Exemplo n.º 1
0
/**
 * Generate clamp(a, min, max)
 * Do checks for special cases.
 */
LLVMValueRef
lp_build_clamp(struct lp_build_context *bld,
               LLVMValueRef a,
               LLVMValueRef min,
               LLVMValueRef max)
{
   a = lp_build_min(bld, a, max);
   a = lp_build_max(bld, a, min);
   return a;
}
Exemplo n.º 2
0
/**
 * Build LLVM code for texture coord wrapping, for nearest filtering,
 * for scaled integer texcoords.
 * \param block_length  is the length of the pixel block along the
 *                      coordinate axis
 * \param coord  the incoming texcoord (s,t,r or q) scaled to the texture size
 * \param length  the texture size along one dimension
 * \param stride  pixel stride along the coordinate axis (in bytes)
 * \param is_pot  if TRUE, length is a power of two
 * \param wrap_mode  one of PIPE_TEX_WRAP_x
 * \param out_offset  byte offset for the wrapped coordinate
 * \param out_i  resulting sub-block pixel coordinate for coord0
 */
static void
lp_build_sample_wrap_nearest_int(struct lp_build_sample_context *bld,
                                 unsigned block_length,
                                 LLVMValueRef coord,
                                 LLVMValueRef length,
                                 LLVMValueRef stride,
                                 boolean is_pot,
                                 unsigned wrap_mode,
                                 LLVMValueRef *out_offset,
                                 LLVMValueRef *out_i)
{
   struct lp_build_context *int_coord_bld = &bld->int_coord_bld;
   LLVMBuilderRef builder = bld->gallivm->builder;
   LLVMValueRef length_minus_one;

   length_minus_one = lp_build_sub(int_coord_bld, length, int_coord_bld->one);

   switch(wrap_mode) {
   case PIPE_TEX_WRAP_REPEAT:
      if(is_pot)
         coord = LLVMBuildAnd(builder, coord, length_minus_one, "");
      else {
         /* Add a bias to the texcoord to handle negative coords */
         LLVMValueRef bias = lp_build_mul_imm(int_coord_bld, length, 1024);
         coord = LLVMBuildAdd(builder, coord, bias, "");
         coord = LLVMBuildURem(builder, coord, length, "");
      }
      break;

   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
      coord = lp_build_max(int_coord_bld, coord, int_coord_bld->zero);
      coord = lp_build_min(int_coord_bld, coord, length_minus_one);
      break;

   case PIPE_TEX_WRAP_CLAMP:
   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
   case PIPE_TEX_WRAP_MIRROR_REPEAT:
   case PIPE_TEX_WRAP_MIRROR_CLAMP:
   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
   default:
      assert(0);
   }

   lp_build_sample_partial_offset(int_coord_bld, block_length, coord, stride,
                                  out_offset, out_i);
}
Exemplo n.º 3
0
/**
 * Codegen equivalent for u_minify().
 * Return max(1, base_size >> level);
 */
LLVMValueRef
lp_build_minify(struct lp_build_context *bld,
                LLVMValueRef base_size,
                LLVMValueRef level)
{
   LLVMBuilderRef builder = bld->gallivm->builder;
   assert(lp_check_value(bld->type, base_size));
   assert(lp_check_value(bld->type, level));

   if (level == bld->zero) {
      /* if we're using mipmap level zero, no minification is needed */
      return base_size;
   }
   else {
      LLVMValueRef size =
         LLVMBuildLShr(builder, base_size, level, "minify");
      assert(bld->type.sign);
      size = lp_build_max(bld, size, bld->one);
      return size;
   }
}
Exemplo n.º 4
0
/**
 * @sa http://www.opengl.org/sdk/docs/man/xhtml/glBlendEquationSeparate.xml
 */
LLVMValueRef
lp_build_blend_func(struct lp_build_context *bld,
                    unsigned func,
                    LLVMValueRef term1,
                    LLVMValueRef term2)
{
   switch (func) {
   case PIPE_BLEND_ADD:
      return lp_build_add(bld, term1, term2);
   case PIPE_BLEND_SUBTRACT:
      return lp_build_sub(bld, term1, term2);
   case PIPE_BLEND_REVERSE_SUBTRACT:
      return lp_build_sub(bld, term2, term1);
   case PIPE_BLEND_MIN:
      return lp_build_min(bld, term1, term2);
   case PIPE_BLEND_MAX:
      return lp_build_max(bld, term1, term2);
   default:
      assert(0);
      return bld->zero;
   }
}
Exemplo n.º 5
0
/**
 * Unpack several pixels in SoA.
 *
 * It takes a vector of packed pixels:
 *
 *   packed = {P0, P1, P2, P3, ..., Pn}
 *
 * And will produce four vectors:
 *
 *   red    = {R0, R1, R2, R3, ..., Rn}
 *   green  = {G0, G1, G2, G3, ..., Gn}
 *   blue   = {B0, B1, B2, B3, ..., Bn}
 *   alpha  = {A0, A1, A2, A3, ..., An}
 *
 * It requires that a packed pixel fits into an element of the output
 * channels. The common case is when converting pixel with a depth of 32 bit or
 * less into floats.
 *
 * \param format_desc  the format of the 'packed' incoming pixel vector
 * \param type  the desired type for rgba_out (type.length = n, above)
 * \param packed  the incoming vector of packed pixels
 * \param rgba_out  returns the SoA R,G,B,A vectors
 */
void
lp_build_unpack_rgba_soa(struct gallivm_state *gallivm,
                         const struct util_format_description *format_desc,
                         struct lp_type type,
                         LLVMValueRef packed,
                         LLVMValueRef rgba_out[4])
{
   LLVMBuilderRef builder = gallivm->builder;
   struct lp_build_context bld;
   LLVMValueRef inputs[4];
   unsigned chan;

   assert(format_desc->layout == UTIL_FORMAT_LAYOUT_PLAIN);
   assert(format_desc->block.width == 1);
   assert(format_desc->block.height == 1);
   assert(format_desc->block.bits <= type.width);
   /* FIXME: Support more output types */
   assert(type.width == 32);

   lp_build_context_init(&bld, gallivm, type);

   /* Decode the input vector components */
   for (chan = 0; chan < format_desc->nr_channels; ++chan) {
      const unsigned width = format_desc->channel[chan].size;
      const unsigned start = format_desc->channel[chan].shift;
      const unsigned stop = start + width;
      LLVMValueRef input;

      input = packed;

      switch(format_desc->channel[chan].type) {
      case UTIL_FORMAT_TYPE_VOID:
         input = lp_build_undef(gallivm, type);
         break;

      case UTIL_FORMAT_TYPE_UNSIGNED:
         /*
          * Align the LSB
          */

         if (start) {
            input = LLVMBuildLShr(builder, input, lp_build_const_int_vec(gallivm, type, start), "");
         }

         /*
          * Zero the MSBs
          */

         if (stop < format_desc->block.bits) {
            unsigned mask = ((unsigned long long)1 << width) - 1;
            input = LLVMBuildAnd(builder, input, lp_build_const_int_vec(gallivm, type, mask), "");
         }

         /*
          * Type conversion
          */

         if (type.floating) {
            if (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
               assert(width == 8);
               if (format_desc->swizzle[3] == chan) {
                  input = lp_build_unsigned_norm_to_float(gallivm, width, type, input);
               }
               else {
                  struct lp_type conv_type = lp_uint_type(type);
                  input = lp_build_srgb_to_linear(gallivm, conv_type, input);
               }
            }
            else {
               if(format_desc->channel[chan].normalized)
                  input = lp_build_unsigned_norm_to_float(gallivm, width, type, input);
               else
                  input = LLVMBuildSIToFP(builder, input,
                                          lp_build_vec_type(gallivm, type), "");
            }
         }
         else if (format_desc->channel[chan].pure_integer) {
            /* Nothing to do */
         } else {
             /* FIXME */
             assert(0);
         }

         break;

      case UTIL_FORMAT_TYPE_SIGNED:
         /*
          * Align the sign bit first.
          */

         if (stop < type.width) {
            unsigned bits = type.width - stop;
            LLVMValueRef bits_val = lp_build_const_int_vec(gallivm, type, bits);
            input = LLVMBuildShl(builder, input, bits_val, "");
         }

         /*
          * Align the LSB (with an arithmetic shift to preserve the sign)
          */

         if (format_desc->channel[chan].size < type.width) {
            unsigned bits = type.width - format_desc->channel[chan].size;
            LLVMValueRef bits_val = lp_build_const_int_vec(gallivm, type, bits);
            input = LLVMBuildAShr(builder, input, bits_val, "");
         }

         /*
          * Type conversion
          */

         if (type.floating) {
            input = LLVMBuildSIToFP(builder, input, lp_build_vec_type(gallivm, type), "");
            if (format_desc->channel[chan].normalized) {
               double scale = 1.0 / ((1 << (format_desc->channel[chan].size - 1)) - 1);
               LLVMValueRef scale_val = lp_build_const_vec(gallivm, type, scale);
               input = LLVMBuildFMul(builder, input, scale_val, "");
               /* the formula above will produce value below -1.0 for most negative
                * value but everything seems happy with that hence disable for now */
               if (0)
                  input = lp_build_max(&bld, input,
                                       lp_build_const_vec(gallivm, type, -1.0f));
            }
         }
         else if (format_desc->channel[chan].pure_integer) {
            /* Nothing to do */
         } else {
             /* FIXME */
             assert(0);
         }

         break;

      case UTIL_FORMAT_TYPE_FLOAT:
         if (type.floating) {
            assert(start == 0);
            assert(stop == 32);
            assert(type.width == 32);
            input = LLVMBuildBitCast(builder, input, lp_build_vec_type(gallivm, type), "");
         }
         else {
            /* FIXME */
            assert(0);
            input = lp_build_undef(gallivm, type);
         }
         break;

      case UTIL_FORMAT_TYPE_FIXED:
         if (type.floating) {
            double scale = 1.0 / ((1 << (format_desc->channel[chan].size/2)) - 1);
            LLVMValueRef scale_val = lp_build_const_vec(gallivm, type, scale);
            input = LLVMBuildSIToFP(builder, input, lp_build_vec_type(gallivm, type), "");
            input = LLVMBuildFMul(builder, input, scale_val, "");
         }
         else {
            /* FIXME */
            assert(0);
            input = lp_build_undef(gallivm, type);
         }
         break;

      default:
         assert(0);
         input = lp_build_undef(gallivm, type);
         break;
      }

      inputs[chan] = input;
   }

   lp_build_format_swizzle_soa(format_desc, &bld, inputs, rgba_out);
}
Exemplo n.º 6
0
/**
 * Generic type conversion.
 *
 * TODO: Take a precision argument, or even better, add a new precision member
 * to the lp_type union.
 */
void
lp_build_conv(struct gallivm_state *gallivm,
              struct lp_type src_type,
              struct lp_type dst_type,
              const LLVMValueRef *src, unsigned num_srcs,
              LLVMValueRef *dst, unsigned num_dsts)
{
    LLVMBuilderRef builder = gallivm->builder;
    struct lp_type tmp_type;
    LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
    unsigned num_tmps;
    unsigned i;

    /* We must not loose or gain channels. Only precision */
    assert(src_type.length * num_srcs == dst_type.length * num_dsts);

    assert(src_type.length <= LP_MAX_VECTOR_LENGTH);
    assert(dst_type.length <= LP_MAX_VECTOR_LENGTH);
    assert(num_srcs <= LP_MAX_VECTOR_LENGTH);
    assert(num_dsts <= LP_MAX_VECTOR_LENGTH);

    tmp_type = src_type;
    for(i = 0; i < num_srcs; ++i) {
        assert(lp_check_value(src_type, src[i]));
        tmp[i] = src[i];
    }
    num_tmps = num_srcs;


    /* Special case 4x4f --> 1x16ub
     */
    if (src_type.floating == 1 &&
            src_type.fixed    == 0 &&
            src_type.sign     == 1 &&
            src_type.norm     == 0 &&
            src_type.width    == 32 &&
            src_type.length   == 4 &&

            dst_type.floating == 0 &&
            dst_type.fixed    == 0 &&
            dst_type.sign     == 0 &&
            dst_type.norm     == 1 &&
            dst_type.width    == 8 &&
            dst_type.length   == 16 &&

            4 * num_dsts      == num_srcs &&

            util_cpu_caps.has_sse2)
    {
        struct lp_build_context bld;
        struct lp_type int16_type = dst_type;
        struct lp_type int32_type = dst_type;
        LLVMValueRef const_255f;
        unsigned i, j;

        lp_build_context_init(&bld, gallivm, src_type);

        int16_type.width *= 2;
        int16_type.length /= 2;
        int16_type.sign = 1;

        int32_type.width *= 4;
        int32_type.length /= 4;
        int32_type.sign = 1;

        const_255f = lp_build_const_vec(gallivm, src_type, 255.0f);

        for (i = 0; i < num_dsts; ++i, src += 4) {
            LLVMValueRef lo, hi;

            for (j = 0; j < 4; ++j) {
                tmp[j] = LLVMBuildFMul(builder, src[j], const_255f, "");
                tmp[j] = lp_build_iround(&bld, tmp[j]);
            }

            /* relying on clamping behavior of sse2 intrinsics here */
            lo = lp_build_pack2(gallivm, int32_type, int16_type, tmp[0], tmp[1]);
            hi = lp_build_pack2(gallivm, int32_type, int16_type, tmp[2], tmp[3]);
            dst[i] = lp_build_pack2(gallivm, int16_type, dst_type, lo, hi);
        }

        return;
    }

    /* Special case 2x8f --> 1x16ub
     */
    else if (src_type.floating == 1 &&
             src_type.fixed    == 0 &&
             src_type.sign     == 1 &&
             src_type.norm     == 0 &&
             src_type.width    == 32 &&
             src_type.length   == 8 &&

             dst_type.floating == 0 &&
             dst_type.fixed    == 0 &&
             dst_type.sign     == 0 &&
             dst_type.norm     == 1 &&
             dst_type.width    == 8 &&
             dst_type.length   == 16 &&

             2 * num_dsts      == num_srcs &&

             util_cpu_caps.has_avx) {

        struct lp_build_context bld;
        struct lp_type int16_type = dst_type;
        struct lp_type int32_type = dst_type;
        LLVMValueRef const_255f;
        unsigned i;

        lp_build_context_init(&bld, gallivm, src_type);

        int16_type.width *= 2;
        int16_type.length /= 2;
        int16_type.sign = 1;

        int32_type.width *= 4;
        int32_type.length /= 4;
        int32_type.sign = 1;

        const_255f = lp_build_const_vec(gallivm, src_type, 255.0f);

        for (i = 0; i < num_dsts; ++i, src += 2) {
            LLVMValueRef lo, hi, a, b;

            a = LLVMBuildFMul(builder, src[0], const_255f, "");
            b = LLVMBuildFMul(builder, src[1], const_255f, "");

            a = lp_build_iround(&bld, a);
            b = lp_build_iround(&bld, b);

            tmp[0] = lp_build_extract_range(gallivm, a, 0, 4);
            tmp[1] = lp_build_extract_range(gallivm, a, 4, 4);
            tmp[2] = lp_build_extract_range(gallivm, b, 0, 4);
            tmp[3] = lp_build_extract_range(gallivm, b, 4, 4);

            /* relying on clamping behavior of sse2 intrinsics here */
            lo = lp_build_pack2(gallivm, int32_type, int16_type, tmp[0], tmp[1]);
            hi = lp_build_pack2(gallivm, int32_type, int16_type, tmp[2], tmp[3]);
            dst[i] = lp_build_pack2(gallivm, int16_type, dst_type, lo, hi);
        }
        return;
    }

    /* Pre convert half-floats to floats
     */
    else if (src_type.floating && src_type.width == 16)
    {
        for(i = 0; i < num_tmps; ++i)
            tmp[i] = lp_build_half_to_float(gallivm, src_type, tmp[i]);

        tmp_type.width = 32;
    }

    /*
     * Clamp if necessary
     */

    if(memcmp(&src_type, &dst_type, sizeof src_type) != 0) {
        struct lp_build_context bld;
        double src_min = lp_const_min(src_type);
        double dst_min = lp_const_min(dst_type);
        double src_max = lp_const_max(src_type);
        double dst_max = lp_const_max(dst_type);
        LLVMValueRef thres;

        lp_build_context_init(&bld, gallivm, tmp_type);

        if(src_min < dst_min) {
            if(dst_min == 0.0)
                thres = bld.zero;
            else
                thres = lp_build_const_vec(gallivm, src_type, dst_min);
            for(i = 0; i < num_tmps; ++i)
                tmp[i] = lp_build_max(&bld, tmp[i], thres);
        }

        if(src_max > dst_max) {
            if(dst_max == 1.0)
                thres = bld.one;
            else
                thres = lp_build_const_vec(gallivm, src_type, dst_max);
            for(i = 0; i < num_tmps; ++i)
                tmp[i] = lp_build_min(&bld, tmp[i], thres);
        }
    }

    /*
     * Scale to the narrowest range
     */

    if(dst_type.floating) {
        /* Nothing to do */
    }
    else if(tmp_type.floating) {
        if(!dst_type.fixed && !dst_type.sign && dst_type.norm) {
            for(i = 0; i < num_tmps; ++i) {
                tmp[i] = lp_build_clamped_float_to_unsigned_norm(gallivm,
                         tmp_type,
                         dst_type.width,
                         tmp[i]);
            }
            tmp_type.floating = FALSE;
        }
        else {
            double dst_scale = lp_const_scale(dst_type);
            LLVMTypeRef tmp_vec_type;

            if (dst_scale != 1.0) {
                LLVMValueRef scale = lp_build_const_vec(gallivm, tmp_type, dst_scale);
                for(i = 0; i < num_tmps; ++i)
                    tmp[i] = LLVMBuildFMul(builder, tmp[i], scale, "");
            }

            /* Use an equally sized integer for intermediate computations */
            tmp_type.floating = FALSE;
            tmp_vec_type = lp_build_vec_type(gallivm, tmp_type);
            for(i = 0; i < num_tmps; ++i) {
#if 0
                if(dst_type.sign)
                    tmp[i] = LLVMBuildFPToSI(builder, tmp[i], tmp_vec_type, "");
                else
                    tmp[i] = LLVMBuildFPToUI(builder, tmp[i], tmp_vec_type, "");
#else
                /* FIXME: there is no SSE counterpart for LLVMBuildFPToUI */
                tmp[i] = LLVMBuildFPToSI(builder, tmp[i], tmp_vec_type, "");
#endif
            }
        }
    }
    else {
        unsigned src_shift = lp_const_shift(src_type);
        unsigned dst_shift = lp_const_shift(dst_type);
        unsigned src_offset = lp_const_offset(src_type);
        unsigned dst_offset = lp_const_offset(dst_type);

        /* Compensate for different offsets */
        if (dst_offset > src_offset && src_type.width > dst_type.width) {
            for (i = 0; i < num_tmps; ++i) {
                LLVMValueRef shifted;
                LLVMValueRef shift = lp_build_const_int_vec(gallivm, tmp_type, src_shift - 1);
                if(src_type.sign)
                    shifted = LLVMBuildAShr(builder, tmp[i], shift, "");
                else
                    shifted = LLVMBuildLShr(builder, tmp[i], shift, "");

                tmp[i] = LLVMBuildSub(builder, tmp[i], shifted, "");
            }
        }

        if(src_shift > dst_shift) {
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, tmp_type,
                                 src_shift - dst_shift);
            for(i = 0; i < num_tmps; ++i)
                if(src_type.sign)
                    tmp[i] = LLVMBuildAShr(builder, tmp[i], shift, "");
                else
                    tmp[i] = LLVMBuildLShr(builder, tmp[i], shift, "");
        }
    }

    /*
     * Truncate or expand bit width
     *
     * No data conversion should happen here, although the sign bits are
     * crucial to avoid bad clamping.
     */

    {
        struct lp_type new_type;

        new_type = tmp_type;
        new_type.sign   = dst_type.sign;
        new_type.width  = dst_type.width;
        new_type.length = dst_type.length;

        lp_build_resize(gallivm, tmp_type, new_type, tmp, num_srcs, tmp, num_dsts);

        tmp_type = new_type;
        num_tmps = num_dsts;
    }

    /*
     * Scale to the widest range
     */

    if(src_type.floating) {
        /* Nothing to do */
    }
    else if(!src_type.floating && dst_type.floating) {
        if(!src_type.fixed && !src_type.sign && src_type.norm) {
            for(i = 0; i < num_tmps; ++i) {
                tmp[i] = lp_build_unsigned_norm_to_float(gallivm,
                         src_type.width,
                         dst_type,
                         tmp[i]);
            }
            tmp_type.floating = TRUE;
        }
        else {
            double src_scale = lp_const_scale(src_type);
            LLVMTypeRef tmp_vec_type;

            /* Use an equally sized integer for intermediate computations */
            tmp_type.floating = TRUE;
            tmp_type.sign = TRUE;
            tmp_vec_type = lp_build_vec_type(gallivm, tmp_type);
            for(i = 0; i < num_tmps; ++i) {
#if 0
                if(dst_type.sign)
                    tmp[i] = LLVMBuildSIToFP(builder, tmp[i], tmp_vec_type, "");
                else
                    tmp[i] = LLVMBuildUIToFP(builder, tmp[i], tmp_vec_type, "");
#else
                /* FIXME: there is no SSE counterpart for LLVMBuildUIToFP */
                tmp[i] = LLVMBuildSIToFP(builder, tmp[i], tmp_vec_type, "");
#endif
            }

            if (src_scale != 1.0) {
                LLVMValueRef scale = lp_build_const_vec(gallivm, tmp_type, 1.0/src_scale);
                for(i = 0; i < num_tmps; ++i)
                    tmp[i] = LLVMBuildFMul(builder, tmp[i], scale, "");
            }
        }
    }
    else {
        unsigned src_shift = lp_const_shift(src_type);
        unsigned dst_shift = lp_const_shift(dst_type);
        unsigned src_offset = lp_const_offset(src_type);
        unsigned dst_offset = lp_const_offset(dst_type);

        if (src_shift < dst_shift) {
            LLVMValueRef pre_shift[LP_MAX_VECTOR_LENGTH];
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, tmp_type, dst_shift - src_shift);

            for (i = 0; i < num_tmps; ++i) {
                pre_shift[i] = tmp[i];
                tmp[i] = LLVMBuildShl(builder, tmp[i], shift, "");
            }

            /* Compensate for different offsets */
            if (dst_offset > src_offset) {
                for (i = 0; i < num_tmps; ++i) {
                    tmp[i] = LLVMBuildSub(builder, tmp[i], pre_shift[i], "");
                }
            }
        }
    }

    for(i = 0; i < num_dsts; ++i) {
        dst[i] = tmp[i];
        assert(lp_check_value(dst_type, dst[i]));
    }
}
Exemplo n.º 7
0
/**
 * Generate code to compute texture level of detail (lambda).
 * \param ddx  partial derivatives of (s, t, r, q) with respect to X
 * \param ddy  partial derivatives of (s, t, r, q) with respect to Y
 * \param lod_bias  optional float vector with the shader lod bias
 * \param explicit_lod  optional float vector with the explicit lod
 * \param width  scalar int texture width
 * \param height  scalar int texture height
 * \param depth  scalar int texture depth
 *
 * XXX: The resulting lod is scalar, so ignore all but the first element of
 * derivatives, lod_bias, etc that are passed by the shader.
 */
void
lp_build_lod_selector(struct lp_build_sample_context *bld,
                      unsigned unit,
                      const LLVMValueRef ddx[4],
                      const LLVMValueRef ddy[4],
                      LLVMValueRef lod_bias, /* optional */
                      LLVMValueRef explicit_lod, /* optional */
                      unsigned mip_filter,
                      LLVMValueRef *out_lod_ipart,
                      LLVMValueRef *out_lod_fpart)

{
   LLVMBuilderRef builder = bld->gallivm->builder;
   struct lp_build_context *float_bld = &bld->float_bld;
   LLVMValueRef lod;

   *out_lod_ipart = bld->int_bld.zero;
   *out_lod_fpart = bld->float_bld.zero;

   if (bld->static_state->min_max_lod_equal) {
      /* User is forcing sampling from a particular mipmap level.
       * This is hit during mipmap generation.
       */
      LLVMValueRef min_lod =
         bld->dynamic_state->min_lod(bld->dynamic_state, bld->gallivm, unit);

      lod = min_lod;
   }
   else {
      LLVMValueRef sampler_lod_bias =
         bld->dynamic_state->lod_bias(bld->dynamic_state, bld->gallivm, unit);
      LLVMValueRef index0 = lp_build_const_int32(bld->gallivm, 0);

      if (explicit_lod) {
         lod = LLVMBuildExtractElement(builder, explicit_lod,
                                       index0, "");
      }
      else {
         LLVMValueRef rho;

         rho = lp_build_rho(bld, unit, ddx, ddy);

         /*
          * Compute lod = log2(rho)
          */

         if (!lod_bias &&
             !bld->static_state->lod_bias_non_zero &&
             !bld->static_state->apply_max_lod &&
             !bld->static_state->apply_min_lod) {
            /*
             * Special case when there are no post-log2 adjustments, which
             * saves instructions but keeping the integer and fractional lod
             * computations separate from the start.
             */

            if (mip_filter == PIPE_TEX_MIPFILTER_NONE ||
                mip_filter == PIPE_TEX_MIPFILTER_NEAREST) {
               *out_lod_ipart = lp_build_ilog2(float_bld, rho);
               *out_lod_fpart = bld->float_bld.zero;
               return;
            }
            if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR &&
                !(gallivm_debug & GALLIVM_DEBUG_NO_BRILINEAR)) {
               lp_build_brilinear_rho(float_bld, rho, BRILINEAR_FACTOR,
                                      out_lod_ipart, out_lod_fpart);
               return;
            }
         }

         if (0) {
            lod = lp_build_log2(float_bld, rho);
         }
         else {
            lod = lp_build_fast_log2(float_bld, rho);
         }

         /* add shader lod bias */
         if (lod_bias) {
            lod_bias = LLVMBuildExtractElement(builder, lod_bias,
                                               index0, "");
            lod = LLVMBuildFAdd(builder, lod, lod_bias, "shader_lod_bias");
         }
      }

      /* add sampler lod bias */
      if (bld->static_state->lod_bias_non_zero)
         lod = LLVMBuildFAdd(builder, lod, sampler_lod_bias, "sampler_lod_bias");


      /* clamp lod */
      if (bld->static_state->apply_max_lod) {
         LLVMValueRef max_lod =
            bld->dynamic_state->max_lod(bld->dynamic_state, bld->gallivm, unit);

         lod = lp_build_min(float_bld, lod, max_lod);
      }
      if (bld->static_state->apply_min_lod) {
         LLVMValueRef min_lod =
            bld->dynamic_state->min_lod(bld->dynamic_state, bld->gallivm, unit);

         lod = lp_build_max(float_bld, lod, min_lod);
      }
   }

   if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR) {
      if (!(gallivm_debug & GALLIVM_DEBUG_NO_BRILINEAR)) {
         lp_build_brilinear_lod(float_bld, lod, BRILINEAR_FACTOR,
                                out_lod_ipart, out_lod_fpart);
      }
      else {
         lp_build_ifloor_fract(float_bld, lod, out_lod_ipart, out_lod_fpart);
      }

      lp_build_name(*out_lod_fpart, "lod_fpart");
   }
   else {
      *out_lod_ipart = lp_build_iround(float_bld, lod);
   }

   lp_build_name(*out_lod_ipart, "lod_ipart");

   return;
}
Exemplo n.º 8
0
/**
 * Generate code to compute coordinate gradient (rho).
 * \param ddx  partial derivatives of (s, t, r, q) with respect to X
 * \param ddy  partial derivatives of (s, t, r, q) with respect to Y
 *
 * XXX: The resulting rho is scalar, so we ignore all but the first element of
 * derivatives that are passed by the shader.
 */
static LLVMValueRef
lp_build_rho(struct lp_build_sample_context *bld,
             unsigned unit,
             const LLVMValueRef ddx[4],
             const LLVMValueRef ddy[4])
{
   struct lp_build_context *int_size_bld = &bld->int_size_bld;
   struct lp_build_context *float_size_bld = &bld->float_size_bld;
   struct lp_build_context *float_bld = &bld->float_bld;
   const unsigned dims = bld->dims;
   LLVMBuilderRef builder = bld->gallivm->builder;
   LLVMTypeRef i32t = LLVMInt32TypeInContext(bld->gallivm->context);
   LLVMValueRef index0 = LLVMConstInt(i32t, 0, 0);
   LLVMValueRef index1 = LLVMConstInt(i32t, 1, 0);
   LLVMValueRef index2 = LLVMConstInt(i32t, 2, 0);
   LLVMValueRef dsdx, dsdy, dtdx, dtdy, drdx, drdy;
   LLVMValueRef rho_x, rho_y;
   LLVMValueRef rho_vec;
   LLVMValueRef int_size, float_size;
   LLVMValueRef rho;
   LLVMValueRef first_level, first_level_vec;

   dsdx = ddx[0];
   dsdy = ddy[0];

   if (dims <= 1) {
      rho_x = dsdx;
      rho_y = dsdy;
   }
   else {
      rho_x = float_size_bld->undef;
      rho_y = float_size_bld->undef;

      rho_x = LLVMBuildInsertElement(builder, rho_x, dsdx, index0, "");
      rho_y = LLVMBuildInsertElement(builder, rho_y, dsdy, index0, "");

      dtdx = ddx[1];
      dtdy = ddy[1];

      rho_x = LLVMBuildInsertElement(builder, rho_x, dtdx, index1, "");
      rho_y = LLVMBuildInsertElement(builder, rho_y, dtdy, index1, "");

      if (dims >= 3) {
         drdx = ddx[2];
         drdy = ddy[2];

         rho_x = LLVMBuildInsertElement(builder, rho_x, drdx, index2, "");
         rho_y = LLVMBuildInsertElement(builder, rho_y, drdy, index2, "");
      }
   }

   rho_x = lp_build_abs(float_size_bld, rho_x);
   rho_y = lp_build_abs(float_size_bld, rho_y);

   rho_vec = lp_build_max(float_size_bld, rho_x, rho_y);

   first_level = bld->dynamic_state->first_level(bld->dynamic_state,
                                                 bld->gallivm, unit);
   first_level_vec = lp_build_broadcast_scalar(&bld->int_size_bld, first_level);
   int_size = lp_build_minify(int_size_bld, bld->int_size, first_level_vec);
   float_size = lp_build_int_to_float(float_size_bld, int_size);

   rho_vec = lp_build_mul(float_size_bld, rho_vec, float_size);

   if (dims <= 1) {
      rho = rho_vec;
   }
   else {
      if (dims >= 2) {
         LLVMValueRef rho_s, rho_t, rho_r;

         rho_s = LLVMBuildExtractElement(builder, rho_vec, index0, "");
         rho_t = LLVMBuildExtractElement(builder, rho_vec, index1, "");

         rho = lp_build_max(float_bld, rho_s, rho_t);
         if (dims >= 3) {
            rho_r = LLVMBuildExtractElement(builder, rho_vec, index2, "");
            rho = lp_build_max(float_bld, rho, rho_r);
         }
      }
   }

   return rho;
}
/**
 * Emit LLVM for one TGSI instruction.
 * \param return TRUE for success, FALSE otherwise
 */
boolean
lp_emit_instruction_aos(
   struct lp_build_tgsi_aos_context *bld,
   const struct tgsi_full_instruction *inst,
   const struct tgsi_opcode_info *info,
   int *pc)
{
   LLVMValueRef src0, src1, src2;
   LLVMValueRef tmp0, tmp1;
   LLVMValueRef dst0 = NULL;

   /*
    * Stores and write masks are handled in a general fashion after the long
    * instruction opcode switch statement.
    *
    * Although not stricitly necessary, we avoid generating instructions for
    * channels which won't be stored, in cases where's that easy. For some
    * complex instructions, like texture sampling, it is more convenient to
    * assume a full writemask and then let LLVM optimization passes eliminate
    * redundant code.
    */

   (*pc)++;

   assert(info->num_dst <= 1);
   if (info->num_dst) {
      dst0 = bld->bld_base.base.undef;
   }

   switch (inst->Instruction.Opcode) {
   case TGSI_OPCODE_ARL:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      dst0 = lp_build_floor(&bld->bld_base.base, src0);
      break;

   case TGSI_OPCODE_MOV:
      dst0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      break;

   case TGSI_OPCODE_LIT:
      return FALSE;

   case TGSI_OPCODE_RCP:
   /* TGSI_OPCODE_RECIP */
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      dst0 = lp_build_rcp(&bld->bld_base.base, src0);
      break;

   case TGSI_OPCODE_RSQ:
   /* TGSI_OPCODE_RECIPSQRT */
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      tmp0 = lp_build_emit_llvm_unary(&bld->bld_base, TGSI_OPCODE_ABS, src0);
      dst0 = lp_build_rsqrt(&bld->bld_base.base, tmp0);
      break;

   case TGSI_OPCODE_EXP:
      return FALSE;

   case TGSI_OPCODE_LOG:
      return FALSE;

   case TGSI_OPCODE_MUL:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      dst0 = lp_build_mul(&bld->bld_base.base, src0, src1);
      break;

   case TGSI_OPCODE_ADD:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      dst0 = lp_build_add(&bld->bld_base.base, src0, src1);
      break;

   case TGSI_OPCODE_DP3:
   /* TGSI_OPCODE_DOT3 */
      return FALSE;

   case TGSI_OPCODE_DP4:
   /* TGSI_OPCODE_DOT4 */
      return FALSE;

   case TGSI_OPCODE_DST:
      return FALSE;

   case TGSI_OPCODE_MIN:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      dst0 = lp_build_max(&bld->bld_base.base, src0, src1);
      break;

   case TGSI_OPCODE_MAX:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      dst0 = lp_build_max(&bld->bld_base.base, src0, src1);
      break;

   case TGSI_OPCODE_SLT:
   /* TGSI_OPCODE_SETLT */
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      tmp0 = lp_build_cmp(&bld->bld_base.base, PIPE_FUNC_LESS, src0, src1);
      dst0 = lp_build_select(&bld->bld_base.base, tmp0, bld->bld_base.base.one, bld->bld_base.base.zero);
      break;

   case TGSI_OPCODE_SGE:
   /* TGSI_OPCODE_SETGE */
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      tmp0 = lp_build_cmp(&bld->bld_base.base, PIPE_FUNC_GEQUAL, src0, src1);
      dst0 = lp_build_select(&bld->bld_base.base, tmp0, bld->bld_base.base.one, bld->bld_base.base.zero);
      break;

   case TGSI_OPCODE_MAD:
   /* TGSI_OPCODE_MADD */
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      src2 = lp_build_emit_fetch(&bld->bld_base, inst, 2, LP_CHAN_ALL);
      tmp0 = lp_build_mul(&bld->bld_base.base, src0, src1);
      dst0 = lp_build_add(&bld->bld_base.base, tmp0, src2);
      break;

   case TGSI_OPCODE_SUB:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      dst0 = lp_build_sub(&bld->bld_base.base, src0, src1);
      break;

   case TGSI_OPCODE_LRP:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      src2 = lp_build_emit_fetch(&bld->bld_base, inst, 2, LP_CHAN_ALL);
      tmp0 = lp_build_sub(&bld->bld_base.base, src1, src2);
      tmp0 = lp_build_mul(&bld->bld_base.base, src0, tmp0);
      dst0 = lp_build_add(&bld->bld_base.base, tmp0, src2);
      break;

   case TGSI_OPCODE_CND:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      src2 = lp_build_emit_fetch(&bld->bld_base, inst, 2, LP_CHAN_ALL);
      tmp1 = lp_build_const_vec(bld->bld_base.base.gallivm, bld->bld_base.base.type, 0.5);
      tmp0 = lp_build_cmp(&bld->bld_base.base, PIPE_FUNC_GREATER, src2, tmp1);
      dst0 = lp_build_select(&bld->bld_base.base, tmp0, src0, src1);
      break;

   case TGSI_OPCODE_DP2A:
      return FALSE;

   case TGSI_OPCODE_FRC:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      tmp0 = lp_build_floor(&bld->bld_base.base, src0);
      dst0 = lp_build_sub(&bld->bld_base.base, src0, tmp0);
      break;

   case TGSI_OPCODE_CLAMP:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      src2 = lp_build_emit_fetch(&bld->bld_base, inst, 2, LP_CHAN_ALL);
      tmp0 = lp_build_max(&bld->bld_base.base, src0, src1);
      dst0 = lp_build_min(&bld->bld_base.base, tmp0, src2);
      break;

   case TGSI_OPCODE_FLR:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      dst0 = lp_build_floor(&bld->bld_base.base, src0);
      break;

   case TGSI_OPCODE_ROUND:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      dst0 = lp_build_round(&bld->bld_base.base, src0);
      break;

   case TGSI_OPCODE_EX2:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      tmp0 = lp_build_swizzle_scalar_aos(&bld->bld_base.base, src0, TGSI_SWIZZLE_X, TGSI_NUM_CHANNELS);
      dst0 = lp_build_exp2(&bld->bld_base.base, tmp0);
      break;

   case TGSI_OPCODE_LG2:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      tmp0 = swizzle_scalar_aos(bld, src0, TGSI_SWIZZLE_X);
      dst0 = lp_build_log2(&bld->bld_base.base, tmp0);
      break;

   case TGSI_OPCODE_POW:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src0 = swizzle_scalar_aos(bld, src0, TGSI_SWIZZLE_X);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      src1 = swizzle_scalar_aos(bld, src1, TGSI_SWIZZLE_X);
      dst0 = lp_build_pow(&bld->bld_base.base, src0, src1);
      break;

   case TGSI_OPCODE_XPD:
      return FALSE;

   case TGSI_OPCODE_RCC:
      /* deprecated? */
      assert(0);
      return FALSE;

   case TGSI_OPCODE_DPH:
      return FALSE;

   case TGSI_OPCODE_COS:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      tmp0 = swizzle_scalar_aos(bld, src0, TGSI_SWIZZLE_X);
      dst0 = lp_build_cos(&bld->bld_base.base, tmp0);
      break;

   case TGSI_OPCODE_DDX:
      return FALSE;

   case TGSI_OPCODE_DDY:
      return FALSE;

   case TGSI_OPCODE_KILP:
      /* predicated kill */
      return FALSE;

   case TGSI_OPCODE_KIL:
      /* conditional kill */
      return FALSE;

   case TGSI_OPCODE_PK2H:
      return FALSE;
      break;

   case TGSI_OPCODE_PK2US:
      return FALSE;
      break;

   case TGSI_OPCODE_PK4B:
      return FALSE;
      break;

   case TGSI_OPCODE_PK4UB:
      return FALSE;

   case TGSI_OPCODE_RFL:
      return FALSE;

   case TGSI_OPCODE_SEQ:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      tmp0 = lp_build_cmp(&bld->bld_base.base, PIPE_FUNC_EQUAL, src0, src1);
      dst0 = lp_build_select(&bld->bld_base.base, tmp0, bld->bld_base.base.one, bld->bld_base.base.zero);
      break;

   case TGSI_OPCODE_SFL:
      dst0 = bld->bld_base.base.zero;
      break;

   case TGSI_OPCODE_SGT:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      tmp0 = lp_build_cmp(&bld->bld_base.base, PIPE_FUNC_GREATER, src0, src1);
      dst0 = lp_build_select(&bld->bld_base.base, tmp0, bld->bld_base.base.one, bld->bld_base.base.zero);
      break;

   case TGSI_OPCODE_SIN:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      tmp0 = swizzle_scalar_aos(bld, src0, TGSI_SWIZZLE_X);
      dst0 = lp_build_sin(&bld->bld_base.base, tmp0);
      break;

   case TGSI_OPCODE_SLE:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      tmp0 = lp_build_cmp(&bld->bld_base.base, PIPE_FUNC_LEQUAL, src0, src1);
      dst0 = lp_build_select(&bld->bld_base.base, tmp0, bld->bld_base.base.one, bld->bld_base.base.zero);
      break;

   case TGSI_OPCODE_SNE:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      tmp0 = lp_build_cmp(&bld->bld_base.base, PIPE_FUNC_NOTEQUAL, src0, src1);
      dst0 = lp_build_select(&bld->bld_base.base, tmp0, bld->bld_base.base.one, bld->bld_base.base.zero);
      break;

   case TGSI_OPCODE_STR:
      dst0 = bld->bld_base.base.one;
      break;

   case TGSI_OPCODE_TEX:
      dst0 = emit_tex(bld, inst, LP_BLD_TEX_MODIFIER_NONE);
      break;

   case TGSI_OPCODE_TXD:
      dst0 = emit_tex(bld, inst, LP_BLD_TEX_MODIFIER_EXPLICIT_DERIV);
      break;

   case TGSI_OPCODE_UP2H:
      /* deprecated */
      assert (0);
      return FALSE;
      break;

   case TGSI_OPCODE_UP2US:
      /* deprecated */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_UP4B:
      /* deprecated */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_UP4UB:
      /* deprecated */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_X2D:
      /* deprecated? */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_ARA:
      /* deprecated */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_ARR:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      dst0 = lp_build_round(&bld->bld_base.base, src0);
      break;

   case TGSI_OPCODE_BRA:
      /* deprecated */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_CAL:
      return FALSE;

   case TGSI_OPCODE_RET:
      return FALSE;

   case TGSI_OPCODE_END:
      *pc = -1;
      break;

   case TGSI_OPCODE_SSG:
   /* TGSI_OPCODE_SGN */
      tmp0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      dst0 = lp_build_sgn(&bld->bld_base.base, tmp0);
      break;

   case TGSI_OPCODE_CMP:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      src1 = lp_build_emit_fetch(&bld->bld_base, inst, 1, LP_CHAN_ALL);
      src2 = lp_build_emit_fetch(&bld->bld_base, inst, 2, LP_CHAN_ALL);
      tmp0 = lp_build_cmp(&bld->bld_base.base, PIPE_FUNC_LESS, src0, bld->bld_base.base.zero);
      dst0 = lp_build_select(&bld->bld_base.base, tmp0, src1, src2);
      break;

   case TGSI_OPCODE_SCS:
      return FALSE;

   case TGSI_OPCODE_TXB:
      dst0 = emit_tex(bld, inst, LP_BLD_TEX_MODIFIER_LOD_BIAS);
      break;

   case TGSI_OPCODE_NRM:
      /* fall-through */
   case TGSI_OPCODE_NRM4:
      return FALSE;

   case TGSI_OPCODE_DIV:
      /* deprecated */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_DP2:
      return FALSE;

   case TGSI_OPCODE_TXL:
      dst0 = emit_tex(bld, inst, LP_BLD_TEX_MODIFIER_EXPLICIT_LOD);
      break;

   case TGSI_OPCODE_TXP:
      dst0 = emit_tex(bld, inst, LP_BLD_TEX_MODIFIER_PROJECTED);
      break;

   case TGSI_OPCODE_BRK:
      return FALSE;

   case TGSI_OPCODE_IF:
      return FALSE;

   case TGSI_OPCODE_BGNLOOP:
      return FALSE;

   case TGSI_OPCODE_BGNSUB:
      return FALSE;

   case TGSI_OPCODE_ELSE:
      return FALSE;

   case TGSI_OPCODE_ENDIF:
      return FALSE;

   case TGSI_OPCODE_ENDLOOP:
      return FALSE;

   case TGSI_OPCODE_ENDSUB:
      return FALSE;

   case TGSI_OPCODE_PUSHA:
      /* deprecated? */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_POPA:
      /* deprecated? */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_CEIL:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      dst0 = lp_build_ceil(&bld->bld_base.base, src0);
      break;

   case TGSI_OPCODE_I2F:
      /* deprecated? */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_NOT:
      /* deprecated? */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_TRUNC:
      src0 = lp_build_emit_fetch(&bld->bld_base, inst, 0, LP_CHAN_ALL);
      dst0 = lp_build_trunc(&bld->bld_base.base, src0);
      break;

   case TGSI_OPCODE_SHL:
      /* deprecated? */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_ISHR:
      /* deprecated? */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_AND:
      /* deprecated? */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_OR:
      /* deprecated? */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_MOD:
      /* deprecated? */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_XOR:
      /* deprecated? */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_SAD:
      /* deprecated? */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_TXF:
      /* deprecated? */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_TXQ:
      /* deprecated? */
      assert(0);
      return FALSE;
      break;

   case TGSI_OPCODE_CONT:
      return FALSE;

   case TGSI_OPCODE_EMIT:
      return FALSE;
      break;

   case TGSI_OPCODE_ENDPRIM:
      return FALSE;
      break;

   case TGSI_OPCODE_NOP:
      break;

   default:
      return FALSE;
   }
   
   if (info->num_dst) {
      lp_emit_store_aos(bld, inst, 0, dst0);
   }

   return TRUE;
}
/**
 * Register store.
 */
void
lp_emit_store_aos(
   struct lp_build_tgsi_aos_context *bld,
   const struct tgsi_full_instruction *inst,
   unsigned index,
   LLVMValueRef value)
{
   LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
   const struct tgsi_full_dst_register *reg = &inst->Dst[index];
   LLVMValueRef mask = NULL;
   LLVMValueRef ptr;

   /*
    * Saturate the value
    */

   switch (inst->Instruction.Saturate) {
   case TGSI_SAT_NONE:
      break;

   case TGSI_SAT_ZERO_ONE:
      value = lp_build_max(&bld->bld_base.base, value, bld->bld_base.base.zero);
      value = lp_build_min(&bld->bld_base.base, value, bld->bld_base.base.one);
      break;

   case TGSI_SAT_MINUS_PLUS_ONE:
      value = lp_build_max(&bld->bld_base.base, value, lp_build_const_vec(bld->bld_base.base.gallivm, bld->bld_base.base.type, -1.0));
      value = lp_build_min(&bld->bld_base.base, value, bld->bld_base.base.one);
      break;

   default:
      assert(0);
   }

   /*
    * Translate the register file
    */

   assert(!reg->Register.Indirect);

   switch (reg->Register.File) {
   case TGSI_FILE_OUTPUT:
      ptr = bld->outputs[reg->Register.Index];
      break;

   case TGSI_FILE_TEMPORARY:
      ptr = bld->temps[reg->Register.Index];
      break;

   case TGSI_FILE_ADDRESS:
      ptr = bld->addr[reg->Indirect.Index];
      break;

   case TGSI_FILE_PREDICATE:
      ptr = bld->preds[reg->Register.Index];
      break;

   default:
      assert(0);
      return;
   }

   if (!ptr)
      return;
   /*
    * Predicate
    */

   if (inst->Instruction.Predicate) {
      LLVMValueRef pred;

      assert(inst->Predicate.Index < LP_MAX_TGSI_PREDS);

      pred = LLVMBuildLoad(builder,
                           bld->preds[inst->Predicate.Index], "");

      /*
       * Convert the value to an integer mask.
       */
      pred = lp_build_compare(bld->bld_base.base.gallivm,
                               bld->bld_base.base.type,
                               PIPE_FUNC_NOTEQUAL,
                               pred,
                               bld->bld_base.base.zero);

      if (inst->Predicate.Negate) {
         pred = LLVMBuildNot(builder, pred, "");
      }

      pred = bld->bld_base.emit_swizzle(&bld->bld_base, pred,
                         inst->Predicate.SwizzleX,
                         inst->Predicate.SwizzleY,
                         inst->Predicate.SwizzleZ,
                         inst->Predicate.SwizzleW);

      if (mask) {
         mask = LLVMBuildAnd(builder, mask, pred, "");
      } else {
         mask = pred;
      }
   }

   /*
    * Writemask
    */

   if (reg->Register.WriteMask != TGSI_WRITEMASK_XYZW) {
      LLVMValueRef writemask;

      writemask = lp_build_const_mask_aos_swizzled(bld->bld_base.base.gallivm,
                                                   bld->bld_base.base.type,
                                                   reg->Register.WriteMask,
                                                   TGSI_NUM_CHANNELS,
                                                   bld->swizzles);

      if (mask) {
         mask = LLVMBuildAnd(builder, mask, writemask, "");
      } else {
         mask = writemask;
      }
   }

   if (mask) {
      LLVMValueRef orig_value;

      orig_value = LLVMBuildLoad(builder, ptr, "");
      value = lp_build_select(&bld->bld_base.base,
                              mask, value, orig_value);
   }

   LLVMBuildStore(builder, value, ptr);
}
Exemplo n.º 11
0
/**
 * Apply the stencil operator (add/sub/keep/etc) to the given vector
 * of stencil values.
 * \return  new stencil values vector
 */
static LLVMValueRef
lp_build_stencil_op_single(struct lp_build_context *bld,
                           const struct pipe_stencil_state *stencil,
                           enum stencil_op op,
                           LLVMValueRef stencilRef,
                           LLVMValueRef stencilVals)

{
   LLVMBuilderRef builder = bld->gallivm->builder;
   struct lp_type type = bld->type;
   LLVMValueRef res;
   LLVMValueRef max = lp_build_const_int_vec(bld->gallivm, type, 0xff);
   unsigned stencil_op;

   assert(type.sign);

   switch (op) {
   case S_FAIL_OP:
      stencil_op = stencil->fail_op;
      break;
   case Z_FAIL_OP:
      stencil_op = stencil->zfail_op;
      break;
   case Z_PASS_OP:
      stencil_op = stencil->zpass_op;
      break;
   default:
      assert(0 && "Invalid stencil_op mode");
      stencil_op = PIPE_STENCIL_OP_KEEP;
   }

   switch (stencil_op) {
   case PIPE_STENCIL_OP_KEEP:
      res = stencilVals;
      /* we can return early for this case */
      return res;
   case PIPE_STENCIL_OP_ZERO:
      res = bld->zero;
      break;
   case PIPE_STENCIL_OP_REPLACE:
      res = stencilRef;
      break;
   case PIPE_STENCIL_OP_INCR:
      res = lp_build_add(bld, stencilVals, bld->one);
      res = lp_build_min(bld, res, max);
      break;
   case PIPE_STENCIL_OP_DECR:
      res = lp_build_sub(bld, stencilVals, bld->one);
      res = lp_build_max(bld, res, bld->zero);
      break;
   case PIPE_STENCIL_OP_INCR_WRAP:
      res = lp_build_add(bld, stencilVals, bld->one);
      res = LLVMBuildAnd(builder, res, max, "");
      break;
   case PIPE_STENCIL_OP_DECR_WRAP:
      res = lp_build_sub(bld, stencilVals, bld->one);
      res = LLVMBuildAnd(builder, res, max, "");
      break;
   case PIPE_STENCIL_OP_INVERT:
      res = LLVMBuildNot(builder, stencilVals, "");
      res = LLVMBuildAnd(builder, res, max, "");
      break;
   default:
      assert(0 && "bad stencil op mode");
      res = bld->undef;
   }

   return res;
}
Exemplo n.º 12
0
/**
 * Apply the stencil operator (add/sub/keep/etc) to the given vector
 * of stencil values.
 * \return  new stencil values vector
 */
static LLVMValueRef
lp_build_stencil_op_single(struct lp_build_context *bld,
                           const struct pipe_stencil_state *stencil,
                           enum stencil_op op,
                           LLVMValueRef stencilRef,
                           LLVMValueRef stencilVals,
                           LLVMValueRef mask)

{
   const unsigned stencilMax = 255; /* XXX fix */
   struct lp_type type = bld->type;
   LLVMValueRef res;
   LLVMValueRef max = lp_build_const_int_vec(type, stencilMax);
   unsigned stencil_op;

   assert(type.sign);

   switch (op) {
   case S_FAIL_OP:
      stencil_op = stencil->fail_op;
      break;
   case Z_FAIL_OP:
      stencil_op = stencil->zfail_op;
      break;
   case Z_PASS_OP:
      stencil_op = stencil->zpass_op;
      break;
   default:
      assert(0 && "Invalid stencil_op mode");
      stencil_op = PIPE_STENCIL_OP_KEEP;
   }

   switch (stencil_op) {
   case PIPE_STENCIL_OP_KEEP:
      res = stencilVals;
      /* we can return early for this case */
      return res;
   case PIPE_STENCIL_OP_ZERO:
      res = bld->zero;
      break;
   case PIPE_STENCIL_OP_REPLACE:
      res = stencilRef;
      break;
   case PIPE_STENCIL_OP_INCR:
      res = lp_build_add(bld, stencilVals, bld->one);
      res = lp_build_min(bld, res, max);
      break;
   case PIPE_STENCIL_OP_DECR:
      res = lp_build_sub(bld, stencilVals, bld->one);
      res = lp_build_max(bld, res, bld->zero);
      break;
   case PIPE_STENCIL_OP_INCR_WRAP:
      res = lp_build_add(bld, stencilVals, bld->one);
      res = LLVMBuildAnd(bld->builder, res, max, "");
      break;
   case PIPE_STENCIL_OP_DECR_WRAP:
      res = lp_build_sub(bld, stencilVals, bld->one);
      res = LLVMBuildAnd(bld->builder, res, max, "");
      break;
   case PIPE_STENCIL_OP_INVERT:
      res = LLVMBuildNot(bld->builder, stencilVals, "");
      res = LLVMBuildAnd(bld->builder, res, max, "");
      break;
   default:
      assert(0 && "bad stencil op mode");
      res = NULL;
   }

   if (stencil->writemask != stencilMax) {
      /* mask &= stencil->writemask */
      LLVMValueRef writemask = lp_build_const_int_vec(type, stencil->writemask);
      mask = LLVMBuildAnd(bld->builder, mask, writemask, "");
      /* res = (res & mask) | (stencilVals & ~mask) */
      res = lp_build_select_bitwise(bld, writemask, res, stencilVals);
   }
   else {
      /* res = mask ? res : stencilVals */
      res = lp_build_select(bld, mask, res, stencilVals);
   }

   return res;
}
Exemplo n.º 13
0
/**
 * Generic type conversion.
 *
 * TODO: Take a precision argument, or even better, add a new precision member
 * to the lp_type union.
 */
void
lp_build_conv(LLVMBuilderRef builder,
              struct lp_type src_type,
              struct lp_type dst_type,
              const LLVMValueRef *src, unsigned num_srcs,
              LLVMValueRef *dst, unsigned num_dsts)
{
   struct lp_type tmp_type;
   LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
   unsigned num_tmps;
   unsigned i;

   /* We must not loose or gain channels. Only precision */
   assert(src_type.length * num_srcs == dst_type.length * num_dsts);

   assert(src_type.length <= LP_MAX_VECTOR_LENGTH);
   assert(dst_type.length <= LP_MAX_VECTOR_LENGTH);
   assert(num_srcs <= LP_MAX_VECTOR_LENGTH);
   assert(num_dsts <= LP_MAX_VECTOR_LENGTH);

   tmp_type = src_type;
   for(i = 0; i < num_srcs; ++i) {
      assert(lp_check_value(src_type, src[i]));
      tmp[i] = src[i];
   }
   num_tmps = num_srcs;

   /*
    * Clamp if necessary
    */

   if(memcmp(&src_type, &dst_type, sizeof src_type) != 0) {
      struct lp_build_context bld;
      double src_min = lp_const_min(src_type);
      double dst_min = lp_const_min(dst_type);
      double src_max = lp_const_max(src_type);
      double dst_max = lp_const_max(dst_type);
      LLVMValueRef thres;

      lp_build_context_init(&bld, builder, tmp_type);

      if(src_min < dst_min) {
         if(dst_min == 0.0)
            thres = bld.zero;
         else
            thres = lp_build_const_vec(src_type, dst_min);
         for(i = 0; i < num_tmps; ++i)
            tmp[i] = lp_build_max(&bld, tmp[i], thres);
      }

      if(src_max > dst_max) {
         if(dst_max == 1.0)
            thres = bld.one;
         else
            thres = lp_build_const_vec(src_type, dst_max);
         for(i = 0; i < num_tmps; ++i)
            tmp[i] = lp_build_min(&bld, tmp[i], thres);
      }
   }

   /*
    * Scale to the narrowest range
    */

   if(dst_type.floating) {
      /* Nothing to do */
   }
   else if(tmp_type.floating) {
      if(!dst_type.fixed && !dst_type.sign && dst_type.norm) {
         for(i = 0; i < num_tmps; ++i) {
            tmp[i] = lp_build_clamped_float_to_unsigned_norm(builder,
                                                             tmp_type,
                                                             dst_type.width,
                                                             tmp[i]);
         }
         tmp_type.floating = FALSE;
      }
      else {
         double dst_scale = lp_const_scale(dst_type);
         LLVMTypeRef tmp_vec_type;

         if (dst_scale != 1.0) {
            LLVMValueRef scale = lp_build_const_vec(tmp_type, dst_scale);
            for(i = 0; i < num_tmps; ++i)
               tmp[i] = LLVMBuildFMul(builder, tmp[i], scale, "");
         }

         /* Use an equally sized integer for intermediate computations */
         tmp_type.floating = FALSE;
         tmp_vec_type = lp_build_vec_type(tmp_type);
         for(i = 0; i < num_tmps; ++i) {
#if 0
            if(dst_type.sign)
               tmp[i] = LLVMBuildFPToSI(builder, tmp[i], tmp_vec_type, "");
            else
               tmp[i] = LLVMBuildFPToUI(builder, tmp[i], tmp_vec_type, "");
#else
           /* FIXME: there is no SSE counterpart for LLVMBuildFPToUI */
            tmp[i] = LLVMBuildFPToSI(builder, tmp[i], tmp_vec_type, "");
#endif
         }
      }
   }
   else {
      unsigned src_shift = lp_const_shift(src_type);
      unsigned dst_shift = lp_const_shift(dst_type);

      /* FIXME: compensate different offsets too */
      if(src_shift > dst_shift) {
         LLVMValueRef shift = lp_build_const_int_vec(tmp_type, src_shift - dst_shift);
         for(i = 0; i < num_tmps; ++i)
            if(src_type.sign)
               tmp[i] = LLVMBuildAShr(builder, tmp[i], shift, "");
            else
               tmp[i] = LLVMBuildLShr(builder, tmp[i], shift, "");
      }
   }

   /*
    * Truncate or expand bit width
    *
    * No data conversion should happen here, although the sign bits are
    * crucial to avoid bad clamping.
    */

   {
      struct lp_type new_type;

      new_type = tmp_type;
      new_type.sign   = dst_type.sign;
      new_type.width  = dst_type.width;
      new_type.length = dst_type.length;

      lp_build_resize(builder, tmp_type, new_type, tmp, num_srcs, tmp, num_dsts);

      tmp_type = new_type;
      num_tmps = num_dsts;
   }

   /*
    * Scale to the widest range
    */

   if(src_type.floating) {
      /* Nothing to do */
   }
   else if(!src_type.floating && dst_type.floating) {
      if(!src_type.fixed && !src_type.sign && src_type.norm) {
         for(i = 0; i < num_tmps; ++i) {
            tmp[i] = lp_build_unsigned_norm_to_float(builder,
                                                     src_type.width,
                                                     dst_type,
                                                     tmp[i]);
         }
         tmp_type.floating = TRUE;
      }
      else {
         double src_scale = lp_const_scale(src_type);
         LLVMTypeRef tmp_vec_type;

         /* Use an equally sized integer for intermediate computations */
         tmp_type.floating = TRUE;
         tmp_type.sign = TRUE;
         tmp_vec_type = lp_build_vec_type(tmp_type);
         for(i = 0; i < num_tmps; ++i) {
#if 0
            if(dst_type.sign)
               tmp[i] = LLVMBuildSIToFP(builder, tmp[i], tmp_vec_type, "");
            else
               tmp[i] = LLVMBuildUIToFP(builder, tmp[i], tmp_vec_type, "");
#else
            /* FIXME: there is no SSE counterpart for LLVMBuildUIToFP */
            tmp[i] = LLVMBuildSIToFP(builder, tmp[i], tmp_vec_type, "");
#endif
          }

          if (src_scale != 1.0) {
             LLVMValueRef scale = lp_build_const_vec(tmp_type, 1.0/src_scale);
             for(i = 0; i < num_tmps; ++i)
                tmp[i] = LLVMBuildFMul(builder, tmp[i], scale, "");
          }
      }
    }
    else {
       unsigned src_shift = lp_const_shift(src_type);
       unsigned dst_shift = lp_const_shift(dst_type);

       /* FIXME: compensate different offsets too */
       if(src_shift < dst_shift) {
          LLVMValueRef shift = lp_build_const_int_vec(tmp_type, dst_shift - src_shift);
          for(i = 0; i < num_tmps; ++i)
             tmp[i] = LLVMBuildShl(builder, tmp[i], shift, "");
       }
    }

   for(i = 0; i < num_dsts; ++i) {
      dst[i] = tmp[i];
      assert(lp_check_value(dst_type, dst[i]));
   }
}
Exemplo n.º 14
0
static LLVMValueRef
lp_build_extract_soa_chan(struct lp_build_context *bld,
                          unsigned blockbits,
                          boolean srgb_chan,
                          struct util_format_channel_description chan_desc,
                          LLVMValueRef packed)
{
   struct gallivm_state *gallivm = bld->gallivm;
   LLVMBuilderRef builder = gallivm->builder;
   struct lp_type type = bld->type;
   LLVMValueRef input = packed;
   const unsigned width = chan_desc.size;
   const unsigned start = chan_desc.shift;
   const unsigned stop = start + width;

   /* Decode the input vector component */

   switch(chan_desc.type) {
   case UTIL_FORMAT_TYPE_VOID:
      input = bld->undef;
      break;

   case UTIL_FORMAT_TYPE_UNSIGNED:
      /*
       * Align the LSB
       */
      if (start) {
         input = LLVMBuildLShr(builder, input,
                               lp_build_const_int_vec(gallivm, type, start), "");
      }

      /*
       * Zero the MSBs
       */
      if (stop < blockbits) {
         unsigned mask = ((unsigned long long)1 << width) - 1;
         input = LLVMBuildAnd(builder, input,
                              lp_build_const_int_vec(gallivm, type, mask), "");
      }

      /*
       * Type conversion
       */
      if (type.floating) {
         if (srgb_chan) {
            struct lp_type conv_type = lp_uint_type(type);
            input = lp_build_srgb_to_linear(gallivm, conv_type, width, input);
         }
         else {
            if(chan_desc.normalized)
               input = lp_build_unsigned_norm_to_float(gallivm, width, type, input);
            else
               input = LLVMBuildSIToFP(builder, input, bld->vec_type, "");
         }
      }
      else if (chan_desc.pure_integer) {
         /* Nothing to do */
      } else {
          /* FIXME */
          assert(0);
      }
      break;

   case UTIL_FORMAT_TYPE_SIGNED:
      /*
       * Align the sign bit first.
       */
      if (stop < type.width) {
         unsigned bits = type.width - stop;
         LLVMValueRef bits_val = lp_build_const_int_vec(gallivm, type, bits);
         input = LLVMBuildShl(builder, input, bits_val, "");
      }

      /*
       * Align the LSB (with an arithmetic shift to preserve the sign)
       */
      if (chan_desc.size < type.width) {
         unsigned bits = type.width - chan_desc.size;
         LLVMValueRef bits_val = lp_build_const_int_vec(gallivm, type, bits);
         input = LLVMBuildAShr(builder, input, bits_val, "");
      }

      /*
       * Type conversion
       */
      if (type.floating) {
         input = LLVMBuildSIToFP(builder, input, bld->vec_type, "");
         if (chan_desc.normalized) {
            double scale = 1.0 / ((1 << (chan_desc.size - 1)) - 1);
            LLVMValueRef scale_val = lp_build_const_vec(gallivm, type, scale);
            input = LLVMBuildFMul(builder, input, scale_val, "");
            /*
             * The formula above will produce value below -1.0 for most negative
             * value but everything seems happy with that hence disable for now.
             */
            if (0)
               input = lp_build_max(bld, input,
                                    lp_build_const_vec(gallivm, type, -1.0f));
         }
      }
      else if (chan_desc.pure_integer) {
         /* Nothing to do */
      } else {
          /* FIXME */
          assert(0);
      }
      break;

   case UTIL_FORMAT_TYPE_FLOAT:
      if (type.floating) {
         if (chan_desc.size == 16) {
            struct lp_type f16i_type = type;
            f16i_type.width /= 2;
            f16i_type.floating = 0;
            if (start) {
               input = LLVMBuildLShr(builder, input,
                                     lp_build_const_int_vec(gallivm, type, start), "");
            }
            input = LLVMBuildTrunc(builder, input,
                                   lp_build_vec_type(gallivm, f16i_type), "");
            input = lp_build_half_to_float(gallivm, input);
         } else {
            assert(start == 0);
            assert(stop == 32);
            assert(type.width == 32);
         }
         input = LLVMBuildBitCast(builder, input, bld->vec_type, "");
      }
      else {
         /* FIXME */
         assert(0);
         input = bld->undef;
      }
      break;

   case UTIL_FORMAT_TYPE_FIXED:
      if (type.floating) {
         double scale = 1.0 / ((1 << (chan_desc.size/2)) - 1);
         LLVMValueRef scale_val = lp_build_const_vec(gallivm, type, scale);
         input = LLVMBuildSIToFP(builder, input, bld->vec_type, "");
         input = LLVMBuildFMul(builder, input, scale_val, "");
      }
      else {
         /* FIXME */
         assert(0);
         input = bld->undef;
      }
      break;

   default:
      assert(0);
      input = bld->undef;
      break;
   }

   return input;
}
Exemplo n.º 15
0
/**
 * Register store.
 */
void
lp_emit_store_aos(
   struct lp_build_tgsi_aos_context *bld,
   const struct tgsi_full_instruction *inst,
   unsigned index,
   LLVMValueRef value)
{
   LLVMBuilderRef builder = bld->bld_base.base.gallivm->builder;
   const struct tgsi_full_dst_register *reg = &inst->Dst[index];
   LLVMValueRef mask = NULL;
   LLVMValueRef ptr;

   /*
    * Saturate the value
    */
   if (inst->Instruction.Saturate) {
      value = lp_build_max(&bld->bld_base.base, value, bld->bld_base.base.zero);
      value = lp_build_min(&bld->bld_base.base, value, bld->bld_base.base.one);
   }

   /*
    * Translate the register file
    */

   assert(!reg->Register.Indirect);

   switch (reg->Register.File) {
   case TGSI_FILE_OUTPUT:
      ptr = bld->outputs[reg->Register.Index];
      break;

   case TGSI_FILE_TEMPORARY:
      ptr = bld->temps[reg->Register.Index];
      break;

   case TGSI_FILE_ADDRESS:
      ptr = bld->addr[reg->Indirect.Index];
      break;

   default:
      assert(0);
      return;
   }

   if (!ptr)
      return;

   /*
    * Writemask
    */

   if (reg->Register.WriteMask != TGSI_WRITEMASK_XYZW) {
      LLVMValueRef writemask;

      writemask = lp_build_const_mask_aos_swizzled(bld->bld_base.base.gallivm,
                                                   bld->bld_base.base.type,
                                                   reg->Register.WriteMask,
                                                   TGSI_NUM_CHANNELS,
                                                   bld->swizzles);

      if (mask) {
         mask = LLVMBuildAnd(builder, mask, writemask, "");
      } else {
         mask = writemask;
      }
   }

   if (mask) {
      LLVMValueRef orig_value;

      orig_value = LLVMBuildLoad(builder, ptr, "");
      value = lp_build_select(&bld->bld_base.base,
                              mask, value, orig_value);
   }

   LLVMBuildStore(builder, value, ptr);
}