaiseErrorf("%s: weightColumn %d is a factor", oo->name, 1 + weightCol);
			return;
		}
		state->grp.rowWeight = omxDoubleDataColumn(data, weightCol);
		state->weightSum = 0;
		for (int rx=0; rx < data->rows; ++rx) { state->weightSum += state->grp.rowWeight[rx]; }
		rowMap.resize(data->rows);
		for (size_t rx=0; rx < rowMap.size(); ++rx) {
			rowMap[rx] = rx;
		}
	}
	// complain about non-integral rowWeights (EAP can't work) TODO

	auto colMap = oo->getDataColumns();

	for (int cx = 0; cx < numItems; cx++) {
		int *col = omxIntDataColumnUnsafe(data, colMap[cx]);
		state->grp.dataColumns.push_back(col);
	}

	// sanity check data
	for (int cx = 0; cx < numItems; cx++) {
		if (!omxDataColumnIsFactor(data, colMap[cx])) {
			data->omxPrintData("diagnostic", 3);
			omxRaiseErrorf("%s: column %d is not a factor", oo->name, int(1 + colMap[cx]));
			return;
		}
	}

	// TODO the max outcome should be available from omxData
	for (int rx=0; rx < data->rows; rx++) {
		int cols = 0;
		for (int cx = 0; cx < numItems; cx++) {
			const int *col = state->grp.dataColumns[cx];
			int pick = col[rx];
			if (pick == NA_INTEGER) continue;
			++cols;
			const int no = state->grp.itemOutcomes[cx];
			if (pick > no) {
				Rf_error("Data for item '%s' has at least %d outcomes, not %d",
					 state->itemParam->colnames[cx], pick, no);
			}
		}
		if (cols == 0) {
			Rf_error("Row %d has all NAs", 1+rx);
		}
	}

	if (state->_latentMeanOut && state->_latentMeanOut->rows * state->_latentMeanOut->cols != maxAbilities) {
		Rf_error("The mean matrix '%s' must be a row or column vector of size %d",
			 state->_latentMeanOut->name(), maxAbilities);
	}

	if (state->_latentCovOut && (state->_latentCovOut->rows != maxAbilities ||
				    state->_latentCovOut->cols != maxAbilities)) {
		Rf_error("The cov matrix '%s' must be %dx%d",
			 state->_latentCovOut->name(), maxAbilities, maxAbilities);
	}

	state->grp.setLatentDistribution(state->_latentMeanOut? state->_latentMeanOut->data : NULL,
					 state->_latentCovOut? state->_latentCovOut->data : NULL);

	{
		EigenArrayAdaptor Eparam(state->itemParam);
		Eigen::Map< Eigen::VectorXd > meanVec(state->grp.mean, maxAbilities);
		Eigen::Map< Eigen::MatrixXd > covMat(state->grp.cov, maxAbilities, maxAbilities);
		state->grp.quad.setStructure(state->grp.qwidth, state->grp.qpoints,
					     Eparam, meanVec, covMat);
	}

	{ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("minItemsPerScore")));
	state->grp.setMinItemsPerScore(Rf_asInteger(tmp));
	}

	state->grp.buildRowSkip();

	if (isErrorRaised()) return;

	{ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("debugInternal")));
	state->debugInternal = Rf_asLogical(tmp);
	}

	state->ElatentVersion = 0;
	if (state->_latentMeanOut) {
		state->estLatentMean = omxInitMatrix(maxAbilities, 1, TRUE, currentState);
		omxCopyMatrix(state->estLatentMean, state->_latentMeanOut); // rename matrices TODO
	}
	if (state->_latentCovOut) {
		state->estLatentCov = omxInitMatrix(maxAbilities, maxAbilities, TRUE, currentState);
		omxCopyMatrix(state->estLatentCov, state->_latentCovOut);
	}
}