/* return P(X + c) using destructive Horner, optimize for c = 1,-1 */ GEN translate_pol(GEN P, GEN c) { pari_sp av = avma, lim; GEN Q, *R; long i, k, n; if (!signe(P) || gcmp0(c)) return gcopy(P); Q = shallowcopy(P); R = (GEN*)(Q+2); n = degpol(P); lim = stack_lim(av, 2); if (gcmp1(c)) { for (i=1; i<=n; i++) { for (k=n-i; k<n; k++) R[k] = gadd(R[k], R[k+1]); if (low_stack(lim, stack_lim(av,2))) { if(DEBUGMEM>1) pari_warn(warnmem,"TR_POL(1), i = %ld/%ld", i,n); Q = gerepilecopy(av, Q); R = (GEN*)Q+2; } } } else if (gcmp_1(c)) { for (i=1; i<=n; i++) { for (k=n-i; k<n; k++) R[k] = gsub(R[k], R[k+1]); if (low_stack(lim, stack_lim(av,2))) { if(DEBUGMEM>1) pari_warn(warnmem,"TR_POL(-1), i = %ld/%ld", i,n); Q = gerepilecopy(av, Q); R = (GEN*)Q+2; } } } else { for (i=1; i<=n; i++) { for (k=n-i; k<n; k++) R[k] = gadd(R[k], gmul(c, R[k+1])); if (low_stack(lim, stack_lim(av,2))) { if(DEBUGMEM>1) pari_warn(warnmem,"TR_POL, i = %ld/%ld", i,n); Q = gerepilecopy(av, Q); R = (GEN*)Q+2; } } } return gerepilecopy(av, Q); }
// Digit reversal GEN rev(GEN n, long B) { pari_sp av = avma; if (typ(n) != t_INT) pari_err_TYPE("rev", n); GEN m = modis(n, B); n = divis(n, B); pari_sp btop = avma, st_lim = stack_lim(btop, 1); while (signe(n)) { m = addis(mulis(m, B), smodis(n, B)); n = divis(n, B); if (low_stack(st_lim, stack_lim(btop, 1))) gerepileall(btop, 2, &m, &n); } m = gerepilecopy(av, m); return m; }
int ratlift(GEN x, GEN m, GEN *a, GEN *b, GEN amax, GEN bmax) { GEN d,d1,v,v1,q,r; pari_sp av = avma, av1, lim; long lb,lr,lbb,lbr,s,s0; ulong vmax; ulong xu,xu1,xv,xv1; /* Lehmer stage recurrence matrix */ int lhmres; /* Lehmer stage return value */ if ((typ(x) | typ(m) | typ(amax) | typ(bmax)) != t_INT) pari_err(arither1); if (signe(bmax) <= 0) pari_err(talker, "ratlift: bmax must be > 0, found\n\tbmax=%Z\n", bmax); if (signe(amax) < 0) pari_err(talker, "ratilft: amax must be >= 0, found\n\tamax=%Z\n", amax); /* check 2*amax*bmax < m */ if (cmpii(shifti(mulii(amax, bmax), 1), m) >= 0) pari_err(talker, "ratlift: must have 2*amax*bmax < m, found\n\tamax=%Z\n\tbmax=%Z\n\tm=%Z\n", amax,bmax,m); /* we _could_ silently replace x with modii(x,m) instead of the following, * but let's leave this up to the caller */ avma = av; s = signe(x); if (s < 0 || cmpii(x,m) >= 0) pari_err(talker, "ratlift: must have 0 <= x < m, found\n\tx=%Z\n\tm=%Z\n", x,m); /* special cases x=0 and/or amax=0 */ if (s == 0) { if (a != NULL) *a = gen_0; if (b != NULL) *b = gen_1; return 1; } else if (signe(amax)==0) return 0; /* assert: m > x > 0, amax > 0 */ /* check here whether a=x, b=1 is a solution */ if (cmpii(x,amax) <= 0) { if (a != NULL) *a = icopy(x); if (b != NULL) *b = gen_1; return 1; } /* There is no special case for single-word numbers since this is * mainly meant to be used with large moduli. */ (void)new_chunk(lgefint(bmax) + lgefint(amax)); /* room for a,b */ d = m; d1 = x; v = gen_0; v1 = gen_1; /* assert d1 > amax, v1 <= bmax here */ lb = lgefint(bmax); lbb = bfffo(*int_MSW(bmax)); s = 1; av1 = avma; lim = stack_lim(av, 1); /* general case: Euclidean division chain starting with m div x, and * with bounds on the sequence of convergents' denoms v_j. * Just to be different from what invmod and bezout are doing, we work * here with the all-nonnegative matrices [u,u1;v,v1]=prod_j([0,1;1,q_j]). * Loop invariants: * (a) (sign)*[-v,v1]*x = [d,d1] (mod m) (componentwise) * (sign initially +1, changes with each Euclidean step) * so [a,b] will be obtained in the form [-+d,v] or [+-d1,v1]; * this congruence is a consequence of * (b) [x,m]~ = [u,u1;v,v1]*[d1,d]~, * where u,u1 is the usual numerator sequence starting with 1,0 * instead of 0,1 (just multiply the eqn on the left by the inverse * matrix, which is det*[v1,-u1;-v,u], where "det" is the same as the * "(sign)" in (a)). From m = v*d1 + v1*d and * (c) d > d1 >= 0, 0 <= v < v1, * we have d >= m/(2*v1), so while v1 remains smaller than m/(2*amax), * the pair [-(sign)*d,v] satisfies (1) but violates (2) (d > amax). * Conversely, v1 > bmax indicates that no further solutions will be * forthcoming; [-(sign)*d,v] will be the last, and first, candidate. * Thus there's at most one point in the chain division where a solution * can live: v < bmax, v1 >= m/(2*amax) > bmax, and this is acceptable * iff in fact d <= amax (e.g. m=221, x=34 or 35, amax=bmax=10 fail on * this count while x=32,33,36,37 succeed). However, a division may leave * a zero residue before we ever reach this point (consider m=210, x=35, * amax=bmax=10), and our caller may find that gcd(d,v) > 1 (numerous * examples -- keep m=210 and consider any of x=29,31,32,33,34,36,37,38, * 39,40,41). * Furthermore, at the start of the loop body we have in fact * (c') 0 <= v < v1 <= bmax, d > d1 > amax >= 0, * (and are never done already). * * Main loop is similar to those of invmod() and bezout(), except for * having to determine appropriate vmax bounds, and checking termination * conditions. The signe(d1) condition is only for paranoia */ while (lgefint(d) > 3 && signe(d1)) { /* determine vmax for lgcdii so as to ensure v won't overshoot. * If v+v1 > bmax, the next step would take v1 beyond the limit, so * since [+-d1,v1] is not a solution, we give up. Otherwise if v+v1 * is way shorter than bmax, use vmax=MAXULUNG. Otherwise, set vmax * to a crude lower approximation of bmax/(v+v1), or to 1, which will * allow the inner loop to do one step */ r = addii(v,v1); lr = lb - lgefint(r); lbr = bfffo(*int_MSW(r)); if (cmpii(r,bmax) > 0) /* done, not found */ { avma = av; return 0; } else if (lr > 1) /* still more than a word's worth to go */ { vmax = MAXULONG; } else /* take difference of bit lengths */ { lr = (lr << TWOPOTBITS_IN_LONG) - lbb + lbr; if ((ulong)lr > BITS_IN_LONG) vmax = MAXULONG; else if (lr == 0) vmax = 1UL; else vmax = 1UL << (lr-1); /* the latter is pessimistic but faster than a division */ } /* do a Lehmer-Jebelean round */ lhmres = lgcdii((ulong *)d, (ulong *)d1, &xu, &xu1, &xv, &xv1, vmax); if (lhmres != 0) /* check progress */ { /* apply matrix */ if ((lhmres == 1) || (lhmres == -1)) { s = -s; if (xv1 == 1) { /* re-use v+v1 computed above */ v=v1; v1=r; r = subii(d,d1); d=d1; d1=r; } else { r = subii(d, mului(xv1,d1)); d=d1; d1=r; r = addii(v, mului(xv1,v1)); v=v1; v1=r; } } else { r = subii(muliu(d,xu), muliu(d1,xv)); d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r; r = addii(muliu(v,xu), muliu(v1,xv)); v1 = addii(muliu(v,xu1), muliu(v1,xv1)); v = r; if (lhmres&1) { setsigne(d,-signe(d)); s = -s; } else if (signe(d1)) { setsigne(d1,-signe(d1)); } } /* check whether we're done. Assert v <= bmax here. Examine v1: * if v1 > bmax, check d and return 0 or 1 depending on the outcome; * if v1 <= bmax, check d1 and return 1 if d1 <= amax, otherwise * proceed. */ if (cmpii(v1,bmax) > 0) /* certainly done */ { avma = av; if (cmpii(d,amax) <= 0) /* done, found */ { if (a != NULL) { *a = icopy(d); setsigne(*a,-s); /* sign opposite to s */ } if (b != NULL) *b = icopy(v); return 1; } else /* done, not found */ return 0; } else if (cmpii(d1,amax) <= 0) /* also done, found */ { avma = av; if (a != NULL) { if (signe(d1)) { *a = icopy(d1); setsigne(*a,s); /* same sign as s */ } else *a = gen_0; } if (b != NULL) *b = icopy(v1); return 1; } } /* lhmres != 0 */ if (lhmres <= 0 && signe(d1)) { q = dvmdii(d,d1,&r); #ifdef DEBUG_LEHMER fprintferr("Full division:\n"); printf(" q = "); output(q); sleep (1); #endif d=d1; d1=r; r = addii(v,mulii(q,v1)); v=v1; v1=r; s = -s; /* check whether we are done now. Since we weren't before the div, it * suffices to examine v1 and d1 -- the new d (former d1) cannot cut it */ if (cmpii(v1,bmax) > 0) /* done, not found */ { avma = av; return 0; } else if (cmpii(d1,amax) <= 0) /* done, found */ { avma = av; if (a != NULL) { if (signe(d1)) { *a = icopy(d1); setsigne(*a,s); /* same sign as s */ } else *a = gen_0; } if (b != NULL) *b = icopy(v1); return 1; } } if (low_stack(lim, stack_lim(av,1))) { GEN *gptr[4]; gptr[0]=&d; gptr[1]=&d1; gptr[2]=&v; gptr[3]=&v1; if(DEBUGMEM>1) pari_warn(warnmem,"ratlift"); gerepilemany(av1,gptr,4); } } /* end while */ /* Postprocessing - final sprint. Since we usually underestimate vmax, * this function needs a loop here instead of a simple conditional. * Note we can only get here when amax fits into one word (which will * typically not be the case!). The condition is bogus -- d1 is never * zero at the start of the loop. There will be at most a few iterations, * so we don't bother collecting garbage */ while (signe(d1)) { /* Assertions: lgefint(d)==lgefint(d1)==3. * Moreover, we aren't done already, or we would have returned by now. * Recompute vmax... */ #ifdef DEBUG_RATLIFT fprintferr("rl-fs: d,d1=%Z,%Z\n", d, d1); fprintferr("rl-fs: v,v1=%Z,%Z\n", v, v1); #endif r = addii(v,v1); lr = lb - lgefint(r); lbr = bfffo(*int_MSW(r)); if (cmpii(r,bmax) > 0) /* done, not found */ { avma = av; return 0; } else if (lr > 1) /* still more than a word's worth to go */ { vmax = MAXULONG; /* (cannot in fact happen) */ } else /* take difference of bit lengths */ { lr = (lr << TWOPOTBITS_IN_LONG) - lbb + lbr; if ((ulong)lr > BITS_IN_LONG) vmax = MAXULONG; else if (lr == 0) vmax = 1UL; else vmax = 1UL << (lr-1); /* as above */ } #ifdef DEBUG_RATLIFT fprintferr("rl-fs: vmax=%lu\n", vmax); #endif /* single-word "Lehmer", discarding the gcd or whatever it returns */ (void)rgcduu((ulong)*int_MSW(d), (ulong)*int_MSW(d1), vmax, &xu, &xu1, &xv, &xv1, &s0); #ifdef DEBUG_RATLIFT fprintferr("rl-fs: [%lu,%lu; %lu,%lu] %s\n", xu, xu1, xv, xv1, s0 < 0 ? "-" : "+"); #endif if (xv1 == 1) /* avoid multiplications */ { /* re-use v+v1 computed above */ v=v1; v1=r; r = subii(d,d1); d=d1; d1=r; s = -s; } else if (xu == 0) /* and xv==1, xu1==1, xv1 > 1 */ { r = subii(d, mului(xv1,d1)); d=d1; d1=r; r = addii(v, mului(xv1,v1)); v=v1; v1=r; s = -s; } else { r = subii(muliu(d,xu), muliu(d1,xv)); d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r; r = addii(muliu(v,xu), muliu(v1,xv)); v1 = addii(muliu(v,xu1), muliu(v1,xv1)); v = r; if (s0 < 0) { setsigne(d,-signe(d)); s = -s; } else if (signe(d1)) /* sic: might vanish now */ { setsigne(d1,-signe(d1)); } } /* check whether we're done, as above. Assert v <= bmax. Examine v1: * if v1 > bmax, check d and return 0 or 1 depending on the outcome; * if v1 <= bmax, check d1 and return 1 if d1 <= amax, otherwise proceed. */ if (cmpii(v1,bmax) > 0) /* certainly done */ { avma = av; if (cmpii(d,amax) <= 0) /* done, found */ { if (a != NULL) { *a = icopy(d); setsigne(*a,-s); /* sign opposite to s */ } if (b != NULL) *b = icopy(v); return 1; } else /* done, not found */ return 0; } else if (cmpii(d1,amax) <= 0) /* also done, found */ { avma = av; if (a != NULL) { if (signe(d1)) { *a = icopy(d1); setsigne(*a,s); /* same sign as s */ } else *a = gen_0; } if (b != NULL) *b = icopy(v1); return 1; } } /* while */ /* get here when we have run into d1 == 0 before returning... in fact, * this cannot happen. */ pari_err(talker, "ratlift failed to catch d1 == 0\n"); /* NOTREACHED */ return 0; }
static GEN nf_LLL_cmbf(nfcmbf_t *T, GEN p, long k, long rec) { nflift_t *L = T->L; GEN pk = L->pk, PRK = L->prk, PRKinv = L->iprk, GSmin = L->GSmin; GEN Tpk = L->Tpk; GEN famod = T->fact, nf = T->nf, ZC = T->ZC, Br = T->Br; GEN Pbase = T->polbase, P = T->pol, dn = T->dn; GEN nfT = gel(nf,1); GEN Btra; long dnf = degpol(nfT), dP = degpol(P); double BitPerFactor = 0.5; /* nb bits / modular factor */ long i, C, tmax, n0; GEN lP, Bnorm, Tra, T2, TT, CM_L, m, list, ZERO; double Bhigh; pari_sp av, av2, lim; long ti_LLL = 0, ti_CF = 0; pari_timer ti2, TI; lP = absi(leading_term(P)); if (is_pm1(lP)) lP = NULL; n0 = lg(famod) - 1; /* Lattice: (S PRK), small vector (vS vP). To find k bound for the image, * write S = S1 q + S0, P = P1 q + P0 * |S1 vS + P1 vP|^2 <= Bhigh for all (vS,vP) assoc. to true factors */ Btra = mulrr(ZC, mulsr(dP*dP, normlp(Br, 2, dnf))); Bhigh = get_Bhigh(n0, dnf); C = (long)ceil(sqrt(Bhigh/n0)) + 1; /* C^2 n0 ~ Bhigh */ Bnorm = dbltor( n0 * C * C + Bhigh ); ZERO = zeromat(n0, dnf); av = avma; lim = stack_lim(av, 1); TT = cgetg(n0+1, t_VEC); Tra = cgetg(n0+1, t_MAT); for (i=1; i<=n0; i++) TT[i] = 0; CM_L = gscalsmat(C, n0); /* tmax = current number of traces used (and computed so far) */ for(tmax = 0;; tmax++) { long a, b, bmin, bgood, delta, tnew = tmax + 1, r = lg(CM_L)-1; GEN oldCM_L, M_L, q, S1, P1, VV; int first = 1; /* bound for f . S_k(genuine factor) = ZC * bound for T_2(S_tnew) */ Btra = mulrr(ZC, mulsr(dP*dP, normlp(Br, 2*tnew, dnf))); bmin = logint(ceil_safe(sqrtr(Btra)), gen_2, NULL); if (DEBUGLEVEL>2) fprintferr("\nLLL_cmbf: %ld potential factors (tmax = %ld, bmin = %ld)\n", r, tmax, bmin); /* compute Newton sums (possibly relifting first) */ if (gcmp(GSmin, Btra) < 0) { nflift_t L1; GEN polred; bestlift_init(k<<1, nf, T->pr, Btra, &L1); polred = ZqX_normalize(Pbase, lP, &L1); k = L1.k; pk = L1.pk; PRK = L1.prk; PRKinv = L1.iprk; GSmin = L1.GSmin; Tpk = L1.Tpk; famod = hensel_lift_fact(polred, famod, Tpk, p, pk, k); for (i=1; i<=n0; i++) TT[i] = 0; } for (i=1; i<=n0; i++) { GEN h, lPpow = lP? gpowgs(lP, tnew): NULL; GEN z = polsym_gen(gel(famod,i), gel(TT,i), tnew, Tpk, pk); gel(TT,i) = z; h = gel(z,tnew+1); /* make Newton sums integral */ lPpow = mul_content(lPpow, dn); if (lPpow) h = FpX_red(gmul(h,lPpow), pk); gel(Tra,i) = nf_bestlift(h, NULL, L); /* S_tnew(famod) */ } /* compute truncation parameter */ if (DEBUGLEVEL>2) { TIMERstart(&ti2); TIMERstart(&TI); } oldCM_L = CM_L; av2 = avma; b = delta = 0; /* -Wall */ AGAIN: M_L = Q_div_to_int(CM_L, utoipos(C)); VV = get_V(Tra, M_L, PRK, PRKinv, pk, &a); if (first) { /* initialize lattice, using few p-adic digits for traces */ bgood = (long)(a - max(32, BitPerFactor * r)); b = max(bmin, bgood); delta = a - b; } else { /* add more p-adic digits and continue reduction */ if (a < b) b = a; b = max(b-delta, bmin); if (b - delta/2 < bmin) b = bmin; /* near there. Go all the way */ } /* restart with truncated entries */ q = int2n(b); P1 = gdivround(PRK, q); S1 = gdivround(Tra, q); T2 = gsub(gmul(S1, M_L), gmul(P1, VV)); m = vconcat( CM_L, T2 ); if (first) { first = 0; m = shallowconcat( m, vconcat(ZERO, P1) ); /* [ C M_L 0 ] * m = [ ] square matrix * [ T2' PRK ] T2' = Tra * M_L truncated */ } CM_L = LLL_check_progress(Bnorm, n0, m, b == bmin, /*dbg:*/ &ti_LLL); if (DEBUGLEVEL>2) fprintferr("LLL_cmbf: (a,b) =%4ld,%4ld; r =%3ld -->%3ld, time = %ld\n", a,b, lg(m)-1, CM_L? lg(CM_L)-1: 1, TIMER(&TI)); if (!CM_L) { list = mkcol(QXQX_normalize(P,nfT)); break; } if (b > bmin) { CM_L = gerepilecopy(av2, CM_L); goto AGAIN; } if (DEBUGLEVEL>2) msgTIMER(&ti2, "for this trace"); i = lg(CM_L) - 1; if (i == r && gequal(CM_L, oldCM_L)) { CM_L = oldCM_L; avma = av2; continue; } if (i <= r && i*rec < n0) { pari_timer ti; if (DEBUGLEVEL>2) TIMERstart(&ti); list = nf_chk_factors(T, P, Q_div_to_int(CM_L,utoipos(C)), famod, pk); if (DEBUGLEVEL>2) ti_CF += TIMER(&ti); if (list) break; CM_L = gerepilecopy(av2, CM_L); } if (low_stack(lim, stack_lim(av,1))) { if(DEBUGMEM>1) pari_warn(warnmem,"nf_LLL_cmbf"); gerepileall(av, Tpk? 9: 8, &CM_L,&TT,&Tra,&famod,&pk,&GSmin,&PRK,&PRKinv,&Tpk); } } if (DEBUGLEVEL>2) fprintferr("* Time LLL: %ld\n* Time Check Factor: %ld\n",ti_LLL,ti_CF); return list; }
int invmod(GEN a, GEN b, GEN *res) #endif { GEN v,v1,d,d1,q,r; pari_sp av, av1, lim; long s; ulong g; ulong xu,xu1,xv,xv1; /* Lehmer stage recurrence matrix */ int lhmres; /* Lehmer stage return value */ if (typ(a) != t_INT || typ(b) != t_INT) pari_err(arither1); if (!signe(b)) { *res=absi(a); return 0; } av = avma; if (lgefint(b) == 3) /* single-word affair */ { ulong d1 = umodiu(a, (ulong)(b[2])); if (d1 == 0) { if (b[2] == 1L) { *res = gen_0; return 1; } else { *res = absi(b); return 0; } } g = xgcduu((ulong)(b[2]), d1, 1, &xv, &xv1, &s); #ifdef DEBUG_LEHMER fprintferr(" <- %lu,%lu\n", (ulong)(b[2]), (ulong)(d1[2])); fprintferr(" -> %lu,%ld,%lu; %lx\n", g,s,xv1,avma); #endif avma = av; if (g != 1UL) { *res = utoipos(g); return 0; } xv = xv1 % (ulong)(b[2]); if (s < 0) xv = ((ulong)(b[2])) - xv; *res = utoipos(xv); return 1; } (void)new_chunk(lgefint(b)); d = absi(b); d1 = modii(a,d); v=gen_0; v1=gen_1; /* general case */ #ifdef DEBUG_LEHMER fprintferr("INVERT: -------------------------\n"); output(d1); #endif av1 = avma; lim = stack_lim(av,1); while (lgefint(d) > 3 && signe(d1)) { #ifdef DEBUG_LEHMER fprintferr("Calling Lehmer:\n"); #endif lhmres = lgcdii((ulong*)d, (ulong*)d1, &xu, &xu1, &xv, &xv1, MAXULONG); if (lhmres != 0) /* check progress */ { /* apply matrix */ #ifdef DEBUG_LEHMER fprintferr("Lehmer returned %d [%lu,%lu;%lu,%lu].\n", lhmres, xu, xu1, xv, xv1); #endif if ((lhmres == 1) || (lhmres == -1)) { if (xv1 == 1) { r = subii(d,d1); d=d1; d1=r; a = subii(v,v1); v=v1; v1=a; } else { r = subii(d, mului(xv1,d1)); d=d1; d1=r; a = subii(v, mului(xv1,v1)); v=v1; v1=a; } } else { r = subii(muliu(d,xu), muliu(d1,xv)); a = subii(muliu(v,xu), muliu(v1,xv)); d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r; v1 = subii(muliu(v,xu1), muliu(v1,xv1)); v = a; if (lhmres&1) { setsigne(d,-signe(d)); setsigne(v,-signe(v)); } else { if (signe(d1)) { setsigne(d1,-signe(d1)); } setsigne(v1,-signe(v1)); } } } #ifdef DEBUG_LEHMER else fprintferr("Lehmer returned 0.\n"); output(d); output(d1); output(v); output(v1); sleep(1); #endif if (lhmres <= 0 && signe(d1)) { q = dvmdii(d,d1,&r); #ifdef DEBUG_LEHMER fprintferr("Full division:\n"); printf(" q = "); output(q); sleep (1); #endif a = subii(v,mulii(q,v1)); v=v1; v1=a; d=d1; d1=r; } if (low_stack(lim, stack_lim(av,1))) { GEN *gptr[4]; gptr[0]=&d; gptr[1]=&d1; gptr[2]=&v; gptr[3]=&v1; if(DEBUGMEM>1) pari_warn(warnmem,"invmod"); gerepilemany(av1,gptr,4); } } /* end while */ /* Postprocessing - final sprint */ if (signe(d1)) { /* Assertions: lgefint(d)==lgefint(d1)==3, and * gcd(d,d1) is nonzero and fits into one word */ g = xxgcduu((ulong)d[2], (ulong)d1[2], 1, &xu, &xu1, &xv, &xv1, &s); #ifdef DEBUG_LEHMER output(d);output(d1);output(v);output(v1); fprintferr(" <- %lu,%lu\n", (ulong)d[2], (ulong)d1[2]); fprintferr(" -> %lu,%ld,%lu; %lx\n", g,s,xv1,avma); #endif if (g != 1UL) { avma = av; *res = utoipos(g); return 0; } /* (From the xgcduu() blurb:) * For finishing the multiword modinv, we now have to multiply the * returned matrix (with properly adjusted signs) onto the values * v' and v1' previously obtained from the multiword division steps. * Actually, it is sufficient to take the scalar product of [v',v1'] * with [u1,-v1], and change the sign if s==1. */ v = subii(muliu(v,xu1),muliu(v1,xv1)); if (s > 0) setsigne(v,-signe(v)); avma = av; *res = modii(v,b); #ifdef DEBUG_LEHMER output(*res); fprintfderr("============================Done.\n"); sleep(1); #endif return 1; } /* get here when the final sprint was skipped (d1 was zero already) */ avma = av; if (!equalii(d,gen_1)) { *res = icopy(d); return 0; } *res = modii(v,b); #ifdef DEBUG_LEHMER output(*res); fprintferr("============================Done.\n"); sleep(1); #endif return 1; }