Exemplo n.º 1
0
bool CompiledIC::is_call_to_interpreted() const {  
  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  // Call to interpreter if destination is either calling to a stub (if it
  // is optimized), or calling to an I2C
  bool is_call_to_interpreted = false;
#ifdef COMPILER1
  if (!is_optimized()) {
    is_call_to_interpreted =
      Runtime1::blob_for(Runtime1::interpreter_entries_id)->contains(ic_destination());
  } else {
    // Check if we are calling into our own codeblob (i.e., to a stub)
    CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
    is_call_to_interpreted = cb->contains(ic_destination());
  }
#else
  if (!is_optimized()) {
    CodeBlob* cb = CodeCache::find_blob(ic_destination());  
    is_call_to_interpreted = (cb != NULL && cb->is_c2i_adapter());
  } else {
    // Check if we are calling into our own codeblob (i.e., to a stub)
    CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
    is_call_to_interpreted = cb->contains(ic_destination());
  }
#endif // COMPILER1
  assert(!is_call_to_interpreted || is_optimized() || (cached_oop() != NULL && cached_oop()->is_compiledICHolder()), "sanity check");
  return is_call_to_interpreted;
}
void CompiledIC::internal_set_ic_destination(address entry_point, bool is_icstub, void* cache, bool is_icholder) {
  assert(entry_point != NULL, "must set legal entry point");
  assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  assert (!is_optimized() || cache == NULL, "an optimized virtual call does not have a cached metadata");
  assert (cache == NULL || cache != (Metadata*)badOopVal, "invalid metadata");

  assert(!is_icholder || is_icholder_entry(entry_point), "must be");

  // Don't use ic_destination for this test since that forwards
  // through ICBuffer instead of returning the actual current state of
  // the CompiledIC.
  if (is_icholder_entry(_ic_call->destination())) {
    // When patching for the ICStub case the cached value isn't
    // overwritten until the ICStub copied into the CompiledIC during
    // the next safepoint.  Make sure that the CompiledICHolder* is
    // marked for release at this point since it won't be identifiable
    // once the entry point is overwritten.
    InlineCacheBuffer::queue_for_release((CompiledICHolder*)_value->data());
  }

  if (TraceCompiledIC) {
    tty->print("  ");
    print_compiled_ic();
    tty->print(" changing destination to " INTPTR_FORMAT, p2i(entry_point));
    if (!is_optimized()) {
      tty->print(" changing cached %s to " INTPTR_FORMAT, is_icholder ? "icholder" : "metadata", p2i((address)cache));
    }
    if (is_icstub) {
      tty->print(" (icstub)");
    }
    tty->cr();
  }

  {
    MutexLockerEx pl(SafepointSynchronize::is_at_safepoint() ? NULL : Patching_lock, Mutex::_no_safepoint_check_flag);
#ifdef ASSERT
    CodeBlob* cb = CodeCache::find_blob_unsafe(_ic_call);
    assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
#endif
     _ic_call->set_destination_mt_safe(entry_point);
  }

  if (is_optimized() || is_icstub) {
    // Optimized call sites don't have a cache value and ICStub call
    // sites only change the entry point.  Changing the value in that
    // case could lead to MT safety issues.
    assert(cache == NULL, "must be null");
    return;
  }

  if (cache == NULL)  cache = (void*)Universe::non_oop_word();

  _value->set_data((intptr_t)cache);
}
Exemplo n.º 3
0
void CompiledIC::set_cached_oop(oop cache) {
  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");  
  assert (!is_optimized(), "an optimized virtual call does not have a cached oop");
  assert (cache == NULL || cache != badOop, "invalid oop");  

  if (TraceCompiledIC) {
    tty->print("  ");
    print_compiled_ic();
    tty->print_cr(" changing oop to " INTPTR_FORMAT, cache);
  }

  if (cache == NULL)  cache = (oop)Universe::non_oop_word();
  
  *_oop_addr = cache;
  // fix up the relocations
  RelocIterator iter = _oops;
  while (iter.next()) {
    if (iter.type() == relocInfo::oop_type) {
      oop_Relocation* r = iter.oop_reloc();
      if (r->oop_addr() == _oop_addr)
	r->fix_oop_relocation();
    }
  }
  return;
}
Exemplo n.º 4
0
// true if destination is megamorphic stub
bool CompiledIC::is_megamorphic() const {  
  assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  assert(!is_optimized(), "an optimized call cannot be megamorphic");
  
  // Cannot rely on cached_oop. It is either an interface or a method.
  return VtableStubs::is_entry_point(ic_destination());
}
bool CompiledIC::is_call_to_interpreted() const {
  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  // Call to interpreter if destination is either calling to a stub (if it
  // is optimized), or calling to an I2C blob
  bool is_call_to_interpreted = false;
  if (!is_optimized()) {
    // must use unsafe because the destination can be a zombie (and we're cleaning)
    // and the print_compiled_ic code wants to know if site (in the non-zombie)
    // is to the interpreter.
    CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
    is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
    assert(!is_call_to_interpreted || (is_icholder_call() && cached_icholder() != NULL), "sanity check");
  } else {
    // Check if we are calling into our own codeblob (i.e., to a stub)
    CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
    address dest = ic_destination();
#ifdef ASSERT
    {
      CodeBlob* db = CodeCache::find_blob_unsafe(dest);
      assert(!db->is_adapter_blob(), "must use stub!");
    }
#endif /* ASSERT */
    is_call_to_interpreted = cb->contains(dest);
  }
  return is_call_to_interpreted;
}
Exemplo n.º 6
0
bool CompiledIC::is_call_to_compiled() const {
  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");

  // Use unsafe, since an inline cache might point to a zombie method. However, the zombie
  // method is guaranteed to still exist, since we only remove methods after all inline caches
  // has been cleaned up
  CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
  bool is_monomorphic = (cb != NULL && cb->is_nmethod());
  // Check that the cached_oop is a klass for non-optimized monomorphic calls
  // This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
  // for calling directly to vep without using the inline cache (i.e., cached_oop == NULL)
#ifdef ASSERT
#ifdef TIERED
  CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
  bool is_c1_method = caller->is_compiled_by_c1();
#else
#ifdef COMPILER1
  bool is_c1_method = true;
#else
  bool is_c1_method = false;
#endif // COMPILER1
#endif // TIERED
  assert( is_c1_method ||
         !is_monomorphic ||
         is_optimized() ||
         (cached_oop() != NULL && cached_oop()->is_klass()), "sanity check");
#endif // ASSERT
  return is_monomorphic;
}
void CompiledIC::verify() {
  // make sure code pattern is actually a call imm32 instruction
  _ic_call->verify();
  if (os::is_MP()) {
    _ic_call->verify_alignment();
  }
  assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
          || is_optimized() || is_megamorphic(), "sanity check");
}
bool CompiledIC::is_clean() const {
  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  bool is_clean = false;
  address dest = ic_destination();
  is_clean = dest == SharedRuntime::get_resolve_opt_virtual_call_stub() ||
             dest == SharedRuntime::get_resolve_virtual_call_stub();
  assert(!is_clean || is_optimized() || cached_value() == NULL, "sanity check");
  return is_clean;
}
Exemplo n.º 9
0
void CompiledIC::set_to_clean() {  
  assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
  if (TraceInlineCacheClearing || TraceICs) {
    tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", instruction_address());
    print();
  }

  address entry;
#ifdef COMPILER1
  entry = is_optimized() ? 
    Runtime1::entry_for(Runtime1::resolve_invoke_opt_virtual_id) :
    Runtime1::entry_for(Runtime1::resolve_invokevirtual_id);
#else
  entry =
    is_optimized()
    ? OptoRuntime::resolve_opt_virtual_call_Java()
    : OptoRuntime::resolve_virtual_call_Java();
#endif

  // A zombie transition will always be safe, since the oop has already been set to NULL, so
  // we only need to patch the destination
  bool safe_transition = is_optimized() || SafepointSynchronize::is_at_safepoint();

  if (safe_transition) {
    if (!is_optimized()) set_cached_oop(NULL);  
    // Kill any leftover stub we might have too
    if (is_in_transition_state()) {
      ICStub* old_stub = ICStub_from_destination_address(stub_address());
      old_stub->clear();
    }
    set_ic_destination(entry); 
  } else {
    // Unsafe transition - create stub. 
    InlineCacheBuffer::create_transition_stub(this, NULL, entry);
  }
  // We can't check this anymore. With lazy deopt we could have already
  // cleaned this IC entry before we even return. This is possible if
  // we ran out of space in the inline cache buffer trying to do the
  // set_next and we safepointed to free up space. This is a benign
  // race because the IC entry was complete when we safepointed so
  // cleaning it immediately is harmless.
  // assert(is_clean(), "sanity check");
}
void CompiledIC::set_to_clean(bool in_use) {
  assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
  if (TraceInlineCacheClearing || TraceICs) {
    tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", p2i(instruction_address()));
    print();
  }

  address entry;
  if (is_optimized()) {
    entry = SharedRuntime::get_resolve_opt_virtual_call_stub();
  } else {
    entry = SharedRuntime::get_resolve_virtual_call_stub();
  }

  // A zombie transition will always be safe, since the metadata has already been set to NULL, so
  // we only need to patch the destination
  bool safe_transition = !in_use || is_optimized() || SafepointSynchronize::is_at_safepoint();

  if (safe_transition) {
    // Kill any leftover stub we might have too
    clear_ic_stub();
    if (is_optimized()) {
      set_ic_destination(entry);
    } else {
      set_ic_destination_and_value(entry, (void*)NULL);
    }
  } else {
    // Unsafe transition - create stub.
    InlineCacheBuffer::create_transition_stub(this, NULL, entry);
  }
  // We can't check this anymore. With lazy deopt we could have already
  // cleaned this IC entry before we even return. This is possible if
  // we ran out of space in the inline cache buffer trying to do the
  // set_next and we safepointed to free up space. This is a benign
  // race because the IC entry was complete when we safepointed so
  // cleaning it immediately is harmless.
  // assert(is_clean(), "sanity check");
}
bool CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
  assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
  assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");

  address entry;
  if (call_info->call_kind() == CallInfo::itable_call) {
    assert(bytecode == Bytecodes::_invokeinterface, "");
    int itable_index = call_info->itable_index();
    entry = VtableStubs::find_itable_stub(itable_index);
    if (entry == false) {
      return false;
    }
#ifdef ASSERT
    int index = call_info->resolved_method()->itable_index();
    assert(index == itable_index, "CallInfo pre-computes this");
    InstanceKlass* k = call_info->resolved_method()->method_holder();
    assert(k->verify_itable_index(itable_index), "sanity check");
#endif //ASSERT
    CompiledICHolder* holder = new CompiledICHolder(call_info->resolved_method()->method_holder(),
                                                    call_info->resolved_klass()(), false);
    holder->claim();
    InlineCacheBuffer::create_transition_stub(this, holder, entry);
  } else {
    assert(call_info->call_kind() == CallInfo::vtable_call, "either itable or vtable");
    // Can be different than selected_method->vtable_index(), due to package-private etc.
    int vtable_index = call_info->vtable_index();
    assert(call_info->resolved_klass()->verify_vtable_index(vtable_index), "sanity check");
    entry = VtableStubs::find_vtable_stub(vtable_index);
    if (entry == NULL) {
      return false;
    }
    InlineCacheBuffer::create_transition_stub(this, NULL, entry);
  }

  if (TraceICs) {
    ResourceMark rm;
    tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
                   p2i(instruction_address()), call_info->selected_method()->print_value_string(), p2i(entry));
  }

  // We can't check this anymore. With lazy deopt we could have already
  // cleaned this IC entry before we even return. This is possible if
  // we ran out of space in the inline cache buffer trying to do the
  // set_next and we safepointed to free up space. This is a benign
  // race because the IC entry was complete when we safepointed so
  // cleaning it immediately is harmless.
  // assert(is_megamorphic(), "sanity check");
  return true;
}
Exemplo n.º 12
0
oop CompiledIC::cached_oop() const {
  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  assert (!is_optimized(), "an optimized virtual call does not have a cached oop");

  if (!is_in_transition_state()) {    
    oop data = *_oop_addr;
    // If we let the oop value here be initialized to zero...
    assert(data != NULL || Universe::non_oop_word() == NULL,
	   "no raw nulls in CompiledIC oops, because of patching races");
    return (data == (oop)Universe::non_oop_word()) ? NULL : data;    
  } else {
    return InlineCacheBuffer::cached_oop_for((CompiledIC *)this);
  }  
}
Exemplo n.º 13
0
bool CompiledIC::is_clean() const {
  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  bool is_clean = false;
  address dest = ic_destination();
#ifdef COMPILER1
  is_clean = 
         dest == Runtime1::entry_for(Runtime1::resolve_invokevirtual_id) ||
         dest == Runtime1::entry_for(Runtime1::resolve_invoke_opt_virtual_id);
#else
  is_clean = dest == OptoRuntime::resolve_virtual_call_Java() ||
             dest == OptoRuntime::resolve_opt_virtual_call_Java();
#endif
  assert(!is_clean || is_optimized() || cached_oop() == NULL, "sanity check");
  return is_clean;
}
Exemplo n.º 14
0
void CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
  methodHandle method = call_info->selected_method();
  bool is_invoke_interface = (bytecode == Bytecodes::_invokeinterface && !call_info->has_vtable_index());
  assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  assert(method->is_oop(), "cannot be NULL and must be oop");
  assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
  assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
  
  address entry;
  if (is_invoke_interface) {
    int index = klassItable::compute_itable_index(call_info->resolved_method()());            
    entry = VtableStubs::create_stub(false, index, method());    
    assert(entry != NULL, "entry not computed");
    klassOop k = call_info->resolved_method()->method_holder();
    assert(Klass::cast(k)->is_interface(), "sanity check");
    InlineCacheBuffer::create_transition_stub(this, k, entry);
  } else {
    // Can be different than method->vtable_index(), due to package-private etc.
    int vtable_index = call_info->vtable_index(); 
    entry = VtableStubs::create_stub(true, vtable_index, method());
    InlineCacheBuffer::create_transition_stub(this, method(), entry);
  }
      
  if (TraceICs) {
    ResourceMark rm;
    tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
		   instruction_address(), method->print_value_string(), entry);
  } 

  Events::log("compiledIC " INTPTR_FORMAT " --> megamorphic " INTPTR_FORMAT, this, method());  
  // We can't check this anymore. With lazy deopt we could have already
  // cleaned this IC entry before we even return. This is possible if
  // we ran out of space in the inline cache buffer trying to do the
  // set_next and we safepointed to free up space. This is a benign
  // race because the IC entry was complete when we safepointed so
  // cleaning it immediately is harmless.
  // assert(is_megamorphic(), "sanity check");
}
Exemplo n.º 15
0
bool CompiledIC::is_call_to_compiled() const {
  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");

  // Use unsafe, since an inline cache might point to a zombie method. However, the zombie
  // method is guaranteed to still exist, since we only remove methods after all inline caches
  // has been cleaned up
  CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
  bool is_monomorphic = (cb != NULL && cb->is_nmethod());
  // Check that the cached_value is a klass for non-optimized monomorphic calls
  // This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
  // for calling directly to vep without using the inline cache (i.e., cached_value == NULL).
  // For JVMCI this occurs because CHA is only used to improve inlining so call sites which could be optimized
  // virtuals because there are no currently loaded subclasses of a type are left as virtual call sites.
#ifdef ASSERT
  CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
  bool is_c1_or_jvmci_method = caller->is_compiled_by_c1() || caller->is_compiled_by_jvmci();
  assert( is_c1_or_jvmci_method ||
         !is_monomorphic ||
         is_optimized() ||
         !caller->is_alive() ||
         (cached_metadata() != NULL && cached_metadata()->is_klass()), "sanity check");
#endif // ASSERT
  return is_monomorphic;
}
void CompiledIC::print_compiled_ic() {
  tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT " cached_value " INTPTR_FORMAT,
             p2i(instruction_address()), is_call_to_interpreted() ? "interpreted " : "", p2i(ic_destination()), p2i(is_optimized() ? NULL : cached_value()));
}
void CompiledIC::set_to_monomorphic(CompiledICInfo& info) {
  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
  // Updating a cache to the wrong entry can cause bugs that are very hard
  // to track down - if cache entry gets invalid - we just clean it. In
  // this way it is always the same code path that is responsible for
  // updating and resolving an inline cache
  //
  // The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
  // callsites. In addition ic_miss code will update a site to monomorphic if it determines
  // that an monomorphic call to the interpreter can now be monomorphic to compiled code.
  //
  // In both of these cases the only thing being modifed is the jump/call target and these
  // transitions are mt_safe

  Thread *thread = Thread::current();
  if (info.to_interpreter()) {
    // Call to interpreter
    if (info.is_optimized() && is_optimized()) {
       assert(is_clean(), "unsafe IC path");
       MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
      // the call analysis (callee structure) specifies that the call is optimized
      // (either because of CHA or the static target is final)
      // At code generation time, this call has been emitted as static call
      // Call via stub
      assert(info.cached_metadata() != NULL && info.cached_metadata()->is_method(), "sanity check");
      CompiledStaticCall* csc = compiledStaticCall_at(instruction_address());
      methodHandle method (thread, (Method*)info.cached_metadata());
      csc->set_to_interpreted(method, info.entry());
      if (TraceICs) {
         ResourceMark rm(thread);
         tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter: %s",
           p2i(instruction_address()),
           method->print_value_string());
      }
    } else {
      // Call via method-klass-holder
      InlineCacheBuffer::create_transition_stub(this, info.claim_cached_icholder(), info.entry());
      if (TraceICs) {
         ResourceMark rm(thread);
         tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via icholder ", p2i(instruction_address()));
      }
    }
  } else {
    // Call to compiled code
    bool static_bound = info.is_optimized() || (info.cached_metadata() == NULL);
#ifdef ASSERT
    CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
    assert (cb->is_nmethod(), "must be compiled!");
#endif /* ASSERT */

    // This is MT safe if we come from a clean-cache and go through a
    // non-verified entry point
    bool safe = SafepointSynchronize::is_at_safepoint() ||
                (!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));

    if (!safe) {
      InlineCacheBuffer::create_transition_stub(this, info.cached_metadata(), info.entry());
    } else {
      if (is_optimized()) {
      set_ic_destination(info.entry());
      } else {
        set_ic_destination_and_value(info.entry(), info.cached_metadata());
      }
    }

    if (TraceICs) {
      ResourceMark rm(thread);
      assert(info.cached_metadata() == NULL || info.cached_metadata()->is_klass(), "must be");
      tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass) %s: %s",
        p2i(instruction_address()),
        ((Klass*)info.cached_metadata())->print_value_string(),
        (safe) ? "" : "via stub");
    }
  }
  // We can't check this anymore. With lazy deopt we could have already
  // cleaned this IC entry before we even return. This is possible if
  // we ran out of space in the inline cache buffer trying to do the
  // set_next and we safepointed to free up space. This is a benign
  // race because the IC entry was complete when we safepointed so
  // cleaning it immediately is harmless.
  // assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
}