Exemplo n.º 1
0
/**
    Purpose
    -------
    SSYTRD reduces a real symmetric matrix A to real symmetric
    tridiagonal form T by an orthogonal similarity transformation:
    Q**H * A * Q = T.

    Arguments
    ---------
    @param[in]
    num_gpus INTEGER
             The number of GPUs.  num_gpus > 0.

    @param[in]
    num_streams INTEGER
             The number of GPU streams used for update.  10 >= num_streams > 0.

    @param[in]
    uplo     magma_uplo_t
      -      = MagmaUpper:  Upper triangle of A is stored;
      -      = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n        INTEGER
             The order of the matrix A.  N >= 0.

    @param[in,out]
    A        REAL array, dimension (LDA,N)
             On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the leading
             N-by-N upper triangular part of A contains the upper
             triangular part of the matrix A, and the strictly lower
             triangular part of A is not referenced.  If UPLO = MagmaLower, the
             leading N-by-N lower triangular part of A contains the lower
             triangular part of the matrix A, and the strictly upper
             triangular part of A is not referenced.
             On exit, if UPLO = MagmaUpper, the diagonal and first superdiagonal
             of A are overwritten by the corresponding elements of the
             tridiagonal matrix T, and the elements above the first
             superdiagonal, with the array TAU, represent the orthogonal
             matrix Q as a product of elementary reflectors; if UPLO
             = MagmaLower, the diagonal and first subdiagonal of A are over-
             written by the corresponding elements of the tridiagonal
             matrix T, and the elements below the first subdiagonal, with
             the array TAU, represent the orthogonal matrix Q as a product
             of elementary reflectors. See Further Details.

    @param[in]
    lda      INTEGER
             The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    d        REAL array, dimension (N)
             The diagonal elements of the tridiagonal matrix T:
             D(i) = A(i,i).
 
    @param[out]
    e        REAL array, dimension (N-1)
             The off-diagonal elements of the tridiagonal matrix T:
             E(i) = A(i,i+1) if UPLO = MagmaUpper, E(i) = A(i+1,i) if UPLO = MagmaLower.

    @param[out]
    tau      REAL array, dimension (N-1)
             The scalar factors of the elementary reflectors (see Further
             Details).

    @param[out]
    work     (workspace) REAL array, dimension (MAX(1,LWORK))
             On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork    INTEGER
             The dimension of the array WORK.  LWORK >= 1.
             For optimum performance LWORK >= N*NB, where NB is the
             optimal blocksize.
    \n
             If LWORK = -1, then a workspace query is assumed; the routine
             only calculates the optimal size of the WORK array, returns
             this value as the first entry of the WORK array, and no error
             message related to LWORK is issued by XERBLA.

    @param[out]
    info     INTEGER
      -      = 0:  successful exit
      -      < 0:  if INFO = -i, the i-th argument had an illegal value

    Further Details
    ---------------
    If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary
    reflectors

       Q = H(n-1) . . . H(2) H(1).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
    A(1:i-1,i+1), and tau in TAU(i).

    If UPLO = MagmaLower, the matrix Q is represented as a product of elementary
    reflectors

       Q = H(1) H(2) . . . H(n-1).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
    and tau in TAU(i).

    The contents of A on exit are illustrated by the following examples
    with n = 5:

    if UPLO = MagmaUpper:                if UPLO = MagmaLower:

      (  d   e   v2  v3  v4 )              (  d                  )
      (      d   e   v3  v4 )              (  e   d              )
      (          d   e   v4 )              (  v1  e   d          )
      (              d   e  )              (  v1  v2  e   d      )
      (                  d  )              (  v1  v2  v3  e   d  )

    where d and e denote diagonal and off-diagonal elements of T, and vi
    denotes an element of the vector defining H(i).

    @ingroup magma_ssyev_comp
    ********************************************************************/
extern "C" magma_int_t
magma_ssytrd_mgpu(
    magma_int_t num_gpus, magma_int_t num_streams, magma_uplo_t uplo, magma_int_t n,
    float *A, magma_int_t lda,
    float *d, float *e, float *tau,
    float *work, magma_int_t lwork,
    magma_int_t *info)
{
#define  A(i, j)     (A           + (j)*lda  + (i))
#define dA(id, i, j) (dA[(id)]    + (j)*ldda + (i))
#define dW(id, i, j) (dwork[(id)] + (j)*ldda + (i))

    const char* uplo_ = lapack_uplo_const( uplo );
    
    magma_int_t ln, ldda;
    magma_int_t nb = magma_get_ssytrd_nb(n), ib;

    float c_neg_one = MAGMA_S_NEG_ONE;
    float c_one = MAGMA_S_ONE;
    float  d_one = MAGMA_D_ONE;
    //float mv_time = 0.0;
#ifdef PROFILE_SY2RK
    float up_time = 0.0;
#endif

    magma_int_t kk, nx;
    magma_int_t i = 0, ii, iii, j, did, i_n;
    magma_int_t iinfo;
    magma_int_t ldwork, lddwork, lwkopt, ldwork2;
    magma_int_t lquery;
    magma_queue_t stream[MagmaMaxGPUs][10];
    float *dx[MagmaMaxGPUs], *dy[MagmaMaxGPUs], *hwork;
    float *dwork2[MagmaMaxGPUs];

    *info = 0;
    int upper = (uplo == MagmaUpper);
    lquery = (lwork == -1);
    if (! upper && uplo != MagmaLower) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (lda < max(1,n)) {
        *info = -4;
    } else if (lwork < nb*n && ! lquery) {
        *info = -9;
    } else if ( num_streams > 2 ) {
        *info = 2;  // TODO fix
    }

    /* Determine the block size. */
    ldwork = lddwork = n;
    lwkopt = n * nb;
    if (*info == 0) {
        work[0] = MAGMA_S_MAKE( lwkopt, 0 );
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
        return *info;

    /* Quick return if possible */
    if (n == 0) {
        work[0] = c_one;
        return *info;
    }

    magma_device_t orig_dev;
    magma_getdevice( &orig_dev );
    magma_queue_t orig_stream;
    magmablasGetKernelStream( &orig_stream );
    
    float *dA[MagmaMaxGPUs];
    float *dwork[MagmaMaxGPUs];

    float times[11];
    for( did=0; did < 11; did++ )
        times[did] = 0;
//#define PROFILE_SY2RK
#ifdef PROFILE_SY2RK
    magma_event_t start, stop;
    float etime;
    magma_setdevice(0);
    magma_event_create( &start );
    magma_event_create( &stop  );
#endif
    ldda = lda;
    ln = ((nb*(1+n/(nb*num_gpus))+31)/32)*32;
    ldwork2 = (1+ n / nb + (n % nb != 0)) * ldda;
    for( did=0; did < num_gpus; did++ ) {
        magma_setdevice(did);
        // TODO fix memory leak
        if ( MAGMA_SUCCESS != magma_smalloc(&dA[did],     ln*ldda+3*lddwork*nb) ||
             MAGMA_SUCCESS != magma_smalloc(&dx[did],     num_streams*n) ||
             MAGMA_SUCCESS != magma_smalloc(&dy[did],     num_streams*n) ||
             MAGMA_SUCCESS != magma_smalloc(&dwork2[did], ldwork2 ) ) {
            for( i=0; i < did; i++ ) {
                magma_setdevice(i);
                magma_free(dA[i]);
                magma_free(dx[i]);
                magma_free(dy[i]);
            }
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
        dwork[did] = dA[did] + ln*ldda;
        
        for( kk=0; kk < num_streams; kk++ )
            magma_queue_create(&stream[did][kk]);
    }
    magma_setdevice(0);
    // TODO fix memory leak dwork2
    if ( MAGMA_SUCCESS != magma_smalloc_pinned( &hwork, num_streams*num_gpus*n ) ) {
        for( i=0; i < num_gpus; i++ ) {
            magma_setdevice(i);
            magma_free(dA[i]);
            magma_free(dx[i]);
            magma_free(dy[i]);
        }
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }

    if (n < 2048)
        nx = n;
    else
        nx = 512;

    if (upper) {
        /* Copy the matrix to the GPU */
        if (1 <= n-nx) {
            magma_shtodhe(num_gpus, uplo, n, nb, A, lda, dA, ldda, stream, &iinfo );
        }

        /*  Reduce the upper triangle of A.
            Columns 1:kk are handled by the unblocked method. */
        for (i = nb*((n-1)/nb); i >= nx; i -= nb) {
            ib = min(nb, n-i);

            ii  = nb*(i/(nb*num_gpus));
            did = (i/nb)%num_gpus;

            /* wait for the next panel */
            if (i != nb*((n-1)/nb)) {
                magma_setdevice(did);
                magma_queue_sync(stream[did][0]);
            }

            magma_slatrd_mgpu(num_gpus, uplo, n, i+ib, ib, nb,
                              A(0, 0), lda, e, tau,
                              work, ldwork,
                              dA, ldda, 0,
                              dwork, i+ib,
                              dwork2, ldwork2,
                              1, dx, dy, hwork,
                              stream, times);

            magma_ssyr2k_mgpu(num_gpus, MagmaUpper, MagmaNoTrans, nb, i, ib,
                         c_neg_one, dwork, i+ib, 0,
                         d_one,     dA,    ldda, 0,
                         num_streams, stream);

            /* get the next panel */
            if (i-nb >= nx ) {
                ib = min(nb, n-(i-nb));
                
                ii  = nb*((i-nb)/(nb*num_gpus));
                did = ((i-nb)/nb)%num_gpus;
                magma_setdevice(did);
                
                magma_sgetmatrix_async( (i-nb)+ib, ib,
                                        dA(did, 0, ii), ldda,
                                         A(0, i-nb),    lda,
                                        stream[did][0] );
            }

            /* Copy superdiagonal elements back into A, and diagonal
               elements into D */
            for (j = i; j < i+ib; ++j) {
                if ( j > 0 ) {
                    *A(j-1,j) = MAGMA_S_MAKE( e[j - 1], 0 );
                }
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }
        } /* end of for i=... */
      
        if ( nx > 0 ) {
            if (1 <= n-nx) { /* else A is already on CPU */
                for (i=0; i < nx; i += nb) {
                    ib = min(nb, n-i);
                    ii  = nb*(i/(nb*num_gpus));
                    did = (i/nb)%num_gpus;
                
                    magma_setdevice(did);
                    magma_sgetmatrix_async( nx, ib,
                                            dA(did, 0, ii), ldda,
                                            A(0, i),        lda,
                                            stream[did][0] );
                }
            }
            
            for( did=0; did < num_gpus; did++ ) {
                magma_setdevice(did);
                magma_queue_sync(stream[did][0]);
            }
            /*  Use unblocked code to reduce the last or only block */
            lapackf77_ssytd2(uplo_, &nx, A(0, 0), &lda, d, e, tau, &iinfo);
        }
    }
    else {
        trace_init( 1, num_gpus, num_streams, (CUstream_st**)stream );
        /* Copy the matrix to the GPU */
        if (1 <= n-nx) {
            magma_shtodhe(num_gpus, uplo, n, nb, A, lda, dA, ldda, stream, &iinfo );
        }

        /* Reduce the lower triangle of A */
        for (i = 0; i < n-nx; i += nb) {
            ib = min(nb, n-i);

            ii  = nb*(i/(nb*num_gpus));
            did = (i/nb)%num_gpus;
            /* Reduce columns i:i+ib-1 to tridiagonal form and form the
               matrix W which is needed to update the unreduced part of
               the matrix */

            /*   Get the current panel (no need for the 1st iteration) */
            if (i != 0) {
                magma_setdevice(did);
                trace_gpu_start( did, 0, "comm", "get" );
                magma_sgetmatrix_async( n-i, ib,
                                        dA(did, i, ii), ldda,
                                         A(i,i),        lda,
                                        stream[did][0] );
                trace_gpu_end( did, 0 );
                magma_queue_sync(stream[did][0]);
                magma_setdevice(0);
            }
            
            magma_slatrd_mgpu(num_gpus, uplo, n, n-i, ib, nb,
                              A(i, i), lda, &e[i],
                              &tau[i], work, ldwork,
                              dA, ldda, i,
                              dwork,  (n-i),
                              dwork2, ldwork2,
                              1, dx, dy, hwork,
                              stream, times );

#ifdef PROFILE_SY2RK
            magma_setdevice(0);
            if ( i > 0 ) {
                cudaEventElapsedTime(&etime, start, stop);
                up_time += (etime/1000.0);
            }
            magma_event_record(start, 0);
#endif
            magma_ssyr2k_mgpu(num_gpus, MagmaLower, MagmaNoTrans, nb, n-i-ib, ib,
                         c_neg_one, dwork, n-i, ib,
                         d_one, dA, ldda, i+ib, num_streams, stream);
#ifdef PROFILE_SY2RK
            magma_setdevice(0);
            magma_event_record(stop, 0);
#endif

            /* Copy subdiagonal elements back into A, and diagonal
               elements into D */
            for (j = i; j < i+ib; ++j) {
                if ( j+1 < n ) {
                    *A(j+1,j) = MAGMA_S_MAKE( e[j], 0 );
                }
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }
        } /* for i=... */

        /* Use unblocked code to reduce the last or only block */
        if ( i < n ) {
            iii = i;
            i_n = n-i;
            if ( i > 0 ) {
                for (; i < n; i += nb) {
                    ib = min(nb, n-i);
                    ii  = nb*(i/(nb*num_gpus));
                    did = (i/nb)%num_gpus;
                
                    magma_setdevice(did);
                    magma_sgetmatrix_async( i_n, ib,
                                            dA(did, iii, ii), ldda,
                                             A(iii, i),       lda,
                                            stream[did][0] );
                }
                for( did=0; did < num_gpus; did++ ) {
                    magma_setdevice(did);
                    magma_queue_sync(stream[did][0]);
                }
            }
            lapackf77_ssytrd(uplo_, &i_n, A(iii, iii), &lda, &d[iii], &e[iii],
                             &tau[iii], work, &lwork, &iinfo);
        }
    }
#ifdef PROFILE_SY2RK
    magma_setdevice(0);
    if ( n > nx ) {
        cudaEventElapsedTime(&etime, start, stop);
        up_time += (etime/1000.0);
    }
    magma_event_destroy( start );
    magma_event_destroy( stop  );
#endif

    trace_finalize( "ssytrd.svg", "trace.css" );
    for( did=0; did < num_gpus; did++ ) {
        magma_setdevice(did);
        for( kk=0; kk < num_streams; kk++ )
            magma_queue_sync(stream[did][kk]);
        for( kk=0; kk < num_streams; kk++ )
            magma_queue_destroy(stream[did][kk]);
        magma_free(dA[did]);
        magma_free(dx[did]);
        magma_free(dy[did]);
        magma_free(dwork2[did]);
    }
    magma_free_pinned(hwork);
    magma_setdevice( orig_dev );
    magmablasSetKernelStream( orig_stream );
    
    work[0] = MAGMA_S_MAKE( lwkopt, 0 );

#ifdef PROFILE_SY2RK
    printf( " n=%d nb=%d\n", n, nb );
    printf( " Time in SLARFG: %.2e seconds\n", times[0] );
    //printf( " Time in SSYMV : %.2e seconds\n", mv_time );
    printf( " Time in SSYR2K: %.2e seconds\n", up_time );
#endif
    return *info;
} /* magma_ssytrd */
Exemplo n.º 2
0
extern "C" magma_err_t
magma_ssytrd(char uplo, magma_int_t n, 
             float *a, magma_int_t lda, 
             float *d, float *e, float *tau,
             float *work, magma_int_t lwork, 
             magma_int_t *info, magma_queue_t queue)
{
/*  -- clMAGMA (version 1.0.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       April 2012

    Purpose   
    =======   
    SSYTRD reduces a real symmetric matrix A to real symmetric   
    tridiagonal form T by an orthogonal similarity transformation:   
    Q**T * A * Q = T.   

    Arguments   
    =========   
    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input/output) REAL array, dimension (LDA,N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the leading   
            N-by-N upper triangular part of A contains the upper   
            triangular part of the matrix A, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading N-by-N lower triangular part of A contains the lower   
            triangular part of the matrix A, and the strictly upper   
            triangular part of A is not referenced.   
            On exit, if UPLO = 'U', the diagonal and first superdiagonal   
            of A are overwritten by the corresponding elements of the   
            tridiagonal matrix T, and the elements above the first   
            superdiagonal, with the array TAU, represent the orthogonal   
            matrix Q as a product of elementary reflectors; if UPLO   
            = 'L', the diagonal and first subdiagonal of A are over-   
            written by the corresponding elements of the tridiagonal   
            matrix T, and the elements below the first subdiagonal, with   
            the array TAU, represent the orthogonal matrix Q as a product   
            of elementary reflectors. See Further Details.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    D       (output) REAL array, dimension (N)   
            The diagonal elements of the tridiagonal matrix T:   
            D(i) = A(i,i).   

    E       (output) REAL array, dimension (N-1)   
            The off-diagonal elements of the tridiagonal matrix T:   
            E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.   

    TAU     (output) REAL array, dimension (N-1)   
            The scalar factors of the elementary reflectors (see Further   
            Details).   

    WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= 1.   
            For optimum performance LWORK >= N*NB, where NB is the   
            optimal blocksize.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   
    If UPLO = 'U', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(n-1) . . . H(2) H(1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with   
    v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in   
    A(1:i-1,i+1), and tau in TAU(i).   

    If UPLO = 'L', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(1) H(2) . . . H(n-1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a real scalar, and v is a real vector with   
    v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),   
    and tau in TAU(i).

    The contents of A on exit are illustrated by the following examples   
    with n = 5:   

    if UPLO = 'U':                       if UPLO = 'L':   

      (  d   e   v2  v3  v4 )              (  d                  )   
      (      d   e   v3  v4 )              (  e   d              )   
      (          d   e   v4 )              (  v1  e   d          )   
      (              d   e  )              (  v1  v2  e   d      )   
      (                  d  )              (  v1  v2  v3  e   d  )   

    where d and e denote diagonal and off-diagonal elements of T, and vi   
    denotes an element of the vector defining H(i).   
    =====================================================================    */  

    char uplo_[2] = {uplo, 0};

    magma_int_t ldda = lda;
    magma_int_t nb = magma_get_ssytrd_nb(n); 

    float c_neg_one = MAGMA_S_NEG_ONE;
    float c_one     = MAGMA_S_ONE;
    float          d_one     = MAGMA_D_ONE;
    
    magma_int_t kk, nx;
    magma_int_t i, j, i_n;
    magma_int_t iinfo;
    magma_int_t ldwork, lddwork, lwkopt;
    magma_int_t lquery;

    *info = 0;
    int upper = lapackf77_lsame(uplo_, "U");
    lquery = lwork == -1;
    if (! upper && ! lapackf77_lsame(uplo_, "L")) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (lda < max(1,n)) {
        *info = -4;
    } else if (lwork < nb*n && ! lquery) {
        *info = -9;
    }

    if (*info == 0) {
      /* Determine the block size. */
      ldwork = lddwork = n;
      lwkopt = n * nb;
// ACD
//      MAGMA_S_SET2REAL( work[0], lwkopt );
      MAGMA_S_SET2REAL( work[0], (float) lwkopt );
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
      return *info;

    /* Quick return if possible */
    if (n == 0) {
        work[0] = c_one;
        return *info;
    }

    magmaFloat_ptr da;
	size_t da_offset = 0;
    if (MAGMA_SUCCESS != magma_malloc( &da, (n*ldda + 2*n*nb )*sizeof(float))) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

	magmaFloat_ptr dwork = da;
    size_t dwork_offset = da_offset + (n)*ldda;

    if (n < 2048)
      nx = n;
    else
      nx = 512;

    if (upper) {

        /* Copy the matrix to the GPU */ 
        magma_ssetmatrix( n, n, A(0, 0), 0, lda, dA(0, 0), ldda, queue );

        /*  Reduce the upper triangle of A.   
            Columns 1:kk are handled by the unblocked method. */
        kk = n - (n - nx + nb - 1) / nb * nb;

        for (i = n - nb; i >= kk; i -= nb) 
          {
            /* Reduce columns i:i+nb-1 to tridiagonal form and form the   
               matrix W which is needed to update the unreduced part of   
               the matrix */
            
            /*   Get the current panel (no need for the 1st iteration) */
            if (i!=n-nb)
              magma_sgetmatrix( i+nb, nb, dA(0, i), ldda, A(0, i), 0, lda, queue );
            
            magma_slatrd(uplo, i+nb, nb, A(0, 0), lda, e, tau, 
                         work, ldwork, dA(0, 0), ldda, dwork, dwork_offset, lddwork, queue);

            /* Update the unreduced submatrix A(0:i-2,0:i-2), using an   
               update of the form:  A := A - V*W' - W*V' */
            magma_ssetmatrix( i + nb, nb, work, 0, ldwork, dwork, dwork_offset, lddwork, queue );

            magma_ssyr2k(magma_uplo_const(uplo), MagmaNoTrans, i, nb, c_neg_one, 
                         dA(0, i), ldda, dwork, dwork_offset,  
                         lddwork, d_one, dA(0, 0), ldda, queue);
            
            /* Copy superdiagonal elements back into A, and diagonal   
               elements into D */
            for (j = i; j < i+nb; ++j) {
                MAGMA_S_SET2REAL( *A(j-1, j), e[j - 1] );
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }

          }
      
        magma_sgetmatrix( kk, kk, dA(0, 0), ldda, A(0, 0), 0, lda, queue );
      
        /*  Use unblocked code to reduce the last or only block */
        lapackf77_ssytd2(uplo_, &kk, A(0, 0), &lda, d, e, tau, &iinfo);
    } 
    else 
      {
        /* Copy the matrix to the GPU */
        if (1<=n-nx)
          magma_ssetmatrix( n, n, A(0,0), 0, lda, dA(0,0), ldda, queue );

        #ifdef FAST_SYMV
        // TODO this leaks memory from da, above
        magmaFloat_ptr dwork2;
        if (MAGMA_SUCCESS != magma_malloc( &dwork2, (n*n)*sizeof(float) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
		size_t dwork2_offset = 0;
        #endif
        /* Reduce the lower triangle of A */
        for (i = 0; i < n-nx; i += nb) 
          {
            /* Reduce columns i:i+nb-1 to tridiagonal form and form the
               matrix W which is needed to update the unreduced part of
               the matrix */

            /*   Get the current panel (no need for the 1st iteration) */
            if (i!=0)
              magma_sgetmatrix( n-i, nb, dA(i, i), ldda, A(i, i), 0, lda, queue );
            #ifdef FAST_SYMV
			// unported
            magma_slatrd2(uplo, n-i, nb, A(i, i), lda, &e[i], 
                         &tau[i], work, ldwork, 
                         dA(i, i), ldda,
                         dwork, lddwork, dwork2, n*n);
            #else
            magma_slatrd(uplo, n-i, nb, A(i, i), lda, &e[i], 
                         &tau[i], work, ldwork, 
                         dA(i, i), ldda,
                         dwork, dwork_offset, lddwork, queue);
            #endif
            /* Update the unreduced submatrix A(i+ib:n,i+ib:n), using   
               an update of the form:  A := A - V*W' - W*V' */
            magma_ssetmatrix( n-i, nb, work, 0, ldwork, dwork, dwork_offset, lddwork, queue );

            magma_ssyr2k(MagmaLower, MagmaNoTrans, n-i-nb, nb, c_neg_one, 
                         dA(i+nb, i), ldda, 
                         dwork, (dwork_offset+nb), lddwork, d_one, 
                         dA(i+nb, i+nb), ldda, queue);
            
            /* Copy subdiagonal elements back into A, and diagonal   
               elements into D */
            for (j = i; j < i+nb; ++j) {
                MAGMA_S_SET2REAL( *A(j+1, j), e[j] );
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }
          }

        #ifdef FAST_SYMV
        magma_free( dwork2 );
        #endif

        /* Use unblocked code to reduce the last or only block */
        if (1<=n-nx)
          magma_sgetmatrix( n-i, n-i, dA(i, i), ldda, A(i, i), 0, lda, queue );
        i_n = n-i;
        lapackf77_ssytrd(uplo_, &i_n, A(i, i), &lda, &d[i], &e[i],
                         &tau[i], work, &lwork, &iinfo);
        
      }
    
    magma_free( da );
// ACD
//    MAGMA_S_SET2REAL( work[0], lwkopt );
    MAGMA_S_SET2REAL( work[0], (float) lwkopt );

    return *info;
} /* magma_ssytrd */
Exemplo n.º 3
0
/**
    Purpose
    -------
    SSYTRD reduces a real symmetric matrix A to real symmetric
    tridiagonal form T by an orthogonal similarity transformation:
    Q**H * A * Q = T.

    Arguments
    ---------
    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       REAL array, dimension (LDA,N)
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the leading
            N-by-N upper triangular part of A contains the upper
            triangular part of the matrix A, and the strictly lower
            triangular part of A is not referenced.  If UPLO = MagmaLower, the
            leading N-by-N lower triangular part of A contains the lower
            triangular part of the matrix A, and the strictly upper
            triangular part of A is not referenced.
            On exit, if UPLO = MagmaUpper, the diagonal and first superdiagonal
            of A are overwritten by the corresponding elements of the
            tridiagonal matrix T, and the elements above the first
            superdiagonal, with the array TAU, represent the orthogonal
            matrix Q as a product of elementary reflectors; if UPLO
            = MagmaLower, the diagonal and first subdiagonal of A are over-
            written by the corresponding elements of the tridiagonal
            matrix T, and the elements below the first subdiagonal, with
            the array TAU, represent the orthogonal matrix Q as a product
            of elementary reflectors. See Further Details.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    d       REAL array, dimension (N)
            The diagonal elements of the tridiagonal matrix T:
            D(i) = A(i,i).

    @param[out]
    e       REAL array, dimension (N-1)
            The off-diagonal elements of the tridiagonal matrix T:
            E(i) = A(i,i+1) if UPLO = MagmaUpper, E(i) = A(i+1,i) if UPLO = MagmaLower.

    @param[out]
    tau     REAL array, dimension (N-1)
            The scalar factors of the elementary reflectors (see Further
            Details).

    @param[out]
    work    (workspace) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.  LWORK >= N*NB, where NB is the
            optimal blocksize given by magma_get_ssytrd_nb().
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value

    Further Details
    ---------------
    If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary
    reflectors

       Q = H(n-1) . . . H(2) H(1).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
    A(1:i-1,i+1), and tau in TAU(i).

    If UPLO = MagmaLower, the matrix Q is represented as a product of elementary
    reflectors

       Q = H(1) H(2) . . . H(n-1).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
    and tau in TAU(i).

    The contents of A on exit are illustrated by the following examples
    with n = 5:

    if UPLO = MagmaUpper:                if UPLO = MagmaLower:

      (  d   e   v2  v3  v4 )              (  d                  )
      (      d   e   v3  v4 )              (  e   d              )
      (          d   e   v4 )              (  v1  e   d          )
      (              d   e  )              (  v1  v2  e   d      )
      (                  d  )              (  v1  v2  v3  e   d  )

    where d and e denote diagonal and off-diagonal elements of T, and vi
    denotes an element of the vector defining H(i).

    @ingroup magma_ssyev_comp
    ********************************************************************/
extern "C" magma_int_t
magma_ssytrd(magma_uplo_t uplo, magma_int_t n,
             float *A, magma_int_t lda,
             float *d, float *e, float *tau,
             float *work, magma_int_t lwork,
             magma_int_t *info)
{
#define  A(i, j) ( A + (j)*lda  + (i))
#define dA(i, j) (dA + (j)*ldda + (i))

    const char* uplo_ = lapack_uplo_const( uplo );

    magma_int_t ldda = lda;
    magma_int_t nb = magma_get_ssytrd_nb(n);

    float c_neg_one = MAGMA_S_NEG_ONE;
    float c_one     = MAGMA_S_ONE;
    float          d_one     = MAGMA_D_ONE;
    
    magma_int_t kk, nx;
    magma_int_t i, j, i_n;
    magma_int_t iinfo;
    magma_int_t ldwork, lddwork, lwkopt;
    magma_int_t lquery;

    *info = 0;
    int upper = (uplo == MagmaUpper);
    lquery = (lwork == -1);
    if (! upper && uplo != MagmaLower) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (lda < max(1,n)) {
        *info = -4;
    } else if (lwork < nb*n && ! lquery) {
        *info = -9;
    }

    /* Determine the block size. */
    ldwork = lddwork = n;
    lwkopt = n * nb;
    if (*info == 0) {
        work[0] = MAGMA_S_MAKE( lwkopt, 0 );
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
        return *info;

    /* Quick return if possible */
    if (n == 0) {
        work[0] = c_one;
        return *info;
    }

    float *dA;
    if (MAGMA_SUCCESS != magma_smalloc( &dA, n*ldda + 2*n*nb )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    float *dwork = dA + n*ldda;

    if (n < 2048)
        nx = n;
    else
        nx = 512;

    if (upper) {
        /* Copy the matrix to the GPU */
        magma_ssetmatrix( n, n, A(0, 0), lda, dA(0, 0), ldda );

        /*  Reduce the upper triangle of A.
            Columns 1:kk are handled by the unblocked method. */
        kk = n - (n - nx + nb - 1) / nb * nb;

        for (i = n - nb; i >= kk; i -= nb) {
            /* Reduce columns i:i+nb-1 to tridiagonal form and form the
               matrix W which is needed to update the unreduced part of
               the matrix */
            
            /*   Get the current panel (no need for the 1st iteration) */
            if (i != n-nb)
                magma_sgetmatrix( i+nb, nb, dA(0, i), ldda, A(0, i), lda );
            
            magma_slatrd(uplo, i+nb, nb, A(0, 0), lda, e, tau,
                         work, ldwork, dA(0, 0), ldda, dwork, lddwork);

            /* Update the unreduced submatrix A(0:i-2,0:i-2), using an
               update of the form:  A := A - V*W' - W*V' */
            magma_ssetmatrix( i + nb, nb, work, ldwork, dwork, lddwork );

            magma_ssyr2k(uplo, MagmaNoTrans, i, nb, c_neg_one,
                         dA(0, i), ldda, dwork,
                         lddwork, d_one, dA(0, 0), ldda);
            
            /* Copy superdiagonal elements back into A, and diagonal
               elements into D */
            for (j = i; j < i+nb; ++j) {
                *A(j-1,j) = MAGMA_S_MAKE( e[j - 1], 0 );
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }
        }
        
        magma_sgetmatrix( kk, kk, dA(0, 0), ldda, A(0, 0), lda );
        
        /*  Use unblocked code to reduce the last or only block */
        lapackf77_ssytd2(uplo_, &kk, A(0, 0), &lda, d, e, tau, &iinfo);
    }
    else {
        /* Copy the matrix to the GPU */
        if (1 <= n-nx)
            magma_ssetmatrix( n, n, A(0,0), lda, dA(0,0), ldda );

        #ifdef FAST_HEMV
        // TODO this leaks memory from dA, above
        float *dwork2;
        if (MAGMA_SUCCESS != magma_smalloc( &dwork2, n*n )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
        #endif
        /* Reduce the lower triangle of A */
        for (i = 0; i < n-nx; i += nb) {
            /* Reduce columns i:i+nb-1 to tridiagonal form and form the
               matrix W which is needed to update the unreduced part of
               the matrix */

            /*   Get the current panel (no need for the 1st iteration) */
            if (i != 0)
                magma_sgetmatrix( n-i, nb, dA(i, i), ldda, A(i, i), lda );
            #ifdef FAST_HEMV
            magma_slatrd2(uplo, n-i, nb, A(i, i), lda, &e[i],
                         &tau[i], work, ldwork,
                         dA(i, i), ldda,
                         dwork, lddwork, dwork2, n*n);
            #else
            magma_slatrd(uplo, n-i, nb, A(i, i), lda, &e[i],
                         &tau[i], work, ldwork,
                         dA(i, i), ldda,
                         dwork, lddwork);
            #endif
            /* Update the unreduced submatrix A(i+ib:n,i+ib:n), using
               an update of the form:  A := A - V*W' - W*V' */
            magma_ssetmatrix( n-i, nb, work, ldwork, dwork, lddwork );

            magma_ssyr2k(MagmaLower, MagmaNoTrans, n-i-nb, nb, c_neg_one,
                         dA(i+nb, i), ldda,
                         &dwork[nb], lddwork, d_one,
                         dA(i+nb, i+nb), ldda);
            
            /* Copy subdiagonal elements back into A, and diagonal
               elements into D */
            for (j = i; j < i+nb; ++j) {
                *A(j+1,j) = MAGMA_S_MAKE( e[j], 0 );
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }
        }

        #ifdef FAST_HEMV
        magma_free( dwork2 );
        #endif

        /* Use unblocked code to reduce the last or only block */
        if (1 <= n-nx)
            magma_sgetmatrix( n-i, n-i, dA(i, i), ldda, A(i, i), lda );
        i_n = n-i;
        lapackf77_ssytrd(uplo_, &i_n, A(i, i), &lda, &d[i], &e[i],
                         &tau[i], work, &lwork, &iinfo);
    }
    
    magma_free( dA );
    work[0] = MAGMA_S_MAKE( lwkopt, 0 );

    return *info;
} /* magma_ssytrd */