Exemplo n.º 1
0
static void test_atreadeof(abts_case *tc, void *data)
{
    apr_status_t rv;
    apr_socket_t *sock;
    apr_socket_t *sock2;
    apr_proc_t proc;
    apr_size_t length = STRLEN;
    char datastr[STRLEN];
    int atreadeof = -1;

    sock = setup_socket(tc);
    if (!sock) return;

    launch_child(tc, &proc, "write", p);

    rv = apr_socket_accept(&sock2, sock, p);
    APR_ASSERT_SUCCESS(tc, "Problem with receiving connection", rv);

    /* Check that the remote socket is still open */
    rv = apr_socket_atreadeof(sock2, &atreadeof);
    APR_ASSERT_SUCCESS(tc, "Determine whether at EOF, #1", rv);
    ABTS_INT_EQUAL(tc, 0, atreadeof);

    memset(datastr, 0, STRLEN);
    apr_socket_recv(sock2, datastr, &length);

    /* Make sure that the server received the data we sent */
    ABTS_STR_EQUAL(tc, DATASTR, datastr);
    ABTS_SIZE_EQUAL(tc, strlen(datastr), wait_child(tc, &proc));

    /* The child is dead, so should be the remote socket */
    rv = apr_socket_atreadeof(sock2, &atreadeof);
    APR_ASSERT_SUCCESS(tc, "Determine whether at EOF, #2", rv);
    ABTS_INT_EQUAL(tc, 1, atreadeof);

    rv = apr_socket_close(sock2);
    APR_ASSERT_SUCCESS(tc, "Problem closing connected socket", rv);

    launch_child(tc, &proc, "close", p);

    rv = apr_socket_accept(&sock2, sock, p);
    APR_ASSERT_SUCCESS(tc, "Problem with receiving connection", rv);

    /* The child closed the socket as soon as it could... */
    rv = apr_socket_atreadeof(sock2, &atreadeof);
    APR_ASSERT_SUCCESS(tc, "Determine whether at EOF, #3", rv);
    if (!atreadeof) { /* ... but perhaps not yet; wait a moment */
        apr_sleep(apr_time_from_msec(5));
        rv = apr_socket_atreadeof(sock2, &atreadeof);
        APR_ASSERT_SUCCESS(tc, "Determine whether at EOF, #4", rv);
    }
    ABTS_INT_EQUAL(tc, 1, atreadeof);
    wait_child(tc, &proc);

    rv = apr_socket_close(sock2);
    APR_ASSERT_SUCCESS(tc, "Problem closing connected socket", rv);

    rv = apr_socket_close(sock);
    APR_ASSERT_SUCCESS(tc, "Problem closing socket", rv);
}
Exemplo n.º 2
0
void zmq::ipc_listener_t::in_event ()
{
    fd_t fd = accept ();

    //  If connection was reset by the peer in the meantime, just ignore it.
    //  TODO: Handle specific errors like ENFILE/EMFILE etc.
    if (fd == retired_fd) {
        socket->monitor_event (ZMQ_EVENT_ACCEPT_FAILED, endpoint.c_str(), zmq_errno());
        return;
    }

    //  Create the engine object for this connection.
    stream_engine_t *engine = new (std::nothrow) stream_engine_t (fd, options);
    alloc_assert (engine);

    //  Choose I/O thread to run connecter in. Given that we are already
    //  running in an I/O thread, there must be at least one available.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    zmq_assert (io_thread);

    //  Create and launch a session object. 
    session_base_t *session = session_base_t::create (io_thread, false, socket,
        options, NULL);
    errno_assert (session);
    session->inc_seqnum ();
    launch_child (session);
    send_attach (session, engine, false);
    socket->monitor_event (ZMQ_EVENT_ACCEPTED, endpoint.c_str(), fd);
}
Exemplo n.º 3
0
static void test_recv(abts_case *tc, void *data)
{
    apr_status_t rv;
    apr_socket_t *sock;
    apr_socket_t *sock2;
    apr_proc_t proc;
    int protocol;
    apr_size_t length = STRLEN;
    char datastr[STRLEN];
    
    sock = setup_socket(tc);
    if (!sock) return;

    launch_child(tc, &proc, "write", p);
    
    rv = apr_socket_accept(&sock2, sock, p);
    APR_ASSERT_SUCCESS(tc, "Problem with receiving connection", rv);

    apr_socket_protocol_get(sock2, &protocol);
    ABTS_INT_EQUAL(tc, APR_PROTO_TCP, protocol);
    
    memset(datastr, 0, STRLEN);
    apr_socket_recv(sock2, datastr, &length);

    /* Make sure that the server received the data we sent */
    ABTS_STR_EQUAL(tc, DATASTR, datastr);
    ABTS_SIZE_EQUAL(tc, strlen(datastr), wait_child(tc, &proc));

    rv = apr_socket_close(sock2);
    APR_ASSERT_SUCCESS(tc, "Problem closing connected socket", rv);
    rv = apr_socket_close(sock);
    APR_ASSERT_SUCCESS(tc, "Problem closing socket", rv);
}
Exemplo n.º 4
0
static void test_timeout(abts_case *tc, void *data)
{
    apr_status_t rv;
    apr_socket_t *sock;
    apr_socket_t *sock2;
    apr_proc_t proc;
    int protocol;
    int exit;
    
    sock = setup_socket(tc);
    if (!sock) return;

    launch_child(tc, &proc, "read", p);
    
    rv = apr_socket_accept(&sock2, sock, p);
    APR_ASSERT_SUCCESS(tc, "Problem with receiving connection", rv);

    apr_socket_protocol_get(sock2, &protocol);
    ABTS_INT_EQUAL(tc, APR_PROTO_TCP, protocol);
    
    exit = wait_child(tc, &proc);    
    ABTS_INT_EQUAL(tc, SOCKET_TIMEOUT, exit);

    /* We didn't write any data, so make sure the child program returns
     * an error.
     */
    rv = apr_socket_close(sock2);
    APR_ASSERT_SUCCESS(tc, "Problem closing connected socket", rv);
    rv = apr_socket_close(sock);
    APR_ASSERT_SUCCESS(tc, "Problem closing socket", rv);
}
Exemplo n.º 5
0
static void test_send(abts_case *tc, void *data)
{
    apr_status_t rv;
    apr_socket_t *sock;
    apr_socket_t *sock2;
    apr_proc_t proc;
    int protocol;
    apr_size_t length;

    sock = setup_socket(tc);
    if (!sock) return;

    launch_child(tc, &proc, "read", p);
    
    rv = apr_socket_accept(&sock2, sock, p);
    APR_ASSERT_SUCCESS(tc, "Problem with receiving connection", rv);

    apr_socket_protocol_get(sock2, &protocol);
    ABTS_INT_EQUAL(tc, APR_PROTO_TCP, protocol);
    
    length = strlen(DATASTR);
    apr_socket_send(sock2, DATASTR, &length);

    /* Make sure that the client received the data we sent */
    ABTS_SIZE_EQUAL(tc, strlen(DATASTR), wait_child(tc, &proc));

    rv = apr_socket_close(sock2);
    APR_ASSERT_SUCCESS(tc, "Problem closing connected socket", rv);
    rv = apr_socket_close(sock);
    APR_ASSERT_SUCCESS(tc, "Problem closing socket", rv);
}
Exemplo n.º 6
0
int zmq::socket_base_t::bind (const char *addr_)
{
    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        return -1;
    }

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    int rc = parse_uri (addr_, protocol, address);
    if (rc != 0)
        return -1;

    rc = check_protocol (protocol);
    if (rc != 0)
        return -1;

    if (protocol == "inproc" || protocol == "sys") {
        endpoint_t endpoint = {this, options};
        return register_endpoint (addr_, endpoint);
    }

    if (protocol == "tcp" || protocol == "ipc") {

        //  Choose I/O thread to run the listerner in.
        io_thread_t *io_thread = choose_io_thread (options.affinity);
        if (!io_thread) {
            errno = EMTHREAD;
            return -1;
        }

        //  Create and run the listener.
        zmq_listener_t *listener = new (std::nothrow) zmq_listener_t (
            io_thread, this, options);
        alloc_assert (listener);
        int rc = listener->set_address (protocol.c_str(), address.c_str ());
        if (rc != 0) {
            delete listener;
            return -1;
        }
        launch_child (listener);

        return 0;
    }

    if (protocol == "pgm" || protocol == "epgm") {

        //  For convenience's sake, bind can be used interchageable with
        //  connect for PGM and EPGM transports.
        return connect (addr_); 
    }

    zmq_assert (false);
    return -1;
}
Exemplo n.º 7
0
void ensure_handlers_started() {

    struct handler *h = handlers;
    while(h) {
        struct handler *next = h->next;
        if(h->h_type == PERSISTENT) {
            if(!launch_child(h)) {
                remove_handler(h);
            }
        }
        h = next;
    }
}
Exemplo n.º 8
0
void broadcast(struct message *m, fd_set *writefds) {
    struct handler *h = handlers;
    while(h) {
        if(h->h_type == PERSISTENT) {
            char *buff;
            switch(h->i_type) {
            case JSON:
                buff = message_to_json(m);
                if(! (ensure_write(h->fdout, buff, strlen(buff))
                      && ensure_write(h->fdout, "\n", 1))) {
                    fprintf(stderr, "Failed to write to handler %s\n", h->command);
                }
                break;

            case RAW:
                buff = message_to_IRC(m);
                break;
            }
        }
        else if(h->h_type == TRANSIENT) {
            kill_child(h);
            launch_child(h);
            char *buff;
            switch(h->i_type) {
            case JSON:
                buff = message_to_json(m);
                if(! (ensure_write(h->fdout, buff, strlen(buff))
                      && ensure_write(h->fdout, "\n", 1))) {
                    fprintf(stderr, "Failed to write to handler %s\n", h->command);
                }
                close(h->fdout);
                break;
            case RAW:
                buff = message_to_IRC(m);
                if( ! ensure_write(h->fdout, buff, strlen(buff))) {
                    fprintf(stderr, "Failed to write to handler %s\n", h->command);
                }
                close(h->fdout);
                break;
            }
        }
        h = h->next;
    }
}
Exemplo n.º 9
0
void zmq::zmq_listener_t::in_event ()
{
    fd_t fd = tcp_listener.accept ();

    //  If connection was reset by the peer in the meantime, just ignore it.
    //  TODO: Handle specific errors like ENFILE/EMFILE etc.
    if (fd == retired_fd)
        return;

    //  Choose I/O thread to run connecter in. Given that we are already
    //  running in an I/O thread, there must be at least one available.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    zmq_assert (io_thread);

    //  Create and launch an init object.
    zmq_init_t *init = new (std::nothrow) zmq_init_t (io_thread, socket,
            NULL, fd, options);
    alloc_assert (init);
    launch_child (init);
}
Exemplo n.º 10
0
void zmq::vmci_listener_t::in_event ()
{
    fd_t fd = accept ();

    //  If connection was reset by the peer in the meantime, just ignore it.
    if (fd == retired_fd) {
        socket->event_accept_failed (endpoint, zmq_errno());
        return;
    }

    tune_vmci_buffer_size (this->get_ctx (), fd, options.vmci_buffer_size, options.vmci_buffer_min_size, options.vmci_buffer_max_size);

    if (options.vmci_connect_timeout > 0)
    {
#if defined ZMQ_HAVE_WINDOWS
        tune_vmci_connect_timeout (this->get_ctx (), fd, options.vmci_connect_timeout);
#else
        struct timeval timeout = {0, options.vmci_connect_timeout * 1000};
        tune_vmci_connect_timeout (this->get_ctx (), fd, timeout);
#endif
    }

    //  Create the engine object for this connection.
    stream_engine_t *engine = new (std::nothrow)
        stream_engine_t (fd, options, endpoint);
    alloc_assert (engine);

    //  Choose I/O thread to run connecter in. Given that we are already
    //  running in an I/O thread, there must be at least one available.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    zmq_assert (io_thread);

    //  Create and launch a session object.
    session_base_t *session = session_base_t::create (io_thread, false, socket,
        options, NULL);
    errno_assert (session);
    session->inc_seqnum ();
    launch_child (session);
    send_attach (session, engine, false);
    socket->event_accepted (endpoint, fd);
}
Exemplo n.º 11
0
void zmq::tcp_listener_t::in_event ()
{
    fd_t fd = accept ();

    //  If connection was reset by the peer in the meantime, just ignore it.
    //  TODO: Handle specific errors like ENFILE/EMFILE etc.
    if (fd == retired_fd) {
        socket->event_accept_failed (endpoint, zmq_errno ());
        return;
    }

    int rc = tune_tcp_socket (fd);
    rc = rc
         | tune_tcp_keepalives (
             fd, options.tcp_keepalive, options.tcp_keepalive_cnt,
             options.tcp_keepalive_idle, options.tcp_keepalive_intvl);
    rc = rc | tune_tcp_maxrt (fd, options.tcp_maxrt);
    if (rc != 0) {
        socket->event_accept_failed (endpoint, zmq_errno ());
        return;
    }

    //  Create the engine object for this connection.
    stream_engine_t *engine =
      new (std::nothrow) stream_engine_t (fd, options, endpoint);
    alloc_assert (engine);

    //  Choose I/O thread to run connecter in. Given that we are already
    //  running in an I/O thread, there must be at least one available.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    zmq_assert (io_thread);

    //  Create and launch a session object.
    session_base_t *session =
      session_base_t::create (io_thread, false, socket, options, NULL);
    errno_assert (session);
    session->inc_seqnum ();
    launch_child (session);
    send_attach (session, engine, false);
    socket->event_accepted (endpoint, (int) fd);
}
Exemplo n.º 12
0
void zmq::socket_base_t::add_endpoint (const char *addr_, own_t *endpoint_)
{
    //  Activate the session. Make it a child of this socket.
    launch_child (endpoint_);
    endpoints.insert (std::make_pair (std::string (addr_), endpoint_));
}
void zmq::socket_base_t::add_endpoint (const char *addr_, own_t *endpoint_, pipe_t *pipe)
{
    //  Activate the session. Make it a child of this socket.
    launch_child (endpoint_);
    endpoints.insert (endpoints_t::value_type (std::string (addr_), endpoint_pipe_t(endpoint_, pipe)));
}
Exemplo n.º 14
0
int zmq::socket_base_t::connect (const char *addr_)
{
    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        return -1;
    }

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    int rc = parse_uri (addr_, protocol, address);
    if (rc != 0)
        return -1;

    rc = check_protocol (protocol);
    if (rc != 0)
        return -1;

    if (protocol == "inproc" || protocol == "sys") {

        //  TODO: inproc connect is specific with respect to creating pipes
        //  as there's no 'reconnect' functionality implemented. Once that
        //  is in place we should follow generic pipe creation algorithm.

        //  Find the peer endpoint.
        endpoint_t peer = find_endpoint (addr_);
        if (!peer.socket)
            return -1;

        reader_t *inpipe_reader = NULL;
        writer_t *inpipe_writer = NULL;
        reader_t *outpipe_reader = NULL;
        writer_t *outpipe_writer = NULL;

        // The total HWM for an inproc connection should be the sum of
        // the binder's HWM and the connector's HWM.  (Similarly for the
        // SWAP.)
        int64_t  hwm;
        if (options.hwm == 0 || peer.options.hwm == 0)
            hwm = 0;
        else
            hwm = options.hwm + peer.options.hwm;
        int64_t swap;
        if (options.swap == 0 && peer.options.swap == 0)
            swap = 0;
        else
            swap = options.swap + peer.options.swap;

        //  Create inbound pipe, if required.
        if (options.requires_in)
            create_pipe (this, peer.socket, hwm, swap,
                &inpipe_reader, &inpipe_writer);

        //  Create outbound pipe, if required.
        if (options.requires_out)
            create_pipe (peer.socket, this, hwm, swap,
                &outpipe_reader, &outpipe_writer);

        //  Attach the pipes to this socket object.
        attach_pipes (inpipe_reader, outpipe_writer, peer.options.identity);

        //  Attach the pipes to the peer socket. Note that peer's seqnum
        //  was incremented in find_endpoint function. We don't need it
        //  increased here.
        send_bind (peer.socket, outpipe_reader, inpipe_writer,
            options.identity, false);

        return 0;
    }

    //  Choose the I/O thread to run the session in.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    if (!io_thread) {
        errno = EMTHREAD;
        return -1;
    }

    //  Create session.
    connect_session_t *session = new (std::nothrow) connect_session_t (
        io_thread, this, options, protocol.c_str (), address.c_str ());
    alloc_assert (session);

    //  If 'immediate connect' feature is required, we'll create the pipes
    //  to the session straight away. Otherwise, they'll be created by the
    //  session once the connection is established.
    if (options.immediate_connect) {

        reader_t *inpipe_reader = NULL;
        writer_t *inpipe_writer = NULL;
        reader_t *outpipe_reader = NULL;
        writer_t *outpipe_writer = NULL;

        //  Create inbound pipe, if required.
        if (options.requires_in)
            create_pipe (this, session, options.hwm, options.swap,
                &inpipe_reader, &inpipe_writer);

        //  Create outbound pipe, if required.
        if (options.requires_out)
            create_pipe (session, this, options.hwm, options.swap,
                &outpipe_reader, &outpipe_writer);

        //  Attach the pipes to the socket object.
        attach_pipes (inpipe_reader, outpipe_writer, blob_t ());

        //  Attach the pipes to the session object.
        session->attach_pipes (outpipe_reader, inpipe_writer, blob_t ());
    }

    //  Activate the session. Make it a child of this socket.
    launch_child (session);

    return 0;
}
Exemplo n.º 15
0
int zmq::socket_base_t::bind (const char *addr_)
{
    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        return -1;
    }

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    int rc = parse_uri (addr_, protocol, address);
    if (rc != 0)
        return -1;

    rc = check_protocol (protocol);
    if (rc != 0)
        return -1;

    if (protocol == "inproc" || protocol == "sys") {
        endpoint_t endpoint = {this, options};
        return register_endpoint (addr_, endpoint);
    }

    if (protocol == "pgm" || protocol == "epgm") {

        //  For convenience's sake, bind can be used interchageable with
        //  connect for PGM and EPGM transports.
        return connect (addr_); 
    }

    //  Remaining trasnports require to be run in an I/O thread, so at this
    //  point we'll choose one.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    if (!io_thread) {
        errno = EMTHREAD;
        return -1;
    }

    if (protocol == "tcp") {
        tcp_listener_t *listener = new (std::nothrow) tcp_listener_t (
            io_thread, this, options);
        alloc_assert (listener);
        int rc = listener->set_address (address.c_str ());
        if (rc != 0) {
            delete listener;
            return -1;
        }
        launch_child (listener);
        return 0;
    }

#if !defined ZMQ_HAVE_WINDOWS && !defined ZMQ_HAVE_OPENVMS
    if (protocol == "ipc") {
        ipc_listener_t *listener = new (std::nothrow) ipc_listener_t (
            io_thread, this, options);
        alloc_assert (listener);
        int rc = listener->set_address (address.c_str ());
        if (rc != 0) {
            delete listener;
            return -1;
        }
        launch_child (listener);
        return 0;
    }
#endif

    zmq_assert (false);
    return -1;
}
Exemplo n.º 16
0
void zmq::session_base_t::start_connecting (bool wait_)
{
    zmq_assert (active);

    //  Choose I/O thread to run connecter in. Given that we are already
    //  running in an I/O thread, there must be at least one available.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    zmq_assert (io_thread);

    //  Create the connecter object.

    if (addr->protocol == "tcp") {
        if (!options.socks_proxy_address.empty()) {
            address_t *proxy_address = new (std::nothrow)
                address_t ("tcp", options.socks_proxy_address);
            alloc_assert (proxy_address);
            socks_connecter_t *connecter =
                new (std::nothrow) socks_connecter_t (
                    io_thread, this, options, addr, proxy_address, wait_);
            alloc_assert (connecter);
            launch_child (connecter);
        }
        else {
            tcp_connecter_t *connecter = new (std::nothrow)
                tcp_connecter_t (io_thread, this, options, addr, wait_);
            alloc_assert (connecter);
            launch_child (connecter);
        }
        return;
    }

#if !defined ZMQ_HAVE_WINDOWS && !defined ZMQ_HAVE_OPENVMS
    if (addr->protocol == "ipc") {
        ipc_connecter_t *connecter = new (std::nothrow) ipc_connecter_t (
            io_thread, this, options, addr, wait_);
        alloc_assert (connecter);
        launch_child (connecter);
        return;
    }
#endif
#if defined ZMQ_HAVE_TIPC
    if (addr->protocol == "tipc") {
        tipc_connecter_t *connecter = new (std::nothrow) tipc_connecter_t (
            io_thread, this, options, addr, wait_);
        alloc_assert (connecter);
        launch_child (connecter);
        return;
    }
#endif

#ifdef ZMQ_HAVE_OPENPGM

    //  Both PGM and EPGM transports are using the same infrastructure.
    if (addr->protocol == "pgm" || addr->protocol == "epgm") {

        zmq_assert (options.type == ZMQ_PUB || options.type == ZMQ_XPUB
                 || options.type == ZMQ_SUB || options.type == ZMQ_XSUB);

        //  For EPGM transport with UDP encapsulation of PGM is used.
        bool const udp_encapsulation = addr->protocol == "epgm";

        //  At this point we'll create message pipes to the session straight
        //  away. There's no point in delaying it as no concept of 'connect'
        //  exists with PGM anyway.
        if (options.type == ZMQ_PUB || options.type == ZMQ_XPUB) {

            //  PGM sender.
            pgm_sender_t *pgm_sender = new (std::nothrow) pgm_sender_t (
                io_thread, options);
            alloc_assert (pgm_sender);

            int rc = pgm_sender->init (udp_encapsulation, addr->address.c_str ());
            errno_assert (rc == 0);

            send_attach (this, pgm_sender);
        }
        else {

            //  PGM receiver.
            pgm_receiver_t *pgm_receiver = new (std::nothrow) pgm_receiver_t (
                io_thread, options);
            alloc_assert (pgm_receiver);

            int rc = pgm_receiver->init (udp_encapsulation, addr->address.c_str ());
            errno_assert (rc == 0);

            send_attach (this, pgm_receiver);
        }

        return;
    }
#endif

#ifdef ZMQ_HAVE_NORM
    if (addr->protocol == "norm") {
        //  At this point we'll create message pipes to the session straight
        //  away. There's no point in delaying it as no concept of 'connect'
        //  exists with NORM anyway.
        if (options.type == ZMQ_PUB || options.type == ZMQ_XPUB) {

            //  NORM sender.
            norm_engine_t* norm_sender = new (std::nothrow) norm_engine_t(io_thread, options);
            alloc_assert (norm_sender);

            int rc = norm_sender->init (addr->address.c_str (), true, false);
            errno_assert (rc == 0);

            send_attach (this, norm_sender);
        }
        else {  // ZMQ_SUB or ZMQ_XSUB

            //  NORM receiver.
            norm_engine_t* norm_receiver = new (std::nothrow) norm_engine_t (io_thread, options);
            alloc_assert (norm_receiver);

            int rc = norm_receiver->init (addr->address.c_str (), false, true);
            errno_assert (rc == 0);

            send_attach (this, norm_receiver);
        }
        return;
    }
#endif // ZMQ_HAVE_NORM

    zmq_assert (false);
}
Exemplo n.º 17
0
int zmq::socket_base_t::connect (const char *addr_)
{
    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        return -1;
    }

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    int rc = parse_uri (addr_, protocol, address);
    if (rc != 0)
        return -1;

    rc = check_protocol (protocol);
    if (rc != 0)
        return -1;

    if (protocol == "inproc" || protocol == "sys") {

        //  TODO: inproc connect is specific with respect to creating pipes
        //  as there's no 'reconnect' functionality implemented. Once that
        //  is in place we should follow generic pipe creation algorithm.

        //  Find the peer endpoint.
        endpoint_t peer = find_endpoint (addr_);
        if (!peer.socket)
            return -1;

        // The total HWM for an inproc connection should be the sum of
        // the binder's HWM and the connector's HWM.
        int  sndhwm;
        int  rcvhwm;
        if (options.sndhwm == 0 || peer.options.rcvhwm == 0)
            sndhwm = 0;
        else
            sndhwm = options.sndhwm + peer.options.rcvhwm;
        if (options.rcvhwm == 0 || peer.options.sndhwm == 0)
            rcvhwm = 0;
        else
            rcvhwm = options.rcvhwm + peer.options.sndhwm;

        //  Create a bi-directional pipe to connect the peers.
        object_t *parents [2] = {this, peer.socket};
        pipe_t *pipes [2] = {NULL, NULL};
        int hwms [2] = {sndhwm, rcvhwm};
        bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
        int rc = pipepair (parents, pipes, hwms, delays);
        errno_assert (rc == 0);

        //  Attach local end of the pipe to this socket object.
        attach_pipe (pipes [0]);

        //  If required, send the identity of the local socket to the peer.
        if (options.send_identity) {
            msg_t id;
            rc = id.init_size (options.identity_size);
            zmq_assert (rc == 0);
            memcpy (id.data (), options.identity, options.identity_size);
            id.set_flags (msg_t::identity);
            bool written = pipes [0]->write (&id);
            zmq_assert (written);
        }

        //  Attach remote end of the pipe to the peer socket. Note that peer's
        //  seqnum was incremented in find_endpoint function. We don't need it
        //  increased here.
        send_bind (peer.socket, pipes [1], false);

        return 0;
    }

    //  Choose the I/O thread to run the session in.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    if (!io_thread) {
        errno = EMTHREAD;
        return -1;
    }

    //  Create session.
    session_base_t *session = session_base_t::create (io_thread, true, this,
        options, protocol.c_str (), address.c_str ());
    errno_assert (session);

    //  Create a bi-directional pipe.
    object_t *parents [2] = {this, session};
    pipe_t *pipes [2] = {NULL, NULL};
    int hwms [2] = {options.sndhwm, options.rcvhwm};
    bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
    rc = pipepair (parents, pipes, hwms, delays);
    errno_assert (rc == 0);

    //  PGM does not support subscription forwarding; ask for all data to be
    //  sent to this pipe.
    bool icanhasall = false;
    if (protocol == "pgm" || protocol == "epgm")
        icanhasall = true;

    //  Attach local end of the pipe to the socket object.
    attach_pipe (pipes [0], icanhasall);

    //  Attach remote end of the pipe to the session object later on.
    session->attach_pipe (pipes [1]);

    //  Activate the session. Make it a child of this socket.
    launch_child (session);

    return 0;
}
Exemplo n.º 18
0
int zmq::socket_base_t::connect (const char *addr_)
{
    if (unlikely (ctx_terminated)) {
        errno = ETERM;
        return -1;
    }

    //  Parse addr_ string.
    std::string protocol;
    std::string address;
    int rc = parse_uri (addr_, protocol, address);
    if (rc != 0)
        return -1;

    //  Checks that protocol is valid and supported on this system
    rc = check_protocol (protocol);
    if (rc != 0)
        return -1;

    //  Parsed address for validation
    sockaddr_storage addr;
    socklen_t addr_len;

    if (protocol == "tcp")
        rc = resolve_ip_hostname (&addr, &addr_len, address.c_str ());
    else
    if (protocol == "ipc")
        rc = resolve_local_path (&addr, &addr_len, address.c_str ());
    if (rc != 0)
        return -1;

    if (protocol == "inproc" || protocol == "sys") {

        //  TODO: inproc connect is specific with respect to creating pipes
        //  as there's no 'reconnect' functionality implemented. Once that
        //  is in place we should follow generic pipe creation algorithm.

        //  Find the peer endpoint.
        endpoint_t peer = find_endpoint (addr_);
        if (!peer.socket)
            return -1;

        // The total HWM for an inproc connection should be the sum of
        // the binder's HWM and the connector's HWM.
        int  sndhwm;
        int  rcvhwm;
        if (options.sndhwm == 0 || peer.options.rcvhwm == 0)
            sndhwm = 0;
        else
            sndhwm = options.sndhwm + peer.options.rcvhwm;
        if (options.rcvhwm == 0 || peer.options.sndhwm == 0)
            rcvhwm = 0;
        else
            rcvhwm = options.rcvhwm + peer.options.sndhwm;

        //  Create a bi-directional pipe to connect the peers.
        object_t *parents [2] = {this, peer.socket};
        pipe_t *pipes [2] = {NULL, NULL};
        int hwms [2] = {sndhwm, rcvhwm};
        bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
        int rc = pipepair (parents, pipes, hwms, delays);
        errno_assert (rc == 0);

        //  Attach local end of the pipe to this socket object.
        attach_pipe (pipes [0], peer.options.identity);

        //  Attach remote end of the pipe to the peer socket. Note that peer's
        //  seqnum was incremented in find_endpoint function. We don't need it
        //  increased here.
        send_bind (peer.socket, pipes [1], options.identity, false);

        return 0;
    }

    //  Choose the I/O thread to run the session in.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    if (!io_thread) {
        errno = EMTHREAD;
        return -1;
    }

    //  Create session.
    connect_session_t *session = new (std::nothrow) connect_session_t (
        io_thread, this, options, protocol.c_str (), address.c_str ());
    alloc_assert (session);

    //  If 'immediate connect' feature is required, we'll create the pipes
    //  to the session straight away. Otherwise, they'll be created by the
    //  session once the connection is established.
    if (options.immediate_connect) {

        //  Create a bi-directional pipe.
        object_t *parents [2] = {this, session};
        pipe_t *pipes [2] = {NULL, NULL};
        int hwms [2] = {options.sndhwm, options.rcvhwm};
        bool delays [2] = {options.delay_on_disconnect, options.delay_on_close};
        int rc = pipepair (parents, pipes, hwms, delays);
        errno_assert (rc == 0);

        //  Attach local end of the pipe to the socket object.
        attach_pipe (pipes [0], blob_t ());

        //  Attach remote end of the pipe to the session object later on.
        session->attach_pipe (pipes [1]);
    }

    //  Activate the session. Make it a child of this socket.
    launch_child (session);

    return 0;
}
Exemplo n.º 19
0
void zmq::connect_session_t::start_connecting (bool wait_)
{
    //  Choose I/O thread to run connecter in. Given that we are already
    //  running in an I/O thread, there must be at least one available.
    io_thread_t *io_thread = choose_io_thread (options.affinity);
    zmq_assert (io_thread);

    //  Create the connecter object.

    //  Both TCP and IPC transports are using the same infrastructure.
    if (protocol == "tcp" || protocol == "ipc") {

        zmq_connecter_t *connecter = new (std::nothrow) zmq_connecter_t (
            io_thread, this, options, protocol.c_str (), address.c_str (),
            wait_);
        alloc_assert (connecter);
        launch_child (connecter);
        return;
    }

#if defined ZMQ_HAVE_OPENPGM

    //  Both PGM and EPGM transports are using the same infrastructure.
    if (protocol == "pgm" || protocol == "epgm") {

        //  For EPGM transport with UDP encapsulation of PGM is used.
        bool udp_encapsulation = (protocol == "epgm");

        //  At this point we'll create message pipes to the session straight
        //  away. There's no point in delaying it as no concept of 'connect'
        //  exists with PGM anyway.
        if (options.type == ZMQ_PUB || options.type == ZMQ_XPUB) {

            //  PGM sender.
            pgm_sender_t *pgm_sender =  new (std::nothrow) pgm_sender_t (
                io_thread, options);
            alloc_assert (pgm_sender);

            int rc = pgm_sender->init (udp_encapsulation, address.c_str ());
            zmq_assert (rc == 0);

            send_attach (this, pgm_sender, blob_t ());
        }
        else if (options.type == ZMQ_SUB || options.type == ZMQ_XSUB) {

            //  PGM receiver.
            pgm_receiver_t *pgm_receiver =  new (std::nothrow) pgm_receiver_t (
                io_thread, options);
            alloc_assert (pgm_receiver);

            int rc = pgm_receiver->init (udp_encapsulation, address.c_str ());
            zmq_assert (rc == 0);

            send_attach (this, pgm_receiver, blob_t ());
        }
        else
            zmq_assert (false);

        return;
    }
#endif

    zmq_assert (false);
}
Exemplo n.º 20
0
int string_launch_child(struct state *s, char *string)
{
  char **vector, **tmp;
  char *t;
  unsigned int i, v, j, d, ws;
  int run;

  vector = NULL;
  j = 0; 
  i = 0;
  ws = 1;
  v = 0;

  for(run = 1; run > 0;){
    switch(string[i]){
      case '\0'  :
        run = 0;
        /* fall */
      case ' '   :
      case '\t'  :
        if(ws == 0){
          ws = 1;
          tmp = realloc(vector, sizeof(char *) * (v + 2));
          if(tmp == NULL){
            run = (-1);
          } else {
            vector = tmp;
            d = i - j;
            t = malloc(sizeof(char) * (d + 1));
            if(t == NULL){
              run = (-1);
            } else {
              strncpy(t, string + j, d);
              t[d] = '\0';
              vector[v] = t;
              v++;
              vector[v] = NULL;
            }
          }
        }
        i++;
        break;
      default :
        if(ws){
          j = i;
          ws = 0;
        }
        i++;
      break;
    }
  }

  if(vector == NULL){
    sync_message_katcl(s->s_up, KATCP_LEVEL_ERROR, KCPCON_NAME, "no command found in string <%s>", string);
    return -1;
  }


  if(run < 0){
    sync_message_katcl(s->s_up, KATCP_LEVEL_ERROR, KCPCON_NAME, "allocation error while decomposing %s", string);
  } else {
#ifdef DEBUG
  fprintf(stderr, "have vector <%s ...> of %u entries\n", vector[0], v);
#endif
    run = launch_child(s, vector);
  }

  if(vector){
    for(i = 0; i < v; i++){
      if(vector[i]){
        free(vector[i]);
        vector[i] = NULL;
      }
    }
    free(vector);
  }

  return run;
}