Exemplo n.º 1
0
int
tenGlyphGen(limnObject *glyphsLimn, echoScene *glyphsEcho,
            tenGlyphParm *parm,
            const Nrrd *nten, const Nrrd *npos, const Nrrd *nslc) {
  static const char me[]="tenGlyphGen";
  gageShape *shape;
  airArray *mop;
  float *tdata, eval[3], evec[9], *cvec, rotEvec[9], mA_f[16],
    absEval[3], glyphScl[3];
  double pI[3], pW[3], cl, cp, sRot[16], mA[16], mB[16], msFr[9], tmpvec[3],
    R, G, B, qA, qB, qC, glyphAniso, sliceGray;
  unsigned int duh;
  int slcCoord[3], idx, glyphIdx, axis, numGlyphs,
    svRGBAfl=AIR_FALSE;
  limnLook *look; int lookIdx;
  echoObject *eglyph, *inst, *list=NULL, *split, *esquare;
  echoPos_t eM[16], originOffset[3], edge0[3], edge1[3];
  char stmp[AIR_STRLEN_SMALL];
  /*
  int eret;
  double tmp1[3], tmp2[3];
  */

  if (!( (glyphsLimn || glyphsEcho) && nten && parm)) {
    biffAddf(TEN, "%s: got NULL pointer", me);
    return 1;
  }
  mop = airMopNew();
  shape = gageShapeNew();
  shape->defaultCenter = nrrdCenterCell;
  airMopAdd(mop, shape, (airMopper)gageShapeNix, airMopAlways);
  if (npos) {
    if (!( 2 == nten->dim && 7 == nten->axis[0].size )) {
      biffAddf(TEN, "%s: nten isn't 2-D 7-by-N array", me);
      airMopError(mop); return 1;
    }
    if (!( 2 == npos->dim && 3 == npos->axis[0].size
           && nten->axis[1].size == npos->axis[1].size )) {
      biffAddf(TEN, "%s: npos isn't 2-D 3-by-%s array", me,
               airSprintSize_t(stmp, nten->axis[1].size));
      airMopError(mop); return 1;
    }
    if (!( nrrdTypeFloat == nten->type && nrrdTypeFloat == npos->type )) {
      biffAddf(TEN, "%s: nten and npos must be %s, not %s and %s", me,
               airEnumStr(nrrdType, nrrdTypeFloat),
               airEnumStr(nrrdType, nten->type),
               airEnumStr(nrrdType, npos->type));
      airMopError(mop); return 1;
    }
  } else {
    if (tenTensorCheck(nten, nrrdTypeFloat, AIR_TRUE, AIR_TRUE)) {
      biffAddf(TEN, "%s: didn't get a valid DT volume", me);
      airMopError(mop); return 1;
    }
  }
  if (tenGlyphParmCheck(parm, nten, npos, nslc)) {
    biffAddf(TEN, "%s: trouble", me);
    airMopError(mop); return 1;
  }
  if (!npos) {
    if (gageShapeSet(shape, nten, tenGageKind->baseDim)) {
      biffMovef(TEN, GAGE, "%s: trouble", me);
      airMopError(mop); return 1;
    }
  }
  if (parm->doSlice) {
    ELL_3V_COPY(edge0, shape->spacing);
    ELL_3V_COPY(edge1, shape->spacing);
    edge0[parm->sliceAxis] = edge1[parm->sliceAxis] = 0.0;
    switch(parm->sliceAxis) {
    case 0:
      edge0[1] = edge1[2] = 0;
      ELL_4M_ROTATE_Y_SET(sRot, AIR_PI/2);
      break;
    case 1:
      edge0[0] = edge1[2] = 0;
      ELL_4M_ROTATE_X_SET(sRot, AIR_PI/2);
      break;
    case 2: default:
      edge0[0] = edge1[1] = 0;
      ELL_4M_IDENTITY_SET(sRot);
      break;
    }
    ELL_3V_COPY(originOffset, shape->spacing);
    ELL_3V_SCALE(originOffset, -0.5, originOffset);
    originOffset[parm->sliceAxis] *= -2*parm->sliceOffset;
  }
  if (glyphsLimn) {
    /* create limnLooks for diffuse and ambient-only shading */
    /* ??? */
    /* hack: save old value of setVertexRGBAFromLook, and set to true */
    svRGBAfl = glyphsLimn->setVertexRGBAFromLook;
    glyphsLimn->setVertexRGBAFromLook = AIR_TRUE;
  }
  if (glyphsEcho) {
    list = echoObjectNew(glyphsEcho, echoTypeList);
  }
  if (npos) {
    numGlyphs = AIR_UINT(nten->axis[1].size);
  } else {
    numGlyphs = shape->size[0] * shape->size[1] * shape->size[2];
  }
  /* find measurement frame transform */
  if (3 == nten->spaceDim
      && AIR_EXISTS(nten->measurementFrame[0][0])) {
    /*     msFr        nten->measurementFrame
    **   0  1  2      [0][0]   [1][0]   [2][0]
    **   3  4  5      [0][1]   [1][1]   [2][1]
    **   6  7  8      [0][2]   [1][2]   [2][2]
    */
    msFr[0] = nten->measurementFrame[0][0];
    msFr[3] = nten->measurementFrame[0][1];
    msFr[6] = nten->measurementFrame[0][2];
    msFr[1] = nten->measurementFrame[1][0];
    msFr[4] = nten->measurementFrame[1][1];
    msFr[7] = nten->measurementFrame[1][2];
    msFr[2] = nten->measurementFrame[2][0];
    msFr[5] = nten->measurementFrame[2][1];
    msFr[8] = nten->measurementFrame[2][2];
  } else {
    ELL_3M_IDENTITY_SET(msFr);
  }
  for (idx=0; idx<numGlyphs; idx++) {
    tdata = (float*)(nten->data) + 7*idx;
    if (parm->verbose >= 2) {
      fprintf(stderr, "%s: glyph %d/%d: hello %g    %g %g %g %g %g %g\n",
              me, idx, numGlyphs, tdata[0],
              tdata[1], tdata[2], tdata[3],
              tdata[4], tdata[5], tdata[6]);
    }
    if (!( TEN_T_EXISTS(tdata) )) {
      /* there's nothing we can do here */
      if (parm->verbose >= 2) {
        fprintf(stderr, "%s: glyph %d/%d: non-existent data\n",
                me, idx, numGlyphs);
      }
      continue;
    }
    if (npos) {
      ELL_3V_COPY(pW, (float*)(npos->data) + 3*idx);
      if (!( AIR_EXISTS(pW[0]) && AIR_EXISTS(pW[1]) && AIR_EXISTS(pW[2]) )) {
        /* position doesn't exist- perhaps because its from the push
           library, which might kill points by setting coords to nan */
        continue;
      }
    } else {
      NRRD_COORD_GEN(pI, shape->size, 3, idx);
      /* this does take into account full orientation */
      gageShapeItoW(shape, pW, pI);
      if (parm->nmask) {
        if (!( nrrdFLookup[parm->nmask->type](parm->nmask->data, idx)
               >= parm->maskThresh )) {
          if (parm->verbose >= 2) {
            fprintf(stderr, "%s: glyph %d/%d: doesn't meet mask thresh\n",
                    me, idx, numGlyphs);
          }
          continue;
        }
      }
    }
    tenEigensolve_f(eval, evec, tdata);
    /* transform eigenvectors by measurement frame */
    ELL_3MV_MUL(tmpvec, msFr, evec + 0);
    ELL_3V_COPY_TT(evec + 0, float, tmpvec);
    ELL_3MV_MUL(tmpvec, msFr, evec + 3);
    ELL_3V_COPY_TT(evec + 3, float, tmpvec);
    ELL_3MV_MUL(tmpvec, msFr, evec + 6);
    ELL_3V_COPY_TT(evec + 6, float, tmpvec);
    ELL_3V_CROSS(tmpvec, evec + 0, evec + 3);
    if (0 > ELL_3V_DOT(tmpvec, evec + 6)) {
      ELL_3V_SCALE(evec + 6, -1, evec + 6);
    }
    ELL_3M_TRANSPOSE(rotEvec, evec);
    if (parm->doSlice
        && pI[parm->sliceAxis] == parm->slicePos) {
      /* set sliceGray */
      if (nslc) {
        /* we aren't masked by confidence, as anisotropy slice is */
        for (duh=0; duh<parm->sliceAxis; duh++) {
          slcCoord[duh] = (int)(pI[duh]);
        }
        for (duh=duh<parm->sliceAxis; duh<2; duh++) {
          slcCoord[duh] = (int)(pI[duh+1]);
        }
        /* HEY: GLK has no idea what's going here */
        slcCoord[0] = (int)(pI[0]);
        slcCoord[1] = (int)(pI[1]);
        slcCoord[2] = (int)(pI[2]);
        sliceGray =
          nrrdFLookup[nslc->type](nslc->data, slcCoord[0]
                                  + nslc->axis[0].size*slcCoord[1]);
      } else {
        if (!( tdata[0] >= parm->confThresh )) {
          if (parm->verbose >= 2) {
            fprintf(stderr, "%s: glyph %d/%d (slice): conf %g < thresh %g\n",
                    me, idx, numGlyphs, tdata[0], parm->confThresh);
          }
          continue;
        }
        sliceGray = tenAnisoEval_f(eval, parm->sliceAnisoType);
      }
      if (parm->sliceGamma > 0) {
        sliceGray = AIR_AFFINE(0, sliceGray, 1, parm->sliceBias, 1);
        sliceGray = pow(sliceGray, 1.0/parm->sliceGamma);
      } else {
        sliceGray = AIR_AFFINE(0, sliceGray, 1, 0, 1-parm->sliceBias);
        sliceGray = 1.0 - pow(sliceGray, -1.0/parm->sliceGamma);
      }
      /* make slice contribution */
      /* HEY: this is *NOT* aware of shape->fromOrientation */
      if (glyphsLimn) {
        lookIdx = limnObjectLookAdd(glyphsLimn);
        look = glyphsLimn->look + lookIdx;
        ELL_4V_SET_TT(look->rgba, float, sliceGray, sliceGray, sliceGray, 1);
        ELL_3V_SET(look->kads, 1, 0, 0);
        look->spow = 0;
        glyphIdx = limnObjectSquareAdd(glyphsLimn, lookIdx);
        ELL_4M_IDENTITY_SET(mA);
        ell_4m_post_mul_d(mA, sRot);
        if (!npos) {
          ELL_4M_SCALE_SET(mB,
                           shape->spacing[0],
                           shape->spacing[1],
                           shape->spacing[2]);
        }
        ell_4m_post_mul_d(mA, mB);
        ELL_4M_TRANSLATE_SET(mB, pW[0], pW[1], pW[2]);
        ell_4m_post_mul_d(mA, mB);
        ELL_4M_TRANSLATE_SET(mB,
                             originOffset[0],
                             originOffset[1],
                             originOffset[2]);
        ell_4m_post_mul_d(mA, mB);
        ELL_4M_COPY_TT(mA_f, float, mA);
        limnObjectPartTransform(glyphsLimn, glyphIdx, mA_f);
      }
      if (glyphsEcho) {
        esquare = echoObjectNew(glyphsEcho,echoTypeRectangle);
        ELL_3V_ADD2(((echoRectangle*)esquare)->origin, pW, originOffset);
        ELL_3V_COPY(((echoRectangle*)esquare)->edge0, edge0);
        ELL_3V_COPY(((echoRectangle*)esquare)->edge1, edge1);
        echoColorSet(esquare,
                     AIR_CAST(echoCol_t, sliceGray),
                     AIR_CAST(echoCol_t, sliceGray),
                     AIR_CAST(echoCol_t, sliceGray), 1);
        /* this is pretty arbitrary- but I want shadows to have some effect.
           Previously, the material was all ambient: (A,D,S) = (1,0,0),
           which avoided all shadow effects. */
        echoMatterPhongSet(glyphsEcho, esquare, 0.4f, 0.6f, 0, 40);
        echoListAdd(list, esquare);
      }
    }
    if (parm->onlyPositive) {
      if (eval[2] < 0) {
        /* didn't have all positive eigenvalues, its outta here */
        if (parm->verbose >= 2) {
          fprintf(stderr, "%s: glyph %d/%d: not all evals %g %g %g > 0\n",
                  me, idx, numGlyphs, eval[0], eval[1], eval[2]);
        }
        continue;
      }
    }
    if (!( tdata[0] >= parm->confThresh )) {
      if (parm->verbose >= 2) {
        fprintf(stderr, "%s: glyph %d/%d: conf %g < thresh %g\n",
                me, idx, numGlyphs, tdata[0], parm->confThresh);
      }
      continue;
    }
    if (!( tenAnisoEval_f(eval, parm->anisoType) >= parm->anisoThresh )) {
      if (parm->verbose >= 2) {
        fprintf(stderr, "%s: glyph %d/%d: aniso[%d] %g < thresh %g\n",
                me, idx, numGlyphs, parm->anisoType,
                tenAnisoEval_f(eval, parm->anisoType), parm->anisoThresh);
      }
      continue;
    }
    glyphAniso = tenAnisoEval_f(eval, parm->colAnisoType);
    /*
      fprintf(stderr, "%s: eret = %d; evals = %g %g %g\n", me,
      eret, eval[0], eval[1], eval[2]);
      ELL_3V_CROSS(tmp1, evec+0, evec+3); tmp2[0] = ELL_3V_LEN(tmp1);
      ELL_3V_CROSS(tmp1, evec+0, evec+6); tmp2[1] = ELL_3V_LEN(tmp1);
      ELL_3V_CROSS(tmp1, evec+3, evec+6); tmp2[2] = ELL_3V_LEN(tmp1);
      fprintf(stderr, "%s: crosses = %g %g %g\n", me,
      tmp2[0], tmp2[1], tmp2[2]);
    */

    /* set transform (in mA) */
    ELL_3V_ABS(absEval, eval);
    ELL_4M_IDENTITY_SET(mA);                        /* reset */
    ELL_3V_SCALE(glyphScl, parm->glyphScale, absEval); /* scale by evals */
    ELL_4M_SCALE_SET(mB, glyphScl[0], glyphScl[1], glyphScl[2]);

    ell_4m_post_mul_d(mA, mB);
    ELL_43M_INSET(mB, rotEvec);                     /* rotate by evecs */
    ell_4m_post_mul_d(mA, mB);
    ELL_4M_TRANSLATE_SET(mB, pW[0], pW[1], pW[2]);  /* translate */
    ell_4m_post_mul_d(mA, mB);

    /* set color (in R,G,B) */
    cvec = evec + 3*(AIR_CLAMP(0, parm->colEvec, 2));
    R = AIR_ABS(cvec[0]);                           /* standard mapping */
    G = AIR_ABS(cvec[1]);
    B = AIR_ABS(cvec[2]);
    /* desaturate by colMaxSat */
    R = AIR_AFFINE(0.0, parm->colMaxSat, 1.0, parm->colIsoGray, R);
    G = AIR_AFFINE(0.0, parm->colMaxSat, 1.0, parm->colIsoGray, G);
    B = AIR_AFFINE(0.0, parm->colMaxSat, 1.0, parm->colIsoGray, B);
    /* desaturate some by anisotropy */
    R = AIR_AFFINE(0.0, parm->colAnisoModulate, 1.0,
                   R, AIR_AFFINE(0.0, glyphAniso, 1.0, parm->colIsoGray, R));
    G = AIR_AFFINE(0.0, parm->colAnisoModulate, 1.0,
                   G, AIR_AFFINE(0.0, glyphAniso, 1.0, parm->colIsoGray, G));
    B = AIR_AFFINE(0.0, parm->colAnisoModulate, 1.0,
                   B, AIR_AFFINE(0.0, glyphAniso, 1.0, parm->colIsoGray, B));
    /* clamp and do gamma */
    R = AIR_CLAMP(0.0, R, 1.0);
    G = AIR_CLAMP(0.0, G, 1.0);
    B = AIR_CLAMP(0.0, B, 1.0);
    R = pow(R, parm->colGamma);
    G = pow(G, parm->colGamma);
    B = pow(B, parm->colGamma);

    /* find axis, and superquad exponents qA and qB */
    if (eval[2] > 0) {
      /* all evals positive */
      cl = AIR_MIN(0.99, tenAnisoEval_f(eval, tenAniso_Cl1));
      cp = AIR_MIN(0.99, tenAnisoEval_f(eval, tenAniso_Cp1));
      if (cl > cp) {
        axis = 0;
        qA = pow(1-cp, parm->sqdSharp);
        qB = pow(1-cl, parm->sqdSharp);
      } else {
        axis = 2;
        qA = pow(1-cl, parm->sqdSharp);
        qB = pow(1-cp, parm->sqdSharp);
      }
      qC = qB;
    } else if (eval[0] < 0) {
      /* all evals negative */
      float aef[3];
      aef[0] = absEval[2];
      aef[1] = absEval[1];
      aef[2] = absEval[0];
      cl = AIR_MIN(0.99, tenAnisoEval_f(aef, tenAniso_Cl1));
      cp = AIR_MIN(0.99, tenAnisoEval_f(aef, tenAniso_Cp1));
      if (cl > cp) {
        axis = 2;
        qA = pow(1-cp, parm->sqdSharp);
        qB = pow(1-cl, parm->sqdSharp);
      } else {
        axis = 0;
        qA = pow(1-cl, parm->sqdSharp);
        qB = pow(1-cp, parm->sqdSharp);
      }
      qC = qB;
    } else {
#define OOSQRT2 0.70710678118654752440
#define OOSQRT3 0.57735026918962576451
      /* double poleA[3]={OOSQRT3, OOSQRT3, OOSQRT3}; */
      double poleB[3]={1, 0, 0};
      double poleC[3]={OOSQRT2, OOSQRT2, 0};
      double poleD[3]={OOSQRT3, -OOSQRT3, -OOSQRT3};
      double poleE[3]={OOSQRT2, 0, -OOSQRT2};
      double poleF[3]={OOSQRT3, OOSQRT3, -OOSQRT3};
      double poleG[3]={0, -OOSQRT2, -OOSQRT2};
      double poleH[3]={0, 0, -1};
      /* double poleI[3]={-OOSQRT3, -OOSQRT3, -OOSQRT3}; */
      double funk[3]={0,4,2}, thrn[3]={1,4,4};
      double octa[3]={0,2,2}, cone[3]={1,2,2};
      double evalN[3], tmp, bary[3];
      double qq[3];

      ELL_3V_NORM(evalN, eval, tmp);
      if (eval[1] >= -eval[2]) {
        /* inside B-F-C */
        ell_3v_barycentric_spherical_d(bary, poleB, poleF, poleC, evalN);
        ELL_3V_SCALE_ADD3(qq, bary[0], octa, bary[1], thrn, bary[2], cone);
        axis = 2;
      } else if (eval[0] >= -eval[2]) {
        /* inside B-D-F */
        if (eval[1] >= 0) {
          /* inside B-E-F */
          ell_3v_barycentric_spherical_d(bary, poleB, poleE, poleF, evalN);
          ELL_3V_SCALE_ADD3(qq, bary[0], octa, bary[1], funk, bary[2], thrn);
          axis = 2;
        } else {
          /* inside B-D-E */
          ell_3v_barycentric_spherical_d(bary, poleB, poleD, poleE, evalN);
          ELL_3V_SCALE_ADD3(qq, bary[0], cone, bary[1], thrn, bary[2], funk);
          axis = 0;
        }
      } else if (eval[0] < -eval[1]) {
        /* inside D-G-H */
        ell_3v_barycentric_spherical_d(bary, poleD, poleG, poleH, evalN);
        ELL_3V_SCALE_ADD3(qq, bary[0], thrn, bary[1], cone, bary[2], octa);
        axis = 0;
      } else if (eval[1] < 0) {
        /* inside E-D-H */
        ell_3v_barycentric_spherical_d(bary, poleE, poleD, poleH, evalN);
        ELL_3V_SCALE_ADD3(qq, bary[0], funk, bary[1], thrn, bary[2], octa);
        axis = 0;
      } else {
        /* inside F-E-H */
        ell_3v_barycentric_spherical_d(bary, poleF, poleE, poleH, evalN);
        ELL_3V_SCALE_ADD3(qq, bary[0], thrn, bary[1], funk, bary[2], cone);
        axis = 2;
      }
      qA = qq[0];
      qB = qq[1];
      qC = qq[2];
#undef OOSQRT2
#undef OOSQRT3
    }

    /* add the glyph */
    if (parm->verbose >= 2) {
      fprintf(stderr, "%s: glyph %d/%d: the glyph stays!\n",
              me, idx, numGlyphs);
    }
    if (glyphsLimn) {
      lookIdx = limnObjectLookAdd(glyphsLimn);
      look = glyphsLimn->look + lookIdx;
      ELL_4V_SET_TT(look->rgba, float, R, G, B, 1);
      ELL_3V_SET(look->kads, parm->ADSP[0], parm->ADSP[1], parm->ADSP[2]);
      look->spow = 0;
      switch(parm->glyphType) {
      case tenGlyphTypeBox:
        glyphIdx = limnObjectCubeAdd(glyphsLimn, lookIdx);
        break;
      case tenGlyphTypeSphere:
        glyphIdx = limnObjectPolarSphereAdd(glyphsLimn, lookIdx, axis,
                                            2*parm->facetRes, parm->facetRes);
        break;
      case tenGlyphTypeCylinder:
        glyphIdx = limnObjectCylinderAdd(glyphsLimn, lookIdx, axis,
                                         parm->facetRes);
        break;
      case tenGlyphTypeSuperquad:
      default:
        glyphIdx =
          limnObjectPolarSuperquadFancyAdd(glyphsLimn, lookIdx, axis,
                                           AIR_CAST(float, qA),
                                           AIR_CAST(float, qB),
                                           AIR_CAST(float, qC), 0,
                                           2*parm->facetRes,
                                           parm->facetRes);
        break;
      }
      ELL_4M_COPY_TT(mA_f, float, mA);
      limnObjectPartTransform(glyphsLimn, glyphIdx, mA_f);
    }
    if (glyphsEcho) {
      switch(parm->glyphType) {
      case tenGlyphTypeBox:
        eglyph = echoObjectNew(glyphsEcho, echoTypeCube);
        /* nothing else to set */
        break;
      case tenGlyphTypeSphere:
        eglyph = echoObjectNew(glyphsEcho, echoTypeSphere);
        echoSphereSet(eglyph, 0, 0, 0, 1);
        break;
      case tenGlyphTypeCylinder:
        eglyph = echoObjectNew(glyphsEcho, echoTypeCylinder);
        echoCylinderSet(eglyph, axis);
        break;
      case tenGlyphTypeSuperquad:
      default:
        eglyph = echoObjectNew(glyphsEcho, echoTypeSuperquad);
        echoSuperquadSet(eglyph, axis, qA, qB);
        break;
      }
      echoColorSet(eglyph,
                   AIR_CAST(echoCol_t, R),
                   AIR_CAST(echoCol_t, G),
                   AIR_CAST(echoCol_t, B), 1);
      echoMatterPhongSet(glyphsEcho, eglyph,
                         parm->ADSP[0], parm->ADSP[1],
                         parm->ADSP[2], parm->ADSP[3]);
      inst = echoObjectNew(glyphsEcho, echoTypeInstance);
      ELL_4M_COPY(eM, mA);
      echoInstanceSet(inst, eM, eglyph);
      echoListAdd(list, inst);
    }
  }
  if (glyphsLimn) {
    glyphsLimn->setVertexRGBAFromLook = svRGBAfl;
  }
  if (glyphsEcho) {
    split = echoListSplit3(glyphsEcho, list, 10);
    echoObjectAdd(glyphsEcho, split);
  }

  airMopOkay(mop);
  return 0;
}
Exemplo n.º 2
0
int
main(int argc, const char *argv[]) {
  const char *me;
  char *err, *outS;
  double eval[3], matA[9], matB[9], sval[3], uu[9], vv[9], escl[5],
    view[3];
  float matAf[9], matBf[16];
  float pp[3], qq[4], mR[9], len, gamma;
  float os, vs, rad, AB[2], ten[7];
  hestOpt *hopt=NULL;
  airArray *mop;
  limnObject *obj;
  limnLook *look; int lookRod, lookSoid;
  float kadsRod[3], kadsSoid[3];
  int gtype, partIdx=-1; /* sssh */
  int res;
  FILE *file;

  me = argv[0];
  hestOptAdd(&hopt, "sc", "evals", airTypeDouble, 3, 3, eval, "1 1 1",
             "original eigenvalues of tensor to be visualized");
  hestOptAdd(&hopt, "AB", "A, B exponents", airTypeFloat, 2, 2, AB, "nan nan",
             "Directly set the A, B parameters to the superquadric surface, "
             "over-riding the default behavior of determining them from the "
             "scalings \"-sc\" as superquadric tensor glyphs");
  hestOptAdd(&hopt, "os", "over-all scaling", airTypeFloat, 1, 1, &os, "1",
             "over-all scaling (multiplied by scalings)");
  hestOptAdd(&hopt, "vs", "view-dir scaling", airTypeFloat, 1, 1, &vs, "1",
             "scaling along view-direction (to show off bas-relief "
             "ambibuity of ellipsoids versus superquads)");
  hestOptAdd(&hopt, "es", "extra scaling", airTypeDouble, 5, 5, escl,
             "2 1 0 0 1", "extra scaling specified with five values "
             "0:tensor|1:geometry|2:none vx vy vz scaling");
  hestOptAdd(&hopt, "fr", "from (eye) point", airTypeDouble, 3, 3, &view,
             "4 4 4", "eye point, needed for non-unity \"-vs\"");
  hestOptAdd(&hopt, "gamma", "superquad sharpness", airTypeFloat, 1, 1,
             &gamma, "0",
             "how much to sharpen edges as a "
             "function of differences between eigenvalues");
  hestOptAdd(&hopt, "g", "glyph shape", airTypeEnum, 1, 1, &gtype, "sqd",
             "glyph to use; not all are implemented here",
             NULL, tenGlyphType);
  hestOptAdd(&hopt, "pp", "x y z", airTypeFloat, 3, 3, pp, "0 0 0",
             "transform: rotation identified by"
             "location in quaternion quotient space");
  hestOptAdd(&hopt, "r", "radius", airTypeFloat, 1, 1, &rad, "0.015",
             "black axis cylinder radius (or 0.0 to not drawn these)");
  hestOptAdd(&hopt, "res", "resolution", airTypeInt, 1, 1, &res, "25",
             "tesselation resolution for both glyph and axis cylinders");
  hestOptAdd(&hopt, "pg", "ka kd ks", airTypeFloat, 3, 3, kadsSoid,
             "0.2 0.8 0.0",
             "phong coefficients for glyph");
  hestOptAdd(&hopt, "pr", "ka kd ks", airTypeFloat, 3, 3, kadsRod, "1 0 0",
             "phong coefficients for black rods (if being drawn)");
  hestOptAdd(&hopt, "o", "output OFF", airTypeString, 1, 1, &outS, "out.off",
             "output file to save OFF into");
  hestParseOrDie(hopt, argc-1, argv+1, NULL,
                 me, info, AIR_TRUE, AIR_TRUE, AIR_TRUE);
  mop = airMopNew();
  airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways);
  airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways);

  obj = limnObjectNew(1000, AIR_TRUE);
  airMopAdd(mop, obj, (airMopper)limnObjectNix, airMopAlways);

  if (!( 0 == escl[0] || 1 == escl[0] || 2 == escl[0] )) {
    fprintf(stderr, "%s: escl[0] %g not 0, 1 or 2\n", me, escl[0]);
    airMopError(mop); return 1;
  }
  if (!(tenGlyphTypeBox == gtype ||
        tenGlyphTypeSphere == gtype ||
        tenGlyphTypeSuperquad == gtype)) {
    fprintf(stderr, "%s: got %s %s, but here only do %s, %s, or %s\n", me,
            tenGlyphType->name,
            airEnumStr(tenGlyphType, gtype),
            airEnumStr(tenGlyphType, tenGlyphTypeBox),
            airEnumStr(tenGlyphType, tenGlyphTypeSphere),
            airEnumStr(tenGlyphType, tenGlyphTypeSuperquad));
    airMopError(mop); return 1;
  }

  /* create limnLooks for glyph and for rods */
  lookSoid = limnObjectLookAdd(obj);
  look = obj->look + lookSoid;
  ELL_4V_SET(look->rgba, 1, 1, 1, 1);
  ELL_3V_COPY(look->kads, kadsSoid);

  look->spow = 0;
  lookRod = limnObjectLookAdd(obj);
  look = obj->look + lookRod;
  ELL_4V_SET(look->rgba, 0, 0, 0, 1);
  ELL_3V_COPY(look->kads, kadsRod);
  look->spow = 0;

  ELL_3M_IDENTITY_SET(matA); /* A = I */
  ELL_3V_SCALE(eval, os, eval);
  ELL_3M_SCALE_SET(matB, eval[0], eval[1], eval[2]); /* B = diag(eval) */
  ell_3m_post_mul_d(matA, matB); /* A = B*A = diag(eval) */

  if (0 == escl[0]) {
    scalingMatrix(matB, escl + 1, escl[4]);
    ell_3m_post_mul_d(matA, matB);
  }

  if (1 != vs) {
    if (!ELL_3V_LEN(view)) {
      fprintf(stderr, "%s: need non-zero view for vs %g != 1\n", me, vs);
      airMopError(mop); return 1;
    }
    scalingMatrix(matB, view, vs);
    /* the scaling along the view direction is a symmetric matrix,
       but applying that scaling to the symmetric input tensor
       is not necessarily symmetric */
    ell_3m_post_mul_d(matA, matB);  /* A = B*A */
  }
  /* so we do an SVD to get rotation U and the scalings sval[] */
  /* U * diag(sval) * V */
  ell_3m_svd_d(uu, sval, vv, matA, AIR_TRUE);

  /*
  fprintf(stderr, "%s: ____________________________________\n", me);
  fprintf(stderr, "%s: mat = \n", me);
  ell_3m_print_d(stderr, matA);
  fprintf(stderr, "%s: uu = \n", me);
  ell_3m_print_d(stderr, uu);
  ELL_3M_TRANSPOSE(matC, uu);
  ELL_3M_MUL(matB, uu, matC);
  fprintf(stderr, "%s: uu * uu^T = \n", me);
  ell_3m_print_d(stderr, matB);
  fprintf(stderr, "%s: sval = %g %g %g\n", me, sval[0], sval[1], sval[2]);
  fprintf(stderr, "%s: vv = \n", me);
  ell_3m_print_d(stderr, vv);
  ELL_3M_MUL(matB, vv, vv);
  fprintf(stderr, "%s: vv * vv^T = \n", me);
  ELL_3M_TRANSPOSE(matC, vv);
  ELL_3M_MUL(matB, vv, matC);
  ell_3m_print_d(stderr, matB);
  ELL_3M_IDENTITY_SET(matA);
  ell_3m_pre_mul_d(matA, uu);
  ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]);
  ell_3m_pre_mul_d(matA, matB);
  ell_3m_pre_mul_d(matA, vv);
  fprintf(stderr, "%s: uu * diag(sval) * vv = \n", me);
  ell_3m_print_d(stderr, matA);
  fprintf(stderr, "%s: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", me);
  */

  /* now create symmetric matrix out of U and sval */
  /* A = I */
  ELL_3M_IDENTITY_SET(matA);
  ell_3m_pre_mul_d(matA, uu);   /* A = A*U = I*U = U */
  ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]); /* B = diag(sval) */
  ell_3m_pre_mul_d(matA, matB); /* A = U*diag(sval) */
  ELL_3M_TRANSPOSE(matB, uu);
  ell_3m_pre_mul_d(matA, matB); /* A = U*diag(sval)*U^T */
  TEN_M2T(ten, matA);

  partIdx = soidDoit(obj, lookSoid,
                     gtype, gamma, res,
                     (AIR_EXISTS(AB[0]) && AIR_EXISTS(AB[1])) ? AB : NULL,
                     ten);

  if (1 == escl[0]) {
    scalingMatrix(matB, escl + 1, escl[4]);
    ELL_43M_INSET(matBf, matB);
    limnObjectPartTransform(obj, partIdx, matBf);
  }
  /* this is a rotate on the geomtry; nothing to do with the tensor */
  ELL_4V_SET(qq, 1, pp[0], pp[1], pp[2]);
  ELL_4V_NORM(qq, qq, len);
  ell_q_to_3m_f(mR, qq);
  ELL_43M_INSET(matBf, mR);
  limnObjectPartTransform(obj, partIdx, matBf);

  if (rad) {
    partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, (1-eval[0])/2, rad, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, (1+eval[0])/2, 0.0, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, (1-eval[0])/2, rad, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, -(1+eval[0])/2, 0.0, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, (1-eval[1])/2, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, (1+eval[1])/2, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, (1-eval[1])/2, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, -(1+eval[1])/2, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, rad, (1-eval[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, (1+eval[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, rad, (1-eval[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, -(1+eval[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);
  }

  file = airFopen(outS, stdout, "w");
  airMopAdd(mop, file, (airMopper)airFclose, airMopAlways);

  if (limnObjectWriteOFF(file, obj)) {
    airMopAdd(mop, err = biffGetDone(LIMN), airFree, airMopAlways);
    fprintf(stderr, "%s: trouble:\n%s\n", me, err);
    airMopError(mop); return 1;
  }

  airMopOkay(mop);
  return 0;
}
Exemplo n.º 3
0
Arquivo: soid.c Projeto: BRAINSia/teem
int
main(int argc, const char *argv[]) {
  const char *me;
  char *err, *outS;
  float p[3], q[4], mR[9], eval[3]={0,0,0}, scale[3], len, sh, cl, cp, qA, qB;
  float matA[16], matB[16], os, rad, AB[2];
  hestOpt *hopt=NULL;
  airArray *mop;
  limnObject *obj;
  limnLook *look; int lookRod, lookSoid;
  int partIdx=-1; /* sssh */
  int res, axis, sphere;
  FILE *file;


  me = argv[0];
  hestOptAdd(&hopt, "sc", "scalings", airTypeFloat, 3, 3, scale, "1 1 1",
             "axis-aligned scaling to do on ellipsoid");
  hestOptAdd(&hopt, "AB", "A, B exponents", airTypeFloat, 2, 2, AB, "nan nan",
             "Directly set the A, B parameters to the superquadric surface, "
             "over-riding the default behavior of determining them from the "
             "scalings \"-sc\" as superquadric tensor glyphs");
  hestOptAdd(&hopt, "os", "over-all scaling", airTypeFloat, 1, 1, &os, "1",
             "over-all scaling (multiplied by scalings)");
  hestOptAdd(&hopt, "sh", "superquad sharpness", airTypeFloat, 1, 1, &sh, "0",
             "how much to sharpen edges as a "
             "function of differences between eigenvalues");
  hestOptAdd(&hopt, "sphere", NULL, airTypeInt, 0, 0, &sphere, NULL,
             "use a sphere instead of a superquadric");
  hestOptAdd(&hopt, "p", "x y z", airTypeFloat, 3, 3, p, "0 0 0",
             "location in quaternion quotient space");
  hestOptAdd(&hopt, "r", "radius", airTypeFloat, 1, 1, &rad, "0.015",
             "black axis cylinder radius (or 0.0 to not drawn these)");
  hestOptAdd(&hopt, "res", "resolution", airTypeInt, 1, 1, &res, "25",
             "tesselation resolution for both glyph and axis cylinders");
  hestOptAdd(&hopt, "o", "output OFF", airTypeString, 1, 1, &outS, "out.off",
             "output file to save OFF into");
  hestParseOrDie(hopt, argc-1, argv+1, NULL,
                 me, info, AIR_TRUE, AIR_TRUE, AIR_TRUE);
  mop = airMopNew();
  airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways);
  airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways);

  obj = limnObjectNew(100, AIR_FALSE);
  airMopAdd(mop, obj, (airMopper)limnObjectNix, airMopAlways);

  /* create limnLooks for ellipsoid and for rods */
  lookSoid = limnObjectLookAdd(obj);
  look = obj->look + lookSoid;
  ELL_4V_SET(look->rgba, 1, 1, 1, 1);
  ELL_3V_SET(look->kads, 0.2, 0.8, 0);
  look->spow = 0;
  lookRod = limnObjectLookAdd(obj);
  look = obj->look + lookRod;
  ELL_4V_SET(look->rgba, 0, 0, 0, 1);
  ELL_3V_SET(look->kads, 1, 0, 0);
  look->spow = 0;

  ELL_4V_SET(q, 1, p[0], p[1], p[2]);
  ELL_4V_NORM(q, q, len);
  ell_q_to_3m_f(mR, q);

  if (AIR_EXISTS(AB[0]) && AIR_EXISTS(AB[1])) {
    qA = AB[0];
    qB = AB[1];
    axis = 2;
  } else {
    ELL_3V_SCALE(scale, os, scale);
    ELL_3V_COPY(eval, scale);
    ELL_SORT3(eval[0], eval[1], eval[2], cl);
    cl = (eval[0] - eval[1])/(eval[0] + eval[1] + eval[2]);
    cp = 2*(eval[1] - eval[2])/(eval[0] + eval[1] + eval[2]);
    if (cl > cp) {
      axis = ELL_MAX3_IDX(scale[0], scale[1], scale[2]);
      qA = pow(1-cp, sh);
      qB = pow(1-cl, sh);
    } else {
      axis = ELL_MIN3_IDX(scale[0], scale[1], scale[2]);
      qA = pow(1-cl, sh);
      qB = pow(1-cp, sh);
    }
    /*
    fprintf(stderr, "eval = %g %g %g -> cl=%g %s cp=%g -> axis = %d\n",
            eval[0], eval[1], eval[2], cl, cl > cp ? ">" : "<", cp, axis);
    */
  }
  if (sphere) {
    partIdx = limnObjectPolarSphereAdd(obj, lookSoid,
                                       0, 2*res, res);
  } else {
    partIdx = limnObjectPolarSuperquadAdd(obj, lookSoid,
                                          axis, qA, qB, 2*res, res);
  }
  ELL_4M_IDENTITY_SET(matA);
  ELL_4M_SCALE_SET(matB, scale[0], scale[1], scale[2]);
  ell_4m_post_mul_f(matA, matB);
  ELL_43M_INSET(matB, mR);
  ell_4m_post_mul_f(matA, matB);
  limnObjectPartTransform(obj, partIdx, matA);

  if (rad) {
    partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res);
    ELL_4M_IDENTITY_SET(matA);
    ELL_4M_SCALE_SET(matB, (1-eval[0])/2, rad, rad);
    ell_4m_post_mul_f(matA, matB);
    ELL_4M_TRANSLATE_SET(matB, (1+eval[0])/2, 0.0, 0.0);
    ell_4m_post_mul_f(matA, matB);
    limnObjectPartTransform(obj, partIdx, matA);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res);
    ELL_4M_IDENTITY_SET(matA);
    ELL_4M_SCALE_SET(matB, (1-eval[0])/2, rad, rad);
    ell_4m_post_mul_f(matA, matB);
    ELL_4M_TRANSLATE_SET(matB, -(1+eval[0])/2, 0.0, 0.0);
    ell_4m_post_mul_f(matA, matB);
    limnObjectPartTransform(obj, partIdx, matA);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res);
    ELL_4M_IDENTITY_SET(matA);
    ELL_4M_SCALE_SET(matB, rad, (1-eval[1])/2, rad);
    ell_4m_post_mul_f(matA, matB);
    ELL_4M_TRANSLATE_SET(matB, 0.0, (1+eval[1])/2, 0.0);
    ell_4m_post_mul_f(matA, matB);
    limnObjectPartTransform(obj, partIdx, matA);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res);
    ELL_4M_IDENTITY_SET(matA);
    ELL_4M_SCALE_SET(matB, rad, (1-eval[1])/2, rad);
    ell_4m_post_mul_f(matA, matB);
    ELL_4M_TRANSLATE_SET(matB, 0.0, -(1+eval[1])/2, 0.0);
    ell_4m_post_mul_f(matA, matB);
    limnObjectPartTransform(obj, partIdx, matA);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res);
    ELL_4M_IDENTITY_SET(matA);
    ELL_4M_SCALE_SET(matB, rad, rad, (1-eval[2])/2);
    ell_4m_post_mul_f(matA, matB);
    ELL_4M_TRANSLATE_SET(matB, 0.0, 0.0, (1+eval[2])/2);
    ell_4m_post_mul_f(matA, matB);
    limnObjectPartTransform(obj, partIdx, matA);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res);
    ELL_4M_IDENTITY_SET(matA);
    ELL_4M_SCALE_SET(matB, rad, rad, (1-eval[2])/2);
    ell_4m_post_mul_f(matA, matB);
    ELL_4M_TRANSLATE_SET(matB, 0.0, 0.0, -(1+eval[2])/2);
    ell_4m_post_mul_f(matA, matB);
    limnObjectPartTransform(obj, partIdx, matA);
  }

  file = airFopen(outS, stdout, "w");
  airMopAdd(mop, file, (airMopper)airFclose, airMopAlways);

  if (limnObjectWriteOFF(file, obj)) {
    airMopAdd(mop, err = biffGetDone(LIMN), airFree, airMopAlways);
    fprintf(stderr, "%s: trouble:\n%s\n", me, err);
    airMopError(mop); return 1;
  }

  airMopOkay(mop);
  return 0;
}
Exemplo n.º 4
0
int
main(int argc, const char *argv[]) {
  const char *me;
  char *err, *outS;
  double scale[3], matA[9], matB[9], matC[9], sval[3], uu[9], vv[9];
  float matAf[9], matBf[16];
  float p[3], q[4], mR[9], len, gamma;
  float os, vs, rad, AB[2], ten[7], view[3];
  hestOpt *hopt=NULL;
  airArray *mop;
  limnObject *obj;
  limnLook *look; int lookRod, lookSoid;
  int partIdx=-1; /* sssh */
  int res, sphere;
  FILE *file;

  me = argv[0];
  hestOptAdd(&hopt, "sc", "scalings", airTypeDouble, 3, 3, scale, "1 1 1",
             "axis-aligned scaling to do on ellipsoid");
  hestOptAdd(&hopt, "AB", "A, B exponents", airTypeFloat, 2, 2, AB, "nan nan",
             "Directly set the A, B parameters to the superquadric surface, "
             "over-riding the default behavior of determining them from the "
             "scalings \"-sc\" as superquadric tensor glyphs");
  hestOptAdd(&hopt, "os", "over-all scaling", airTypeFloat, 1, 1, &os, "1",
             "over-all scaling (multiplied by scalings)");
  hestOptAdd(&hopt, "vs", "over-all scaling", airTypeFloat, 1, 1, &vs, "1",
             "scaling along view-direction (to show off bas-relief "
             "ambibuity of ellipsoids versus superquads)");
  hestOptAdd(&hopt, "fr", "from (eye) point", airTypeFloat, 3, 3, &view,
             "4 4 4", "eye point, needed for non-unity \"-vs\"");
  hestOptAdd(&hopt, "gamma", "superquad sharpness", airTypeFloat, 1, 1,
             &gamma, "0",
             "how much to sharpen edges as a "
             "function of differences between eigenvalues");
  hestOptAdd(&hopt, "sphere", NULL, airTypeInt, 0, 0, &sphere, NULL,
             "use a sphere instead of a superquadric");
  hestOptAdd(&hopt, "p", "x y z", airTypeFloat, 3, 3, p, "0 0 0",
             "location in quaternion quotient space");
  hestOptAdd(&hopt, "r", "radius", airTypeFloat, 1, 1, &rad, "0.015",
             "black axis cylinder radius (or 0.0 to not drawn these)");
  hestOptAdd(&hopt, "res", "resolution", airTypeInt, 1, 1, &res, "25",
             "tesselation resolution for both glyph and axis cylinders");
  hestOptAdd(&hopt, "o", "output OFF", airTypeString, 1, 1, &outS, "out.off",
             "output file to save OFF into");
  hestParseOrDie(hopt, argc-1, argv+1, NULL,
                 me, info, AIR_TRUE, AIR_TRUE, AIR_TRUE);
  mop = airMopNew();
  airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways);
  airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways);

  obj = limnObjectNew(1000, AIR_TRUE);
  airMopAdd(mop, obj, (airMopper)limnObjectNix, airMopAlways);

  /* create limnLooks for ellipsoid and for rods */
  lookSoid = limnObjectLookAdd(obj);
  look = obj->look + lookSoid;
  ELL_4V_SET(look->rgba, 1, 1, 1, 1);
  ELL_3V_SET(look->kads, 0.2, 0.8, 0);
  look->spow = 0;
  lookRod = limnObjectLookAdd(obj);
  look = obj->look + lookRod;
  ELL_4V_SET(look->rgba, 0, 0, 0, 1);
  ELL_3V_SET(look->kads, 1, 0, 0);
  look->spow = 0;

  ELL_3M_IDENTITY_SET(matA);
  ELL_3V_SCALE(scale, os, scale);
  ELL_3M_SCALE_SET(matB, scale[0], scale[1], scale[2]);
  ell_3m_post_mul_d(matA, matB);
  if (1 != vs) {
    ELL_3V_NORM(view, view, len);
    if (!len) {
      /* HEY: perhaps do more diplomatic error message here */
      fprintf(stderr, "%s: stupido!\n", me);
      exit(1);
    }
    ELL_3MV_OUTER(matB, view, view);
    ELL_3M_SCALE(matB, vs-1, matB);
    ELL_3M_IDENTITY_SET(matC);
    ELL_3M_ADD2(matB, matC, matB);
    ell_3m_post_mul_d(matA, matB);
  }
  ell_3m_svd_d(uu, sval, vv, matA, AIR_TRUE);

  /*
  fprintf(stderr, "%s: ____________________________________\n", me);
  fprintf(stderr, "%s: mat = \n", me);
  ell_3m_print_d(stderr, matA);
  fprintf(stderr, "%s: uu = \n", me);
  ell_3m_print_d(stderr, uu);
  ELL_3M_TRANSPOSE(matC, uu);
  ELL_3M_MUL(matB, uu, matC);
  fprintf(stderr, "%s: uu * uu^T = \n", me);
  ell_3m_print_d(stderr, matB);
  fprintf(stderr, "%s: sval = %g %g %g\n", me, sval[0], sval[1], sval[2]);
  fprintf(stderr, "%s: vv = \n", me);
  ell_3m_print_d(stderr, vv);
  ELL_3M_MUL(matB, vv, vv);
  fprintf(stderr, "%s: vv * vv^T = \n", me);
  ELL_3M_TRANSPOSE(matC, vv);
  ELL_3M_MUL(matB, vv, matC);
  ell_3m_print_d(stderr, matB);
  ELL_3M_IDENTITY_SET(matA);
  ell_3m_pre_mul_d(matA, uu);
  ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]);
  ell_3m_pre_mul_d(matA, matB);
  ell_3m_pre_mul_d(matA, vv);
  fprintf(stderr, "%s: uu * diag(sval) * vv = \n", me);
  ell_3m_print_d(stderr, matA);
  fprintf(stderr, "%s: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", me);
  */

  ELL_3M_IDENTITY_SET(matA);
  ell_3m_pre_mul_d(matA, uu);
  ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]);
  ell_3m_pre_mul_d(matA, matB);
  ELL_3M_TRANSPOSE(matB, uu);
  ell_3m_pre_mul_d(matA, matB);
  TEN_M2T(ten, matA);

  partIdx = soidDoit(obj, lookSoid,
                     sphere, gamma, res,
                     (AIR_EXISTS(AB[0]) && AIR_EXISTS(AB[1])) ? AB : NULL,
                     ten);

  ELL_4V_SET(q, 1, p[0], p[1], p[2]);
  ELL_4V_NORM(q, q, len);
  ell_q_to_3m_f(mR, q);
  ELL_43M_INSET(matBf, mR);
  limnObjectPartTransform(obj, partIdx, matBf);

  if (rad) {
    partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, (1-scale[0])/2, rad, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, (1+scale[0])/2, 0.0, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, (1-scale[0])/2, rad, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, -(1+scale[0])/2, 0.0, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, (1-scale[1])/2, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, (1+scale[1])/2, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, (1-scale[1])/2, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, -(1+scale[1])/2, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, rad, (1-scale[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, (1+scale[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, rad, (1-scale[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, -(1+scale[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);
  }

  file = airFopen(outS, stdout, "w");
  airMopAdd(mop, file, (airMopper)airFclose, airMopAlways);

  if (limnObjectWriteOFF(file, obj)) {
    airMopAdd(mop, err = biffGetDone(LIMN), airFree, airMopAlways);
    fprintf(stderr, "%s: trouble:\n%s\n", me, err);
    airMopError(mop); return 1;
  }

  airMopOkay(mop);
  return 0;
}