Exemplo n.º 1
0
/**
    Purpose
    -------
    DORMLQ overwrites the general real M-by-N matrix C with

    @verbatim
                             SIDE = MagmaLeft     SIDE = MagmaRight
    TRANS = MagmaNoTrans:    Q * C                C * Q
    TRANS = MagmaTrans: Q**H * C             C * Q**H
    @endverbatim

    where Q is a realunitary matrix defined as the product of k
    elementary reflectors

          Q = H(k)**H . . . H(2)**H H(1)**H

    as returned by DGELQF. Q is of order M if SIDE = MagmaLeft and of order N
    if SIDE = MagmaRight.

    Arguments
    ---------
    @param[in]
    side    magma_side_t
      -     = MagmaLeft:      apply Q or Q**H from the Left;
      -     = MagmaRight:     apply Q or Q**H from the Right.

    @param[in]
    trans   magma_trans_t
      -     = MagmaNoTrans:    No transpose, apply Q;
      -     = MagmaTrans: Conjugate transpose, apply Q**H.

    @param[in]
    m       INTEGER
            The number of rows of the matrix C. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix C. N >= 0.

    @param[in]
    k       INTEGER
            The number of elementary reflectors whose product defines
            the matrix Q.
            If SIDE = MagmaLeft,  M >= K >= 0;
            if SIDE = MagmaRight, N >= K >= 0.

    @param[in]
    A       DOUBLE_PRECISION array, dimension
                (LDA,M) if SIDE = MagmaLeft,
                (LDA,N) if SIDE = MagmaRight.
            The i-th row must contain the vector which defines the
            elementary reflector H(i), for i = 1,2,...,k, as returned by
            DGELQF in the first k rows of its array argument A.
            A is modified by the routine but restored on exit.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A. LDA >= max(1,K).

    @param[in]
    tau     DOUBLE_PRECISION array, dimension (K)
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i), as returned by DGELQF.

    @param[in,out]
    C       DOUBLE_PRECISION array, dimension (LDC,N)
            On entry, the M-by-N matrix C.
            On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

    @param[in]
    ldc     INTEGER
            The leading dimension of the array C. LDC >= max(1,M).

    @param[out]
    work    (workspace) DOUBLE_PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.
            If SIDE = MagmaLeft,  LWORK >= max(1,N);
            if SIDE = MagmaRight, LWORK >= max(1,M).
            For optimum performance
            if SIDE = MagmaLeft,  LWORK >= N*NB;
            if SIDE = MagmaRight, LWORK >= M*NB,
            where NB is the optimal blocksize.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value

    @ingroup magma_dgelqf_comp
    ********************************************************************/
extern "C" magma_int_t
magma_dormlq(
    magma_side_t side, magma_trans_t trans,
    magma_int_t m, magma_int_t n, magma_int_t k,
    double *A, magma_int_t lda,
    double *tau,
    double *C, magma_int_t ldc,
    double *work, magma_int_t lwork,
    magma_int_t *info)
{
    #define  A(i_,j_) ( A + (i_) + (j_)*lda)
    #define dC(i_,j_) (dC + (i_) + (j_)*lddc)

    double *T, *T2;
    magma_int_t i, i1, i2, ib, ic, jc, nb, mi, ni, nq, nq_i, nw, step;
    magma_int_t iinfo, ldwork, lwkopt;
    magma_int_t left, notran, lquery;
    magma_trans_t transt;

    *info = 0;
    left   = (side  == MagmaLeft);
    notran = (trans == MagmaNoTrans);
    lquery = (lwork == -1);

    /* NQ is the order of Q and NW is the minimum dimension of WORK */
    if (left) {
        nq = m;
        nw = n;
    } else {
        nq = n;
        nw = m;
    }
    
    /* Test the input arguments */
    if (! left && side != MagmaRight) {
        *info = -1;
    } else if (! notran && trans != MagmaTrans) {
        *info = -2;
    } else if (m < 0) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (k < 0 || k > nq) {
        *info = -5;
    } else if (lda < max(1,k)) {
        *info = -7;
    } else if (ldc < max(1,m)) {
        *info = -10;
    } else if (lwork < max(1,nw) && ! lquery) {
        *info = -12;
    }

    if (*info == 0) {
        nb = magma_get_dgelqf_nb( min( m, n ));
        lwkopt = max(1,nw)*nb;
        work[0] = MAGMA_D_MAKE( lwkopt, 0 );
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (m == 0 || n == 0 || k == 0) {
        work[0] = MAGMA_D_ONE;
        return *info;
    }

    ldwork = nw;
    
    if (nb >= k) {
        /* Use CPU code */
        lapackf77_dormlq( lapack_side_const(side), lapack_trans_const(trans),
            &m, &n, &k, A, &lda, tau, C, &ldc, work, &lwork, &iinfo);
    }
    else {
        /* Use hybrid CPU-GPU code */
        /* Allocate work space on the GPU.
         * nw*nb  for dwork (m or n) by nb
         * nq*nb  for dV    (n or m) by nb
         * nb*nb  for dT
         * lddc*n for dC.
         */
        magma_int_t lddc = ((m+31)/32)*32;
        double *dwork, *dV, *dT, *dC;
        magma_dmalloc( &dwork, (nw + nq + nb)*nb + lddc*n );
        if ( dwork == NULL ) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
        dV = dwork + nw*nb;
        dT = dV    + nq*nb;
        dC = dT    + nb*nb;
        
        /* work space on CPU.
         * nb*nb for T
         * nb*nb for T2, used to save and restore diagonal block of panel  */
        magma_dmalloc_cpu( &T, 2*nb*nb );
        if ( T == NULL ) {
            magma_free( dwork );
            *info = MAGMA_ERR_HOST_ALLOC;
            return *info;
        }
        T2 = T + nb*nb;
        
        /* Copy matrix C from the CPU to the GPU */
        magma_dsetmatrix( m, n, C, ldc, dC, lddc );
        
        if ( (left && notran) || (! left && ! notran) ) {
            i1 = 0;
            i2 = k;
            step = nb;
        } else {
            i1 = ((k - 1) / nb)*nb;
            i2 = 0;
            step = -nb;
        }

        // silence "uninitialized" warnings
        mi = 0;
        ni = 0;
        
        if (left) {
            ni = n;
            jc = 0;
        } else {
            mi = m;
            ic = 0;
        }

        if (notran) {
            transt = MagmaTrans;
        } else {
            transt = MagmaNoTrans;
        }

        for (i = i1; (step < 0 ? i >= i2 : i < i2); i += step) {
            ib = min(nb, k - i);
            
            /* Form the triangular factor of the block reflector
               H = H(i) H(i + 1) . . . H(i + ib-1) */
            nq_i = nq - i;
            lapackf77_dlarft("Forward", "Rowwise", &nq_i, &ib,
                             A(i,i), &lda, &tau[i], T, &ib);

            /* 1) set upper triangle of panel in A to identity,
               2) copy the panel from A to the GPU, and
               3) restore A                                      */
            dpanel_to_q( MagmaLower, ib, A(i,i), lda, T2 );
            magma_dsetmatrix( ib, nq_i,  A(i,i), lda, dV, ib );
            dq_to_panel( MagmaLower, ib, A(i,i), lda, T2 );
            
            if (left) {
                /* H or H**H is applied to C(i:m,1:n) */
                mi = m - i;
                ic = i;
            }
            else {
                /* H or H**H is applied to C(1:m,i:n) */
                ni = n - i;
                jc = i;
            }
            
            /* Apply H or H**H; First copy T to the GPU */
            magma_dsetmatrix( ib, ib, T, ib, dT, ib );
            magma_dlarfb_gpu( side, transt, MagmaForward, MagmaRowwise,
                              mi, ni, ib,
                              dV, ib,
                              dT, ib,
                              dC(ic,jc), lddc,
                              dwork, ldwork );
        }
        magma_dgetmatrix( m, n, dC, lddc, C, ldc );
        
        magma_free( dwork );
        magma_free_cpu( T );
    }
    work[0] = MAGMA_D_MAKE( lwkopt, 0 );
    
    return *info;
} /* magma_dormlq */
Exemplo n.º 2
0
/**
    Purpose
    -------
    If VECT = MagmaQ, DORMBR overwrites the general real M-by-N matrix C with
                                 SIDE = MagmaLeft     SIDE = MagmaRight
    TRANS = MagmaNoTrans:        Q*C                  C*Q
    TRANS = MagmaTrans:     Q**H*C               C*Q**H
    
    If VECT = MagmaP, DORMBR overwrites the general real M-by-N matrix C with
                                 SIDE = MagmaLeft     SIDE = MagmaRight
    TRANS = MagmaNoTrans:        P*C                  C*P
    TRANS = MagmaTrans:     P**H*C               C*P**H
    
    Here Q and P**H are the unitary matrices determined by DGEBRD when
    reducing A real matrix A to bidiagonal form: A = Q*B * P**H. Q
    and P**H are defined as products of elementary reflectors H(i) and
    G(i) respectively.
    
    Let nq = m if SIDE = MagmaLeft and nq = n if SIDE = MagmaRight. Thus nq is the
    order of the unitary matrix Q or P**H that is applied.
    
    If VECT = MagmaQ, A is assumed to have been an NQ-by-K matrix:
    if nq >= k, Q = H(1) H(2) . . . H(k);
    if nq <  k, Q = H(1) H(2) . . . H(nq-1).
    
    If VECT = MagmaP, A is assumed to have been A K-by-NQ matrix:
    if k <  nq, P = G(1) G(2) . . . G(k);
    if k >= nq, P = G(1) G(2) . . . G(nq-1).
    
    Arguments
    ---------
    @param[in]
    vect    magma_vect_t
      -     = MagmaQ: apply Q or Q**H;
      -     = MagmaP: apply P or P**H.
    
    @param[in]
    side    magma_side_t
      -     = MagmaLeft:  apply Q, Q**H, P or P**H from the Left;
      -     = MagmaRight: apply Q, Q**H, P or P**H from the Right.
    
    @param[in]
    trans   magma_trans_t
      -     = MagmaNoTrans:    No transpose, apply Q or P;
      -     = MagmaTrans: Conjugate transpose, apply Q**H or P**H.
    
    @param[in]
    m       INTEGER
            The number of rows of the matrix C. M >= 0.
    
    @param[in]
    n       INTEGER
            The number of columns of the matrix C. N >= 0.
    
    @param[in]
    k       INTEGER
            If VECT = MagmaQ, the number of columns in the original
            matrix reduced by DGEBRD.
            If VECT = MagmaP, the number of rows in the original
            matrix reduced by DGEBRD.
            K >= 0.
    
    @param[in]
    A       DOUBLE_PRECISION array, dimension
                                  (LDA,min(nq,K)) if VECT = MagmaQ
                                  (LDA,nq)        if VECT = MagmaP
            The vectors which define the elementary reflectors H(i) and
            G(i), whose products determine the matrices Q and P, as
            returned by DGEBRD.
    
    @param[in]
    lda     INTEGER
            The leading dimension of the array A.
            If VECT = MagmaQ, LDA >= max(1,nq);
            if VECT = MagmaP, LDA >= max(1,min(nq,K)).
    
    @param[in]
    tau     DOUBLE_PRECISION array, dimension (min(nq,K))
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i) or G(i) which determines Q or P, as returned
            by DGEBRD in the array argument TAUQ or TAUP.
    
    @param[in,out]
    C       DOUBLE_PRECISION array, dimension (LDC,N)
            On entry, the M-by-N matrix C.
            On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q
            or P*C or P**H*C or C*P or C*P**H.
    
    @param[in]
    ldc     INTEGER
            The leading dimension of the array C. LDC >= max(1,M).
    
    @param[out]
    work    (workspace) DOUBLE_PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.
    
    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.
            If SIDE = MagmaLeft,  LWORK >= max(1,N);
            if SIDE = MagmaRight, LWORK >= max(1,M);
            if N = 0 or M = 0, LWORK >= 1.
            For optimum performance
            if SIDE = MagmaLeft,  LWORK >= max(1,N*NB);
            if SIDE = MagmaRight, LWORK >= max(1,M*NB),
            where NB is the optimal blocksize. (NB = 0 if M = 0 or N = 0.)
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.
    
    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
    

    @ingroup magma_dgesvd_comp
    ********************************************************************/
extern "C" magma_int_t
magma_dormbr(
    magma_vect_t vect, magma_side_t side, magma_trans_t trans,
    magma_int_t m, magma_int_t n, magma_int_t k,
    double *A, magma_int_t lda,
    double *tau,
    double *C, magma_int_t ldc,
    double *work, magma_int_t lwork,
    magma_int_t *info)
{
    #define A(i,j)  (A + (i) + (j)*lda)
    #define C(i,j)  (C + (i) + (j)*ldc)
            
    magma_int_t i1, i2, nb, mi, ni, nq, nq_1, nw, iinfo, lwkopt;
    magma_int_t left, notran, applyq, lquery;
    magma_trans_t transt;
    
    MAGMA_UNUSED( nq_1 );  // used only in version 1

    *info = 0;
    applyq = (vect  == MagmaQ);
    left   = (side  == MagmaLeft);
    notran = (trans == MagmaNoTrans);
    lquery = (lwork == -1);

    /* NQ is the order of Q or P and NW is the minimum dimension of WORK */
    if (left) {
        nq = m;
        nw = n;
    }
    else {
        nq = n;
        nw = m;
    }
    if (m == 0 || n == 0) {
        nw = 0;
    }
    
    /* check arguments */
    if (! applyq && vect != MagmaP) {
        *info = -1;
    }
    else if (! left && side != MagmaRight) {
        *info = -2;
    }
    else if (! notran && trans != MagmaTrans) {
        *info = -3;
    }
    else if (m < 0) {
        *info = -4;
    }
    else if (n < 0) {
        *info = -5;
    }
    else if (k < 0) {
        *info = -6;
    }
    else if ( (   applyq && lda < max(1,nq)        ) ||
              ( ! applyq && lda < max(1,min(nq,k)) ) ) {
        *info = -8;
    }
    else if (ldc < max(1,m)) {
        *info = -11;
    }
    else if (lwork < max(1,nw) && ! lquery) {
        *info = -13;
    }

    if (*info == 0) {
        if (nw > 0) {
            // TODO have get_dormqr_nb and get_dormlq_nb routines? see original LAPACK dormbr.
            // TODO make them dependent on m, n, and k?
            nb = magma_get_dgebrd_nb( min( m, n ));
            lwkopt = max(1, nw*nb);
        }
        else {
            lwkopt = 1;
        }
        work[0] = MAGMA_D_MAKE( lwkopt, 0 );
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (m == 0 || n == 0) {
        return *info;
    }

    if (applyq) {
        /* Apply Q */
        if (nq >= k) {
            /* Q was determined by a call to DGEBRD with nq >= k */
            #if VERSION == 1
            lapackf77_dormqr( lapack_side_const(side), lapack_trans_const(trans),
                              &m, &n, &k, A, &lda, tau, C, &ldc, work, &lwork, &iinfo);
            #else
            magma_dormqr( side, trans,
                          m, n, k, A, lda, tau, C, ldc, work, lwork, &iinfo);
            #endif
        }
        else if (nq > 1) {
            /* Q was determined by a call to DGEBRD with nq < k */
            if (left) {
                mi = m - 1;
                ni = n;
                i1 = 1;
                i2 = 0;
            }
            else {
                mi = m;
                ni = n - 1;
                i1 = 0;
                i2 = 1;
            }
            #if VERSION == 1
            nq_1 = nq - 1;
            lapackf77_dormqr( lapack_side_const(side), lapack_trans_const(trans),
                              &mi, &ni, &nq_1, A(1,0), &lda, tau, C(i1,i2), &ldc, work, &lwork, &iinfo);
            #else
            magma_dormqr( side, trans,
                          mi, ni, nq-1, A(1,0), lda, tau, C(i1,i2), ldc, work, lwork, &iinfo);
            #endif
        }
    }
    else {
        /* Apply P */
        if (notran) {
            transt = MagmaTrans;
        }
        else {
            transt = MagmaNoTrans;
        }
        if (nq > k) {
            /* P was determined by a call to DGEBRD with nq > k */
            #if VERSION == 1
            lapackf77_dormlq( lapack_side_const(side), lapack_trans_const(transt),
                              &m, &n, &k, A, &lda, tau, C, &ldc, work, &lwork, &iinfo);
            #else
            magma_dormlq( side, transt,
                          m, n, k, A, lda, tau, C, ldc, work, lwork, &iinfo);
            #endif
        }
        else if (nq > 1) {
            /* P was determined by a call to DGEBRD with nq <= k */
            if (left) {
                mi = m - 1;
                ni = n;
                i1 = 1;
                i2 = 0;
            }
            else {
                mi = m;
                ni = n - 1;
                i1 = 0;
                i2 = 1;
            }
            #if VERSION == 1
            nq_1 = nq - 1;
            lapackf77_dormlq( lapack_side_const(side), lapack_trans_const(transt),
                              &mi, &ni, &nq_1, A(0,1), &lda, tau, C(i1,i2), &ldc, work, &lwork, &iinfo);
            #else
            magma_dormlq( side, transt,
                          mi, ni, nq-1, A(0,1), lda, tau, C(i1,i2), ldc, work, lwork, &iinfo);
            #endif
        }
    }
    work[0] = MAGMA_D_MAKE( lwkopt, 0 );
    return *info;
} /* magma_dormbr */
Exemplo n.º 3
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing dormlq
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    double error, work[1];
    double c_neg_one = MAGMA_D_NEG_ONE;
    magma_int_t ione = 1;
    magma_int_t mm, m, n, k, size, info;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t nb, ldc, lda, lwork, lwork_max;
    double *C, *R, *A, *W, *tau;
    magma_int_t status = 0;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    // need slightly looser bound (60*eps instead of 30*eps) for some tests
    opts.tolerance = max( 60., opts.tolerance );
    double tol = opts.tolerance * lapackf77_dlamch("E");
    
    // test all combinations of input parameters
    magma_side_t  side [] = { MagmaLeft,       MagmaRight   };
    magma_trans_t trans[] = { MagmaTrans, MagmaNoTrans };

    printf("    M     N     K   side   trans   CPU GFlop/s (sec)   GPU GFlop/s (sec)   ||R||_F / ||QC||_F\n");
    printf("===============================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            m = opts.msize[itest];
            n = opts.nsize[itest];
            k = opts.ksize[itest];
            nb  = magma_get_dgelqf_nb( min( m, n ));
            ldc = m;
            // A is k x m (left) or k x n (right)
            mm = (side[iside] == MagmaLeft ? m : n);
            lda = k;
            gflops = FLOPS_DORMLQ( m, n, k, side[iside] ) / 1e9;
            
            if ( side[iside] == MagmaLeft && m < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=left  and m < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            if ( side[iside] == MagmaRight && n < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=right and n < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            
            // need at least 2*nb*nb for gelqf
            lwork_max = max( max( m*nb, n*nb ), 2*nb*nb );
            
            TESTING_MALLOC_CPU( C,   double, ldc*n );
            TESTING_MALLOC_CPU( R,   double, ldc*n );
            TESTING_MALLOC_CPU( A,   double, lda*mm );
            TESTING_MALLOC_CPU( W,   double, lwork_max );
            TESTING_MALLOC_CPU( tau, double, k );
            
            // C is full, m x n
            size = ldc*n;
            lapackf77_dlarnv( &ione, ISEED, &size, C );
            lapackf77_dlacpy( "Full", &m, &n, C, &ldc, R, &ldc );
            
            size = lda*mm;
            lapackf77_dlarnv( &ione, ISEED, &size, A );
            
            // compute LQ factorization to get Householder vectors in A, tau
            magma_dgelqf( k, mm, A, lda, tau, W, lwork_max, &info );
            if (info != 0)
                printf("magma_dgelqf returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            lapackf77_dormlq( lapack_side_const( side[iside] ), lapack_trans_const( trans[itran] ),
                              &m, &n, &k,
                              A, &lda, tau, C, &ldc, W, &lwork_max, &info );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            if (info != 0)
                printf("lapackf77_dormlq returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            // query for workspace size
            lwork = -1;
            magma_dormlq( side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, W, lwork, &info );
            if (info != 0)
                printf("magma_dormlq (lwork query) returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            lwork = (magma_int_t) MAGMA_D_REAL( W[0] );
            if ( lwork < 0 || lwork > lwork_max ) {
                printf("optimal lwork %d > lwork_max %d\n", (int) lwork, (int) lwork_max );
                lwork = lwork_max;
            }
            
            gpu_time = magma_wtime();
            magma_dormlq( side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, W, lwork, &info );
            gpu_time = magma_wtime() - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0)
                printf("magma_dormlq returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
                        
            /* =====================================================================
               compute relative error |QC_magma - QC_lapack| / |QC_lapack|
               =================================================================== */
            error = lapackf77_dlange( "Fro", &m, &n, C, &ldc, work );
            size = ldc*n;
            blasf77_daxpy( &size, &c_neg_one, C, &ione, R, &ione );
            error = lapackf77_dlange( "Fro", &m, &n, R, &ldc, work ) / error;
            
            printf( "%5d %5d %5d   %4c   %5c   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %s\n",
                    (int) m, (int) n, (int) k,
                    lapacke_side_const( side[iside] ),
                    lapacke_trans_const( trans[itran] ),
                    cpu_perf, cpu_time, gpu_perf, gpu_time,
                    error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( W );
            TESTING_FREE_CPU( tau );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}  // end iside, itran
      printf( "\n" );
    }
    
    TESTING_FINALIZE();
    return status;
}