// for calculating opacity - remember that you might change the last term of this... double lj(double lx, double lv, double lAx){ double lE_electron = 0.5*(leps(lx)+lv); gamma2 = exp(2*lE_electron-2*lme-4*lc); lbeta = 0.5*log(1-(1/gamma2)); constants = log(2.0)+lsigma_t-log(3.0)-lpi-lmu0-(2.0*lme)-(3.0*lc); return constants+(2.0*lbeta)+(2.0*lB(lx))+leps(lx)+lAx+((1.0-alpha)*lEe(lx,lv))-(2.0*lR(lx))-(exp(lEe(lx,lv)-lEmax)); }
void PanelButton::paintEvent(QPaintEvent * e){ QPainter p(this); p.setRenderHint(p.Antialiasing); QColor lB(223,228,235); QColor lB2(203,208,215); QLinearGradient lg(0,0,0,height()); lg.setColorAt(0,lB); lg.setColorAt(1,lB2); p.setBrush(lg); p.setPen(Qt::transparent); p.drawRect(0,0,width()-5,height()); QColor lB3(183,188,195); p.setPen(lB3); p.drawLine(0,this->height(),this->width()-5,this->height()); if (count()>0) { QColor fc(60,60,60); p.setPen(fc); QFont font; //font.setBold(true); font.setFamily("URW Gothic L"); p.setFont(font); QRect trect(0,0,width()-5,height()); p.drawText(trect,Qt::AlignCenter,this->itemText(currentIndex())); } e->accept(); }
// the quantity epsilon for finding the electron energy that radiates at v in slice x double leps(double lx){ return log(4.0)+lpi+(3.0*lme)+(4.0*lc)-(log(3.0)+le_charge+lB(lx)); }
void addNuisanceWithToys(std::string iFileName,std::string iChannel,std::string iBkg,std::string iEnergy,std::string iName,std::string iDir,bool iRebin=true,bool iVarBin=false,int iFitModel=1,int iFitModel1=1,double iFirst=150,double iLast=1500,std::string iSigMass="800",double iSigScale=0.1,int iNToys=1000) { std::cout << "======> " << iDir << "/" << iBkg << " -- " << iFileName << std::endl; if(iVarBin) std::cout << "option not implemented yet!"; if(iVarBin) return; //double lFirst = 200; //double lLast = 1500; double lFirst = iFirst; double lLast = iLast; std::cout << "===================================================================================================================================================" <<std::endl; std::cout << "Using Initial fit model: " << iFitModel << ", fitting range: " << iFirst << "-" << iLast << " , using alternative fit model: " << iFitModel1 << std::endl; std::cout << "===================================================================================================================================================" <<std::endl; TFile *lFile = new TFile(iFileName.c_str()); TH1F *lH0 = (TH1F*) lFile->Get((iDir+"/"+iBkg).c_str()); TH1F *lData = (TH1F*) lFile->Get((iDir+"/data_obs").c_str()); TH1F *lSig = 0; // for now, use bbH signal for testing in b-tag and ggH in no-btag if(iDir.find("_btag") != std::string::npos) lSig = (TH1F*)lFile->Get((iDir+"/bbH"+iSigMass+"_fine_binning").c_str()); else lSig = (TH1F*)lFile->Get((iDir+"/ggH"+iSigMass+"_fine_binning").c_str()); TH1F *lH0Clone = (TH1F*)lH0->Clone("lH0Clone"); // binning too fine as of now? start by rebinning TH1F *lDataClone = (TH1F*)lData->Clone("lDataClone"); TH1F *lSigClone = (TH1F*)lSig->Clone("lSigClone"); // lH0Clone->Rebin(2); // lDataClone->Rebin(2); // lSigClone->Rebin(2); lSig->Rebin(10); //Define the fit function RooRealVar lM("m","m" ,0,5000); lM.setRange(lFirst,lLast); RooRealVar lA("a","a" ,50, 0.1,200); RooRealVar lB("b","b" ,0.0 , -10.5,10.5); RooRealVar lA1("a1","a1" ,50, 0.1,1000); RooRealVar lB1("b1","b1" ,0.0 , -10.5,10.5); RooDataHist *pH0 = new RooDataHist("Data","Data" ,RooArgList(lM),lH0); double lNB0 = lH0->Integral(lH0->FindBin(lFirst),lH0->FindBin(lLast)); double lNSig0 = lSig->Integral(lSig->FindBin(lFirst),lSig->FindBin(lLast)); //lNB0=500; // lNSig0=500; lSig->Scale(iSigScale*lNB0/lNSig0); // scale signal to iSigScale*(Background yield), could try other options lNSig0 = lSig->Integral(lSig->FindBin(lFirst),lSig->FindBin(lLast)); // readjust norm of signal hist //Generate the "default" fit model RooGenericPdf *lFit = 0; lFit = new RooGenericPdf("genPdf","exp(-m/(a+b*m))",RooArgList(lM,lA,lB)); if(iFitModel == 1) lFit = new RooGenericPdf("genPdf","exp(-a*pow(m,b))",RooArgList(lM,lA,lB)); if(iFitModel == 1) {lA.setVal(0.3); lB.setVal(0.5);} if(iFitModel == 2) lFit = new RooGenericPdf("genPdf","a*exp(b*m)",RooArgList(lM,lA,lB)); if(iFitModel == 2) {lA.setVal(0.01); lA.setRange(0,10); } if(iFitModel == 3) lFit = new RooGenericPdf("genPdf","a/pow(m,b)",RooArgList(lM,lA,lB)); // Generate the alternative model RooGenericPdf *lFit1 = 0; lFit1 = new RooGenericPdf("genPdf","exp(-m/(a1+b1*m))",RooArgList(lM,lA1,lB1)); if(iFitModel1 == 1) lFit1 = new RooGenericPdf("genPdf","exp(-a1*pow(m,b1))",RooArgList(lM,lA1,lB1)); if(iFitModel1 == 1) {lA1.setVal(0.3); lB1.setVal(0.5);} if(iFitModel1 == 2) lFit1 = new RooGenericPdf("genPdf","a1*exp(b1*m)",RooArgList(lM,lA1,lB1)); if(iFitModel1 == 2) {lA1.setVal(0.01); lA1.setRange(0,10); } if(iFitModel1 == 3) lFit1 = new RooGenericPdf("genPdf","a1/pow(m,b1)",RooArgList(lM,lA1,lB1)); //============================================================================================================================================= //Perform the tail fit and generate the shift up and down histograms //============================================================================================================================================= RooFitResult *lRFit = 0; lRFit = lFit->fitTo(*pH0,RooFit::Save(kTRUE),RooFit::Range(lFirst,lLast),RooFit::Strategy(0)); TMatrixDSym lCovMatrix = lRFit->covarianceMatrix(); TMatrixD lEigVecs(2,2); lEigVecs = TMatrixDSymEigen(lCovMatrix).GetEigenVectors(); TVectorD lEigVals(2); lEigVals = TMatrixDSymEigen(lCovMatrix).GetEigenValues(); cout << " Ve---> " << lEigVecs(0,0) << " -- " << lEigVecs(1,0) << " -- " << lEigVecs(0,1) << " -- " << lEigVecs(1,1) << endl; cout << " Co---> " << lCovMatrix(0,0) << " -- " << lCovMatrix(1,0) << " -- " << lCovMatrix(0,1) << " -- " << lCovMatrix(1,1) << endl; double lACentral = lA.getVal(); double lBCentral = lB.getVal(); lEigVals(0) = sqrt(lEigVals(0)); lEigVals(1) = sqrt(lEigVals(1)); cout << "===> " << lEigVals(0) << " -- " << lEigVals(1) << endl; TH1F* lH = (TH1F*) lFit->createHistogram("fit" ,lM,RooFit::Binning(lH0->GetNbinsX(),lH0->GetXaxis()->GetXmin(),lH0->GetXaxis()->GetXmax())); lA.setVal(lACentral + lEigVals(0)*lEigVecs(0,0)); lB.setVal(lBCentral + lEigVals(0)*lEigVecs(1,0)); TH1F* lHUp = (TH1F*) lFit->createHistogram("Up" ,lM,RooFit::Binning(lH0->GetNbinsX(),lH0->GetXaxis()->GetXmin(),lH0->GetXaxis()->GetXmax())); lA.setVal(lACentral - lEigVals(0)*lEigVecs(0,0)); lB.setVal(lBCentral - lEigVals(0)*lEigVecs(1,0)); TH1F* lHDown = (TH1F*) lFit->createHistogram("Down",lM,RooFit::Binning(lH0->GetNbinsX(),lH0->GetXaxis()->GetXmin(),lH0->GetXaxis()->GetXmax())); lA.setVal(lACentral + lEigVals(1)*lEigVecs(0,1)); lB.setVal(lBCentral + lEigVals(1)*lEigVecs(1,1)); TH1F* lHUp1 = (TH1F*) lFit->createHistogram("Up1",lM,RooFit::Binning(lH0->GetNbinsX(),lH0->GetXaxis()->GetXmin(),lH0->GetXaxis()->GetXmax())); lA.setVal(lACentral - lEigVals(1)*lEigVecs(0,1)); lB.setVal(lBCentral - lEigVals(1)*lEigVecs(1,1)); TH1F* lHDown1 = (TH1F*) lFit->createHistogram("Down1",lM,RooFit::Binning(lH0->GetNbinsX(),lH0->GetXaxis()->GetXmin(),lH0->GetXaxis()->GetXmax())); std::string lNuisance1 = iBkg+"_"+"CMS_"+iName+"1_" + iChannel + "_" + iEnergy; std::string lNuisance2 = iBkg+"_"+"CMS_"+iName+"2_" + iChannel + "_" + iEnergy; lHUp = merge(lNuisance1 + "Up" ,lFirst,lH0,lHUp); lHDown = merge(lNuisance1 + "Down" ,lFirst,lH0,lHDown); lHUp1 = merge(lNuisance2 + "Up" ,lFirst,lH0,lHUp1); lHDown1 = merge(lNuisance2 + "Down" ,lFirst,lH0,lHDown1); lH = merge(lH0->GetName() ,lFirst,lH0,lH); //============================================================================================================================================= //============================================================================================================================================= //Set the variables A and B to the final central values from the tail fit lA.setVal(lACentral); lB.setVal(lBCentral); // lA.removeRange(); // lB.removeRange(); //Generate the background pdf corresponding to the final result of the tail fit RooGenericPdf *lFitFinal = 0; lFitFinal = new RooGenericPdf("genPdf","exp(-m/(a+b*m))",RooArgList(lM,lA,lB)); if(iFitModel == 1) lFitFinal = new RooGenericPdf("genPdf","exp(-a*pow(m,b))",RooArgList(lM,lA,lB)); if(iFitModel == 2) lFitFinal = new RooGenericPdf("genPdf","a*exp(b*m)",RooArgList(lM,lA,lB)); if(iFitModel == 3) lFitFinal = new RooGenericPdf("genPdf","a/pow(m,b)",RooArgList(lM,lA,lB)); //============================================================================================================================================= //Perform the tail fit with the alternative fit function (once initially, before allowing tail fit to float in toy fit). //============================================================================================================================================= RooFitResult *lRFit1 = 0; //lRFit1=lFit1->fitTo(*pH0,RooFit::Save(kTRUE),RooFit::Range(iFirst,iLast),RooFit::Strategy(0)); lRFit1=lFit1->fitTo(*pH0,RooFit::Save(kTRUE),RooFit::Range(200,1500),RooFit::Strategy(0)); //Generate the background pdf corresponding to the result of the alternative tail fit RooGenericPdf *lFit1Final = 0; lFit1Final = new RooGenericPdf("genPdf","exp(-m/(a1+b1*m))",RooArgList(lM,lA1,lB1)); if(iFitModel1 == 1) lFit1Final = new RooGenericPdf("genPdf","exp(-a1*pow(m,b1))",RooArgList(lM,lA1,lB1)); if(iFitModel1 == 2) lFit1Final = new RooGenericPdf("genPdf","a1*exp(b1*m)",RooArgList(lM,lA1,lB1)); if(iFitModel1 == 3) lFit1Final = new RooGenericPdf("genPdf","a1/pow(m,b1)",RooArgList(lM,lA1,lB1)); // lA1.removeRange(); // lB1.removeRange(); //============================================================================================================================================= //Define RooRealVar for the normalization of the signal and background, starting from the initial integral of the input histograms lM.setRange(300,1500); RooRealVar lNB("nb","nb",lNB0,0,10000); RooRealVar lNSig("nsig","nsig",lNSig0,-1000,1000); //Define a PDF for the signal histogram lSig RooDataHist *pS = new RooDataHist("sigH","sigH",RooArgList(lM),lSig); RooHistPdf *lSPdf = new RooHistPdf ("sigPdf","sigPdf",lM,*pS); //Define generator and fit functions for the RooMCStudy RooAddPdf *lGenMod = new RooAddPdf ("genmod","genmod",RooArgList(*lFitFinal ,*lSPdf),RooArgList(lNB,lNSig)); RooAddPdf *lFitMod = new RooAddPdf ("fitmod","fitmod",RooArgList(*lFit1Final,*lSPdf),RooArgList(lNB,lNSig)); //Generate plot of the signal and background models going into the toy generation RooPlot* plot=lM.frame(); lGenMod->plotOn(plot); lGenMod->plotOn(plot,RooFit::Components(*lSPdf),RooFit::LineColor(2)); TCanvas* lC11 = new TCanvas("pdf","pdf",600,600) ; lC11->cd(); plot->Draw(); lC11->SaveAs(("SBModel_"+iBkg+"_" + iDir + "_" + iEnergy+".pdf").c_str()); std::cout << "===================================================================================================================================================" <<std::endl; std::cout << "FIT PARAMETERS BEFORE ROOMCSTUDY: lA: " << lA.getVal() << " lB: " << lB.getVal() << " lA1: " << lA1.getVal() << " lB1: " << lB1.getVal() << std::endl; std::cout << "===================================================================================================================================================" <<std::endl; RooMCStudy *lToy = new RooMCStudy(*lGenMod,lM,RooFit::FitModel(*lFitMod),RooFit::Binned(kTRUE),RooFit::Silence(),RooFit::Extended(kTRUE),RooFit::Verbose(kTRUE),RooFit::FitOptions(RooFit::Save(kTRUE),RooFit::Strategy(0))); // Generate and fit iNToys toy samples std::cout << "Number of background events: " << lNB0 << " Number of signal events: " << lNSig0 << " Sum: " << lNB0+lNSig0 << std::endl; //============================================================================================================================================= // Generate and fit toys //============================================================================================================================================= lToy->generateAndFit(iNToys,lNB0+lNSig0,kTRUE); std::cout << "===================================================================================================================================================" <<std::endl; std::cout << "FIT PARAMETERS AFTER ROOMCSTUDY: lA: " << lA.getVal() << " lB: " << lB.getVal() << " lA1: " << lA1.getVal() << " lB1: " << lB1.getVal() << std::endl; std::cout << "===================================================================================================================================================" <<std::endl; //============================================================================================================================================= // Generate plots relevant to the toy fit //============================================================================================================================================= RooPlot* lFrame1 = lToy->plotPull(lNSig,-5,5,100,kTRUE); lFrame1->SetTitle("distribution of pulls on signal yield from toys"); lFrame1->SetXTitle("N_{sig} pull"); TCanvas* lC00 = new TCanvas("pulls","pulls",600,600) ; lC00->cd(); lFrame1->GetYaxis()->SetTitleOffset(1.2); lFrame1->GetXaxis()->SetTitleOffset(1.0); lFrame1->Draw() ; lC00->SaveAs(("sig_pulls_toyfits_"+iBkg+"_" + iDir + "_" + iEnergy+".png").c_str()); RooPlot* lFrame2 = lToy->plotParam(lA1); lFrame2->SetTitle("distribution of values of parameter 1 (a) after toy fit"); lFrame2->SetXTitle("Parameter 1 (a)"); TCanvas* lC01 = new TCanvas("valA","valA",600,600) ; lFrame2->Draw() ; lC01->SaveAs(("valA_toyfits_"+iBkg+"_" + iDir + "_" + iEnergy+".png").c_str()); RooPlot* lFrame3 = lToy->plotParam(lB1); lFrame3->SetTitle("distribution of values of parameter 2 (b) after toy fit"); lFrame3->SetXTitle("Parameter 2 (b)"); TCanvas* lC02 = new TCanvas("valB","valB",600,600) ; lFrame3->Draw() ; lC02->SaveAs(("valB_toyfits_"+iBkg+"_" + iDir + "_" + iEnergy+".png").c_str()); RooPlot* lFrame6 = lToy->plotNLL(0,1000,100); lFrame6->SetTitle("-log(L)"); lFrame6->SetXTitle("-log(L)"); TCanvas* lC05 = new TCanvas("logl","logl",600,600) ; lFrame6->Draw() ; lC05->SaveAs(("logL_toyfits_"+iBkg+"_" + iDir + "_" + iEnergy+".png").c_str()); RooPlot* lFrame7 = lToy->plotParam(lNSig); lFrame7->SetTitle("distribution of values of N_{sig} after toy fit"); lFrame7->SetXTitle("N_{sig}"); TCanvas* lC06 = new TCanvas("Nsig","Nsig",600,600) ; lFrame7->Draw() ; lC06->SaveAs(("NSig_toyfits_"+iBkg+"_" + iDir + "_" + iEnergy+".png").c_str()); RooPlot* lFrame8 = lToy->plotParam(lNB); lFrame8->SetTitle("distribution of values of N_{bkg} after toy fit"); lFrame8->SetXTitle("N_{bkg}"); TCanvas* lC07 = new TCanvas("Nbkg","Nbkg",600,600) ; lFrame8->Draw() ; lC07->SaveAs(("Nbkg_toyfits_"+iBkg+"_" + iDir + "_" + iEnergy+".png").c_str()); if(iRebin) { const int lNBins = lData->GetNbinsX(); double *lAxis = getAxis(lData); lH0 = rebin(lH0 ,lNBins,lAxis); lH = rebin(lH ,lNBins,lAxis); lHUp = rebin(lHUp ,lNBins,lAxis); lHDown = rebin(lHDown ,lNBins,lAxis); lHUp1 = rebin(lHUp1 ,lNBins,lAxis); lHDown1 = rebin(lHDown1,lNBins,lAxis); } // we dont need this bin errors since we do not use them (fit tails replaces bin-by-bin error!), therefore i set all errors to 0, this also saves us from modifying the add_bbb_error.py script in which I otherwise would have to include a option for adding bbb only in specific ranges int lMergeBin = lH->GetXaxis()->FindBin(iFirst); for(int i0 = lMergeBin; i0 < lH->GetNbinsX()+1; i0++){ lH->SetBinError (i0,0); lHUp->SetBinError (i0,0); lHDown->SetBinError (i0,0); lHUp1->SetBinError (i0,0); lHDown1->SetBinError (i0,0); } TFile *lOutFile =new TFile("Output.root","RECREATE"); cloneFile(lOutFile,lFile,iDir+"/"+iBkg); lOutFile->cd(iDir.c_str()); lH ->Write(); lHUp ->Write(); lHDown ->Write(); lHUp1 ->Write(); lHDown1->Write(); // Debug Plots lH0->SetStats(0); lH->SetStats(0); lHUp->SetStats(0); lHDown->SetStats(0); lHUp1->SetStats(0); lHDown1->SetStats(0); lH0 ->SetLineWidth(1); lH0->SetMarkerStyle(kFullCircle); lH ->SetLineColor(kGreen); lHUp ->SetLineColor(kRed); lHDown ->SetLineColor(kRed); lHUp1 ->SetLineColor(kBlue); lHDown1->SetLineColor(kBlue); TCanvas *lC0 = new TCanvas("Can","Can",800,600); lC0->Divide(1,2); lC0->cd(); lC0->cd(1)->SetPad(0,0.2,1.0,1.0); gPad->SetLeftMargin(0.2) ; lH0->Draw(); lH ->Draw("hist sames"); lHUp ->Draw("hist sames"); lHDown ->Draw("hist sames"); lHUp1 ->Draw("hist sames"); lHDown1->Draw("hist sames"); gPad->SetLogy(); TLegend* leg1; /// setup the CMS Preliminary leg1 = new TLegend(0.7, 0.80, 1, 1); leg1->SetBorderSize( 0 ); leg1->SetFillStyle ( 1001 ); leg1->SetFillColor (kWhite); leg1->AddEntry( lH0 , "orignal", "PL" ); leg1->AddEntry( lH , "cental fit", "L" ); leg1->AddEntry( lHUp , "shift1 up", "L" ); leg1->AddEntry( lHDown , "shift1 down", "L" ); leg1->AddEntry( lHUp1 , "shift2 up", "L" ); leg1->AddEntry( lHDown1 , "shift2 down", "L" ); leg1->Draw("same"); lC0->cd(2)->SetPad(0,0,1.0,0.2); gPad->SetLeftMargin(0.2) ; drawDifference(lH0,lH,lHUp,lHDown,lHUp1,lHDown1); lH0->SetStats(0); lC0->Update(); lC0->SaveAs((iBkg+"_"+"CMS_"+iName+"1_" + iDir + "_" + iEnergy+".png").c_str()); //lFile->Close(); return; }
void addNuisance(std::string iFileName,std::string iChannel,std::string iBkg,std::string iEnergy,std::string iName,std::string iDir,bool iRebin=true,bool iVarBin=false,int iFitModel=1,double iFirst=150,double iLast=1500) { std::cout << "======> " << iDir << "/" << iBkg << " -- " << iFileName << std::endl; if(iVarBin) addVarBinNuisance(iFileName,iChannel,iBkg,iEnergy,iName,iDir,iRebin,iFitModel,iFirst,iLast); if(iVarBin) return; TFile *lFile = new TFile(iFileName.c_str()); TH1F *lH0 = (TH1F*) lFile->Get((iDir+"/"+iBkg).c_str()); TH1F *lData = (TH1F*) lFile->Get((iDir+"/data_obs").c_str()); //Define the fit function RooRealVar lM("m","m" ,0,5000); //lM.setBinning(lBinning); RooRealVar lA("a","a" ,50, 0.1,100); RooRealVar lB("b","b" ,0.0 , -10.5,10.5); //lB.setConstant(kTRUE); RooDataHist *pH0 = new RooDataHist("Data","Data" ,RooArgList(lM),lH0); RooGenericPdf *lFit = 0; lFit = new RooGenericPdf("genPdf","exp(-m/(a+b*m))",RooArgList(lM,lA,lB)); if(iFitModel == 1) lFit = new RooGenericPdf("genPdf","exp(-a*pow(m,b))",RooArgList(lM,lA,lB)); if(iFitModel == 1) {lA.setVal(0.3); lB.setVal(0.5);} if(iFitModel == 2) lFit = new RooGenericPdf("genPdf","a*exp(b*m)",RooArgList(lM,lA,lB)); if(iFitModel == 3) lFit = new RooGenericPdf("genPdf","a/pow(m,b)",RooArgList(lM,lA,lB)); RooFitResult *lRFit = 0; double lFirst = iFirst; double lLast = iLast; //lRFit = lFit->chi2FitTo(*pH0,RooFit::Save(kTRUE),RooFit::Range(lFirst,lLast)); lRFit = lFit->fitTo(*pH0,RooFit::Save(kTRUE),RooFit::Range(lFirst,lLast),RooFit::Strategy(0)); TMatrixDSym lCovMatrix = lRFit->covarianceMatrix(); TMatrixD lEigVecs(2,2); lEigVecs = TMatrixDSymEigen(lCovMatrix).GetEigenVectors(); TVectorD lEigVals(2); lEigVals = TMatrixDSymEigen(lCovMatrix).GetEigenValues(); cout << " Ve---> " << lEigVecs(0,0) << " -- " << lEigVecs(1,0) << " -- " << lEigVecs(0,1) << " -- " << lEigVecs(1,1) << endl; cout << " Co---> " << lCovMatrix(0,0) << " -- " << lCovMatrix(1,0) << " -- " << lCovMatrix(0,1) << " -- " << lCovMatrix(1,1) << endl; double lACentral = lA.getVal(); double lBCentral = lB.getVal(); lEigVals(0) = sqrt(lEigVals(0)); lEigVals(1) = sqrt(lEigVals(1)); cout << "===> " << lEigVals(0) << " -- " << lEigVals(1) << endl; TH1F* lH = (TH1F*) lFit->createHistogram("fit" ,lM,RooFit::Binning(lH0->GetNbinsX(),lH0->GetXaxis()->GetXmin(),lH0->GetXaxis()->GetXmax())); lA.setVal(lACentral + lEigVals(0)*lEigVecs(0,0)); lB.setVal(lBCentral + lEigVals(0)*lEigVecs(1,0)); TH1F* lHUp = (TH1F*) lFit->createHistogram("Up" ,lM,RooFit::Binning(lH0->GetNbinsX(),lH0->GetXaxis()->GetXmin(),lH0->GetXaxis()->GetXmax())); lA.setVal(lACentral - lEigVals(0)*lEigVecs(0,0)); lB.setVal(lBCentral - lEigVals(0)*lEigVecs(1,0)); TH1F* lHDown = (TH1F*) lFit->createHistogram("Down",lM,RooFit::Binning(lH0->GetNbinsX(),lH0->GetXaxis()->GetXmin(),lH0->GetXaxis()->GetXmax())); lA.setVal(lACentral + lEigVals(1)*lEigVecs(0,1)); lB.setVal(lBCentral + lEigVals(1)*lEigVecs(1,1)); TH1F* lHUp1 = (TH1F*) lFit->createHistogram("Up1",lM,RooFit::Binning(lH0->GetNbinsX(),lH0->GetXaxis()->GetXmin(),lH0->GetXaxis()->GetXmax())); lA.setVal(lACentral - lEigVals(1)*lEigVecs(0,1)); lB.setVal(lBCentral - lEigVals(1)*lEigVecs(1,1)); TH1F* lHDown1 = (TH1F*) lFit->createHistogram("Down1",lM,RooFit::Binning(lH0->GetNbinsX(),lH0->GetXaxis()->GetXmin(),lH0->GetXaxis()->GetXmax())); std::string lNuisance1 = iBkg+"_"+"CMS_"+iName+"1_" + iChannel + "_" + iEnergy; std::string lNuisance2 = iBkg+"_"+"CMS_"+iName+"2_" + iChannel + "_" + iEnergy; lHUp = merge(lNuisance1 + "Up" ,lFirst,lH0,lHUp); lHDown = merge(lNuisance1 + "Down" ,lFirst,lH0,lHDown); lHUp1 = merge(lNuisance2 + "Up" ,lFirst,lH0,lHUp1); lHDown1 = merge(lNuisance2 + "Down" ,lFirst,lH0,lHDown1); lH = merge(lH0->GetName() ,lFirst,lH0,lH); if(iRebin) { const int lNBins = lData->GetNbinsX(); double *lAxis = getAxis(lData); lH0 = rebin(lH0 ,lNBins,lAxis); lH = rebin(lH ,lNBins,lAxis); lHUp = rebin(lHUp ,lNBins,lAxis); lHDown = rebin(lHDown ,lNBins,lAxis); lHUp1 = rebin(lHUp1 ,lNBins,lAxis); lHDown1 = rebin(lHDown1,lNBins,lAxis); } // we dont need this bin errors since we do not use them (fit tails replaces bin-by-bin error!), therefore i set all errors to 0, this also saves us from modifying the add_bbb_error.py script in which I otherwise would have to include a option for adding bbb only in specific ranges int lMergeBin = lH->GetXaxis()->FindBin(iFirst); for(int i0 = lMergeBin; i0 < lH->GetNbinsX()+1; i0++){ lH->SetBinError (i0,0); lHUp->SetBinError (i0,0); lHDown->SetBinError (i0,0); lHUp1->SetBinError (i0,0); lHDown1->SetBinError (i0,0); } TFile *lOutFile =new TFile("Output.root","RECREATE"); cloneFile(lOutFile,lFile,iDir+"/"+iBkg); lOutFile->cd(iDir.c_str()); lH ->Write(); lHUp ->Write(); lHDown ->Write(); lHUp1 ->Write(); lHDown1->Write(); // Debug Plots lH0->SetStats(0); lH->SetStats(0); lHUp->SetStats(0); lHDown->SetStats(0); lHUp1->SetStats(0); lHDown1->SetStats(0); lH0 ->SetLineWidth(1); lH0->SetMarkerStyle(kFullCircle); lH ->SetLineColor(kGreen); lHUp ->SetLineColor(kRed); lHDown ->SetLineColor(kRed); lHUp1 ->SetLineColor(kBlue); lHDown1->SetLineColor(kBlue); TCanvas *lC0 = new TCanvas("Can","Can",800,600); lC0->Divide(1,2); lC0->cd(); lC0->cd(1)->SetPad(0,0.2,1.0,1.0); gPad->SetLeftMargin(0.2) ; lH0->Draw(); lH ->Draw("hist sames"); lHUp ->Draw("hist sames"); lHDown ->Draw("hist sames"); lHUp1 ->Draw("hist sames"); lHDown1->Draw("hist sames"); gPad->SetLogy(); TLegend* leg1; /// setup the CMS Preliminary leg1 = new TLegend(0.7, 0.80, 1, 1); leg1->SetBorderSize( 0 ); leg1->SetFillStyle ( 1001 ); leg1->SetFillColor (kWhite); leg1->AddEntry( lH0 , "orignal", "PL" ); leg1->AddEntry( lH , "cental fit", "L" ); leg1->AddEntry( lHUp , "shift1 up", "L" ); leg1->AddEntry( lHDown , "shift1 down", "L" ); leg1->AddEntry( lHUp1 , "shift2 up", "L" ); leg1->AddEntry( lHDown1 , "shift2 down", "L" ); leg1->Draw("same"); lC0->cd(2)->SetPad(0,0,1.0,0.2); gPad->SetLeftMargin(0.2) ; drawDifference(lH0,lH,lHUp,lHDown,lHUp1,lHDown1); lH0->SetStats(0); lC0->Update(); lC0->SaveAs((iBkg+"_"+"CMS_"+iName+"1_" + iDir + "_" + iEnergy+".png").c_str()); //lFile->Close(); return; }