Exemplo n.º 1
0
uint_t
get_syscall_args(klwp_t *lwp, long *argp, int *nargsp)
{
	kthread_t	*t = lwptot(lwp);
	ulong_t	mask = 0xfffffffful;
	uint_t	code;
	long	*ap;
	int	nargs;

#if defined(_LP64)
	if (lwp_getdatamodel(lwp) == DATAMODEL_LP64)
		mask = 0xfffffffffffffffful;
#endif

	/*
	 * The thread lock must be held while looking at the arguments to ensure
	 * they don't go away via post_syscall().
	 * get_syscall_args() is the only routine to read them which is callable
	 * outside the LWP in question and hence the only one that must be
	 * synchronized in this manner.
	 */
	thread_lock(t);

	code = t->t_sysnum;
	ap = lwp->lwp_ap;

	thread_unlock(t);

	if (code != 0 && code < NSYSCALL) {
		nargs = LWP_GETSYSENT(lwp)[code].sy_narg;

		ASSERT(nargs <= MAXSYSARGS);

		*nargsp = nargs;
		while (nargs-- > 0)
			*argp++ = *ap++ & mask;
	} else {
		*nargsp = 0;
	}

	return (code);
}
Exemplo n.º 2
0
/*
 * Perform pre-system-call processing, including stopping for tracing,
 * auditing, etc.
 *
 * This routine is called only if the t_pre_sys flag is set. Any condition
 * requiring pre-syscall handling must set the t_pre_sys flag. If the
 * condition is persistent, this routine will repost t_pre_sys.
 */
int
pre_syscall()
{
	kthread_t *t = curthread;
	unsigned code = t->t_sysnum;
	klwp_t *lwp = ttolwp(t);
	proc_t *p = ttoproc(t);
	int	repost;

	t->t_pre_sys = repost = 0;	/* clear pre-syscall processing flag */

	ASSERT(t->t_schedflag & TS_DONT_SWAP);

#if defined(DEBUG)
	/*
	 * On the i386 kernel, lwp_ap points at the piece of the thread
	 * stack that we copy the users arguments into.
	 *
	 * On the amd64 kernel, the syscall arguments in the rdi..r9
	 * registers should be pointed at by lwp_ap.  If the args need to
	 * be copied so that those registers can be changed without losing
	 * the ability to get the args for /proc, they can be saved by
	 * save_syscall_args(), and lwp_ap will be restored by post_syscall().
	 */
	if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) {
#if defined(_LP64)
		ASSERT(lwp->lwp_ap == (long *)&lwptoregs(lwp)->r_rdi);
	} else {
#endif
		ASSERT((caddr_t)lwp->lwp_ap > t->t_stkbase &&
			(caddr_t)lwp->lwp_ap < t->t_stk);
	}
#endif	/* DEBUG */

	/*
	 * Make sure the thread is holding the latest credentials for the
	 * process.  The credentials in the process right now apply to this
	 * thread for the entire system call.
	 */
	if (t->t_cred != p->p_cred) {
		cred_t *oldcred = t->t_cred;
		/*
		 * DTrace accesses t_cred in probe context.  t_cred must
		 * always be either NULL, or point to a valid, allocated cred
		 * structure.
		 */
		t->t_cred = crgetcred();
		crfree(oldcred);
	}

	/*
	 * From the proc(4) manual page:
	 * When entry to a system call is being traced, the traced process
	 * stops after having begun the call to the system but before the
	 * system call arguments have been fetched from the process.
	 */
	if (PTOU(p)->u_systrap) {
		if (prismember(&PTOU(p)->u_entrymask, code)) {
			mutex_enter(&p->p_lock);
			/*
			 * Recheck stop condition, now that lock is held.
			 */
			if (PTOU(p)->u_systrap &&
			    prismember(&PTOU(p)->u_entrymask, code)) {
				stop(PR_SYSENTRY, code);

				/*
				 * /proc may have modified syscall args,
				 * either in regs for amd64 or on ustack
				 * for ia32.  Either way, arrange to
				 * copy them again, both for the syscall
				 * handler and for other consumers in
				 * post_syscall (like audit).  Here, we
				 * only do amd64, and just set lwp_ap
				 * back to the kernel-entry stack copy;
				 * the syscall ml code redoes
				 * move-from-regs to set up for the
				 * syscall handler after we return.  For
				 * ia32, save_syscall_args() below makes
				 * an lwp_ap-accessible copy.
				 */
#if defined(_LP64)
				if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) {
					lwp->lwp_argsaved = 0;
					lwp->lwp_ap =
					    (long *)&lwptoregs(lwp)->r_rdi;
				}
#endif
			}
			mutex_exit(&p->p_lock);
		}
		repost = 1;
	}

	/*
	 * ia32 kernel, or ia32 proc on amd64 kernel: keep args in
	 * lwp_arg for post-syscall processing, regardless of whether
	 * they might have been changed in /proc above.
	 */
#if defined(_LP64)
	if (lwp_getdatamodel(lwp) != DATAMODEL_NATIVE)
#endif
		(void) save_syscall_args();

	if (lwp->lwp_sysabort) {
		/*
		 * lwp_sysabort may have been set via /proc while the process
		 * was stopped on PR_SYSENTRY.  If so, abort the system call.
		 * Override any error from the copyin() of the arguments.
		 */
		lwp->lwp_sysabort = 0;
		(void) set_errno(EINTR);	/* forces post_sys */
		t->t_pre_sys = 1;	/* repost anyway */
		return (1);		/* don't do system call, return EINTR */
	}

#ifdef C2_AUDIT
	if (audit_active) {	/* begin auditing for this syscall */
		int error;
		if (error = audit_start(T_SYSCALL, code, 0, lwp)) {
			t->t_pre_sys = 1;	/* repost anyway */
			(void) set_errno(error);
			return (1);
		}
		repost = 1;
	}
#endif /* C2_AUDIT */

#ifndef NPROBE
	/* Kernel probe */
	if (tnf_tracing_active) {
		TNF_PROBE_1(syscall_start, "syscall thread", /* CSTYLED */,
			tnf_sysnum,	sysnum,		t->t_sysnum);
		t->t_post_sys = 1;	/* make sure post_syscall runs */
		repost = 1;
	}
#endif /* NPROBE */

#ifdef SYSCALLTRACE
	if (syscalltrace) {
		int i;
		long *ap;
		char *cp;
		char *sysname;
		struct sysent *callp;

		if (code >= NSYSCALL)
			callp = &nosys_ent;	/* nosys has no args */
		else
			callp = LWP_GETSYSENT(lwp) + code;
		(void) save_syscall_args();
		mutex_enter(&systrace_lock);
		printf("%d: ", p->p_pid);
		if (code >= NSYSCALL)
			printf("0x%x", code);
		else {
			sysname = mod_getsysname(code);
			printf("%s[0x%x/0x%p]", sysname == NULL ? "NULL" :
			    sysname, code, callp->sy_callc);
		}
		cp = "(";
		for (i = 0, ap = lwp->lwp_ap; i < callp->sy_narg; i++, ap++) {
			printf("%s%lx", cp, *ap);
			cp = ", ";
		}
		if (i)
			printf(")");
		printf(" %s id=0x%p\n", PTOU(p)->u_comm, curthread);
		mutex_exit(&systrace_lock);
	}
#endif /* SYSCALLTRACE */

	/*
	 * If there was a continuing reason for pre-syscall processing,
	 * set the t_pre_sys flag for the next system call.
	 */
	if (repost)
		t->t_pre_sys = 1;
	lwp->lwp_error = 0;	/* for old drivers */
	lwp->lwp_badpriv = PRIV_NONE;
	return (0);
}
Exemplo n.º 3
0
/*
 * Post-syscall processing.  Perform abnormal system call completion
 * actions such as /proc tracing, profiling, signals, preemption, etc.
 *
 * This routine is called only if t_post_sys, t_sig_check, or t_astflag is set.
 * Any condition requiring pre-syscall handling must set one of these.
 * If the condition is persistent, this routine will repost t_post_sys.
 */
void
post_syscall(long rval1, long rval2)
{
	kthread_t *t = curthread;
	klwp_t *lwp = ttolwp(t);
	proc_t *p = ttoproc(t);
	struct regs *rp = lwptoregs(lwp);
	uint_t	error;
	uint_t	code = t->t_sysnum;
	int	repost = 0;
	int	proc_stop = 0;		/* non-zero if stopping */
	int	sigprof = 0;		/* non-zero if sending SIGPROF */

	t->t_post_sys = 0;

	error = lwp->lwp_errno;

	/*
	 * Code can be zero if this is a new LWP returning after a forkall(),
	 * other than the one which matches the one in the parent which called
	 * forkall().  In these LWPs, skip most of post-syscall activity.
	 */
	if (code == 0)
		goto sig_check;
	/*
	 * If the trace flag is set, mark the lwp to take a single-step trap
	 * on return to user level (below). The x86 lcall interface and
	 * sysenter has already done this, and turned off the flag, but
	 * amd64 syscall interface has not.
	 */
	if (rp->r_ps & PS_T) {
		lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING;
		rp->r_ps &= ~PS_T;
		aston(curthread);
	}
#ifdef C2_AUDIT
	if (audit_active) {	/* put out audit record for this syscall */
		rval_t	rval;

		/* XX64 -- truncation of 64-bit return values? */
		rval.r_val1 = (int)rval1;
		rval.r_val2 = (int)rval2;
		audit_finish(T_SYSCALL, code, error, &rval);
		repost = 1;
	}
#endif /* C2_AUDIT */

	if (curthread->t_pdmsg != NULL) {
		char *m = curthread->t_pdmsg;

		uprintf("%s", m);
		kmem_free(m, strlen(m) + 1);
		curthread->t_pdmsg = NULL;
	}

	/*
	 * If we're going to stop for /proc tracing, set the flag and
	 * save the arguments so that the return values don't smash them.
	 */
	if (PTOU(p)->u_systrap) {
		if (prismember(&PTOU(p)->u_exitmask, code)) {
			if (lwp_getdatamodel(lwp) == DATAMODEL_LP64)
				(void) save_syscall_args();
			proc_stop = 1;
		}
		repost = 1;
	}

	/*
	 * Similarly check to see if SIGPROF might be sent.
	 */
	if (curthread->t_rprof != NULL &&
	    curthread->t_rprof->rp_anystate != 0) {
		if (lwp_getdatamodel(lwp) == DATAMODEL_LP64)
			(void) save_syscall_args();
		sigprof = 1;
	}

	if (lwp->lwp_eosys == NORMALRETURN) {
		if (error == 0) {
#ifdef SYSCALLTRACE
			if (syscalltrace) {
				mutex_enter(&systrace_lock);
				printf(
				    "%d: r_val1=0x%lx, r_val2=0x%lx, id 0x%p\n",
				    p->p_pid, rval1, rval2, curthread);
				mutex_exit(&systrace_lock);
			}
#endif /* SYSCALLTRACE */
			rp->r_ps &= ~PS_C;
			rp->r_r0 = rval1;
			rp->r_r1 = rval2;
		} else {
			int sig;
#ifdef SYSCALLTRACE
			if (syscalltrace) {
				mutex_enter(&systrace_lock);
				printf("%d: error=%d, id 0x%p\n",
				    p->p_pid, error, curthread);
				mutex_exit(&systrace_lock);
			}
#endif /* SYSCALLTRACE */
			if (error == EINTR && t->t_activefd.a_stale)
				error = EBADF;
			if (error == EINTR &&
			    (sig = lwp->lwp_cursig) != 0 &&
			    sigismember(&PTOU(p)->u_sigrestart, sig) &&
			    PTOU(p)->u_signal[sig - 1] != SIG_DFL &&
			    PTOU(p)->u_signal[sig - 1] != SIG_IGN)
				error = ERESTART;
			rp->r_r0 = error;
			rp->r_ps |= PS_C;
		}
	}

	/*
	 * From the proc(4) manual page:
	 * When exit from a system call is being traced, the traced process
	 * stops on completion of the system call just prior to checking for
	 * signals and returning to user level.  At this point all return
	 * values have been stored into the traced process's saved registers.
	 */
	if (proc_stop) {
		mutex_enter(&p->p_lock);
		if (PTOU(p)->u_systrap &&
		    prismember(&PTOU(p)->u_exitmask, code))
			stop(PR_SYSEXIT, code);
		mutex_exit(&p->p_lock);
	}

	/*
	 * If we are the parent returning from a successful
	 * vfork, wait for the child to exec or exit.
	 * This code must be here and not in the bowels of the system
	 * so that /proc can intercept exit from vfork in a timely way.
	 */
	if (code == SYS_vfork && rp->r_r1 == 0 && error == 0)
		vfwait((pid_t)rval1);

	/*
	 * If profiling is active, bill the current PC in user-land
	 * and keep reposting until profiling is disabled.
	 */
	if (p->p_prof.pr_scale) {
		if (lwp->lwp_oweupc)
			profil_tick(rp->r_pc);
		repost = 1;
	}

sig_check:
	/*
	 * Reset flag for next time.
	 * We must do this after stopping on PR_SYSEXIT
	 * because /proc uses the information in lwp_eosys.
	 */
	lwp->lwp_eosys = NORMALRETURN;
	clear_stale_fd();
	t->t_flag &= ~T_FORKALL;

	if (t->t_astflag | t->t_sig_check) {
		/*
		 * Turn off the AST flag before checking all the conditions that
		 * may have caused an AST.  This flag is on whenever a signal or
		 * unusual condition should be handled after the next trap or
		 * syscall.
		 */
		astoff(t);
		/*
		 * If a single-step trap occurred on a syscall (see trap())
		 * recognize it now.  Do this before checking for signals
		 * because deferred_singlestep_trap() may generate a SIGTRAP to
		 * the LWP or may otherwise mark the LWP to call issig(FORREAL).
		 */
		if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING)
			deferred_singlestep_trap((caddr_t)rp->r_pc);

		t->t_sig_check = 0;

		/*
		 * The following check is legal for the following reasons:
		 *	1) The thread we are checking, is ourselves, so there is
		 *	   no way the proc can go away.
		 *	2) The only time we need to be protected by the
		 *	   lock is if the binding is changed.
		 *
		 *	Note we will still take the lock and check the binding
		 *	if the condition was true without the lock held.  This
		 *	prevents lock contention among threads owned by the
		 * 	same proc.
		 */

		if (curthread->t_proc_flag & TP_CHANGEBIND) {
			mutex_enter(&p->p_lock);
			if (curthread->t_proc_flag & TP_CHANGEBIND) {
				timer_lwpbind();
				curthread->t_proc_flag &= ~TP_CHANGEBIND;
			}
			mutex_exit(&p->p_lock);
		}

		/*
		 * for kaio requests on the special kaio poll queue,
		 * copyout their results to user memory.
		 */
		if (p->p_aio)
			aio_cleanup(0);
		/*
		 * If this LWP was asked to hold, call holdlwp(), which will
		 * stop.  holdlwps() sets this up and calls pokelwps() which
		 * sets the AST flag.
		 *
		 * Also check TP_EXITLWP, since this is used by fresh new LWPs
		 * through lwp_rtt().  That flag is set if the lwp_create(2)
		 * syscall failed after creating the LWP.
		 */
		if (ISHOLD(p) || (t->t_proc_flag & TP_EXITLWP))
			holdlwp();

		/*
		 * All code that sets signals and makes ISSIG_PENDING
		 * evaluate true must set t_sig_check afterwards.
		 */
		if (ISSIG_PENDING(t, lwp, p)) {
			if (issig(FORREAL))
				psig();
			t->t_sig_check = 1;	/* recheck next time */
		}

		if (sigprof) {
			realsigprof(code, error);
			t->t_sig_check = 1;	/* recheck next time */
		}

		/*
		 * If a performance counter overflow interrupt was
		 * delivered *during* the syscall, then re-enable the
		 * AST so that we take a trip through trap() to cause
		 * the SIGEMT to be delivered.
		 */
		if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW)
			aston(t);

		/*
		 * /proc can't enable/disable the trace bit itself
		 * because that could race with the call gate used by
		 * system calls via "lcall". If that happened, an
		 * invalid EFLAGS would result. prstep()/prnostep()
		 * therefore schedule an AST for the purpose.
		 */
		if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) {
			lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP;
			rp->r_ps |= PS_T;
		}
		if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) {
			lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
			rp->r_ps &= ~PS_T;
		}
	}

	lwp->lwp_errno = 0;		/* clear error for next time */

#ifndef NPROBE
	/* Kernel probe */
	if (tnf_tracing_active) {
		TNF_PROBE_3(syscall_end, "syscall thread", /* CSTYLED */,
			tnf_long,	rval1,		rval1,
			tnf_long,	rval2,		rval2,
			tnf_long,	errno,		(long)error);
		repost = 1;
	}
#endif /* NPROBE */

	/*
	 * Set state to LWP_USER here so preempt won't give us a kernel
	 * priority if it occurs after this point.  Call CL_TRAPRET() to
	 * restore the user-level priority.
	 *
	 * It is important that no locks (other than spinlocks) be entered
	 * after this point before returning to user mode (unless lwp_state
	 * is set back to LWP_SYS).
	 *
	 * XXX Sampled times past this point are charged to the user.
	 */
	lwp->lwp_state = LWP_USER;

	if (t->t_trapret) {
		t->t_trapret = 0;
		thread_lock(t);
		CL_TRAPRET(t);
		thread_unlock(t);
	}
	if (CPU->cpu_runrun)
		preempt();

	lwp->lwp_errno = 0;		/* clear error for next time */

	/*
	 * The thread lock must be held in order to clear sysnum and reset
	 * lwp_ap atomically with respect to other threads in the system that
	 * may be looking at the args via lwp_ap from get_syscall_args().
	 */

	thread_lock(t);
	t->t_sysnum = 0;		/* no longer in a system call */

	if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) {
#if defined(_LP64)
		/*
		 * In case the args were copied to the lwp, reset the
		 * pointer so the next syscall will have the right
		 * lwp_ap pointer.
		 */
		lwp->lwp_ap = (long *)&rp->r_rdi;
	} else {
#endif
		lwp->lwp_ap = NULL;	/* reset on every syscall entry */
	}
	thread_unlock(t);

	lwp->lwp_argsaved = 0;

	/*
	 * If there was a continuing reason for post-syscall processing,
	 * set the t_post_sys flag for the next system call.
	 */
	if (repost)
		t->t_post_sys = 1;

	/*
	 * If there is a ustack registered for this lwp, and the stack rlimit
	 * has been altered, read in the ustack. If the saved stack rlimit
	 * matches the bounds of the ustack, update the ustack to reflect
	 * the new rlimit. If the new stack rlimit is RLIM_INFINITY, disable
	 * stack checking by setting the size to 0.
	 */
	if (lwp->lwp_ustack != 0 && lwp->lwp_old_stk_ctl != 0) {
		rlim64_t new_size;
		caddr_t top;
		stack_t stk;
		struct rlimit64 rl;

		mutex_enter(&p->p_lock);
		new_size = p->p_stk_ctl;
		top = p->p_usrstack;
		(void) rctl_rlimit_get(rctlproc_legacy[RLIMIT_STACK], p, &rl);
		mutex_exit(&p->p_lock);

		if (rl.rlim_cur == RLIM64_INFINITY)
			new_size = 0;

		if (copyin((stack_t *)lwp->lwp_ustack, &stk,
		    sizeof (stack_t)) == 0 &&
		    (stk.ss_size == lwp->lwp_old_stk_ctl ||
			stk.ss_size == 0) &&
		    stk.ss_sp == top - stk.ss_size) {
			stk.ss_sp = (void *)((uintptr_t)stk.ss_sp +
			    stk.ss_size - (uintptr_t)new_size);
			stk.ss_size = new_size;

			(void) copyout(&stk, (stack_t *)lwp->lwp_ustack,
			    sizeof (stack_t));
		}

		lwp->lwp_old_stk_ctl = 0;
	}
}
Exemplo n.º 4
0
/*
 * Save the system call arguments in a safe place.
 *
 * On the i386 kernel:
 *
 *	Copy the users args prior to changing the stack or stack pointer.
 *	This is so /proc will be able to get a valid copy of the
 *	args from the user stack even after the user stack has been changed.
 *	Note that the kernel stack copy of the args may also have been
 *	changed by a system call handler which takes C-style arguments.
 *
 *	Note that this may be called by stop() from trap().  In that case
 *	t_sysnum will be zero (syscall_exit clears it), so no args will be
 *	copied.
 *
 * On the amd64 kernel:
 *
 *	For 64-bit applications, lwp->lwp_ap normally points to %rdi..%r9
 *	in the reg structure. If the user is going to change the argument
 *	registers, rax, or the stack and might want to get the args (for
 *	/proc tracing), it must copy the args elsewhere via save_syscall_args().
 *
 *	For 32-bit applications, lwp->lwp_ap normally points to a copy of
 *	the system call arguments on the kernel stack made from the user
 *	stack.  Copy the args prior to change the stack or stack pointer.
 *	This is so /proc will be able to get a valid copy of the args
 *	from the user stack even after that stack has been changed.
 *
 *	This may be called from stop() even when we're not in a system call.
 *	Since there's no easy way to tell, this must be safe (not panic).
 *	If the copyins get data faults, return non-zero.
 */
int
save_syscall_args()
{
	kthread_t	*t = curthread;
	klwp_t		*lwp = ttolwp(t);
	uint_t		code = t->t_sysnum;
	uint_t		nargs;

	if (lwp->lwp_argsaved || code == 0)
		return (0);		/* args already saved or not needed */

	if (code >= NSYSCALL) {
		nargs = 0;		/* illegal syscall */
	} else {
		struct sysent *se = LWP_GETSYSENT(lwp);
		struct sysent *callp = se + code;

		nargs = callp->sy_narg;
		if (LOADABLE_SYSCALL(callp) && nargs == 0) {
			krwlock_t	*module_lock;

			/*
			 * Find out how many arguments the system
			 * call uses.
			 *
			 * We have the property that loaded syscalls
			 * never change the number of arguments they
			 * use after they've been loaded once.  This
			 * allows us to stop for /proc tracing without
			 * holding the module lock.
			 * /proc is assured that sy_narg is valid.
			 */
			module_lock = lock_syscall(se, code);
			nargs = callp->sy_narg;
			rw_exit(module_lock);
		}
	}

	/*
	 * Fetch the system call arguments.
	 */
	if (nargs == 0)
		goto out;

	ASSERT(nargs <= MAXSYSARGS);

	if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) {
#if defined(_LP64)
		struct regs *rp = lwptoregs(lwp);

		lwp->lwp_arg[0] = rp->r_rdi;
		lwp->lwp_arg[1] = rp->r_rsi;
		lwp->lwp_arg[2] = rp->r_rdx;
		lwp->lwp_arg[3] = rp->r_rcx;
		lwp->lwp_arg[4] = rp->r_r8;
		lwp->lwp_arg[5] = rp->r_r9;
		if (nargs > 6 && copyin_args(rp, &lwp->lwp_arg[6], nargs - 6))
			return (-1);
	} else {
#endif
		if (COPYIN_ARGS32(lwptoregs(lwp), lwp->lwp_arg, nargs))
			return (-1);
	}
out:
	lwp->lwp_ap = lwp->lwp_arg;
	lwp->lwp_argsaved = 1;
	t->t_post_sys = 1;	/* so lwp_ap will be reset */
	return (0);
}
Exemplo n.º 5
0
/*
 * 	Save the system call arguments in a safe place.
 *	lwp->lwp_ap normally points to the out regs in the reg structure.
 *	If the user is going to change the out registers, g1, or the stack,
 *	and might want to get the args (for /proc tracing), it must copy
 *	the args elsewhere via save_syscall_args().
 *
 *	This may be called from stop() even when we're not in a system call.
 *	Since there's no easy way to tell, this must be safe (not panic).
 *	If the copyins get data faults, return non-zero.
 */
int
save_syscall_args()
{
	kthread_t	*t = curthread;
	klwp_t		*lwp = ttolwp(t);
	struct regs	*rp = lwptoregs(lwp);
	uint_t		code = t->t_sysnum;
	uint_t		nargs;
	int		i;
	caddr_t		ua;
	model_t		datamodel;

	if (lwp->lwp_argsaved || code == 0)
		return (0);		/* args already saved or not needed */

	if (code >= NSYSCALL) {
		nargs = 0;		/* illegal syscall */
	} else {
		struct sysent *se = LWP_GETSYSENT(lwp);
		struct sysent *callp = se + code;

		nargs = callp->sy_narg;
		if (LOADABLE_SYSCALL(callp) && nargs == 0) {
			krwlock_t	*module_lock;

			/*
			 * Find out how many arguments the system
			 * call uses.
			 *
			 * We have the property that loaded syscalls
			 * never change the number of arguments they
			 * use after they've been loaded once.  This
			 * allows us to stop for /proc tracing without
			 * holding the module lock.
			 * /proc is assured that sy_narg is valid.
			 */
			module_lock = lock_syscall(se, code);
			nargs = callp->sy_narg;
			rw_exit(module_lock);
		}
	}

	/*
	 * Fetch the system call arguments.
	 */
	if (nargs == 0)
		goto out;


	ASSERT(nargs <= MAXSYSARGS);

	if ((datamodel = lwp_getdatamodel(lwp)) == DATAMODEL_ILP32) {

		if (rp->r_g1 == 0) {	/* indirect syscall */

			lwp->lwp_arg[0] = (uint32_t)rp->r_o1;
			lwp->lwp_arg[1] = (uint32_t)rp->r_o2;
			lwp->lwp_arg[2] = (uint32_t)rp->r_o3;
			lwp->lwp_arg[3] = (uint32_t)rp->r_o4;
			lwp->lwp_arg[4] = (uint32_t)rp->r_o5;
			if (nargs > 5) {
				ua = (caddr_t)(uintptr_t)(caddr32_t)(uintptr_t)
				    (rp->r_sp + MINFRAME32);
				for (i = 5; i < nargs; i++) {
					uint32_t a;
					if (fuword32(ua, &a) != 0)
						return (-1);
					lwp->lwp_arg[i] = a;
					ua += sizeof (a);
				}
			}
		} else {
			lwp->lwp_arg[0] = (uint32_t)rp->r_o0;
			lwp->lwp_arg[1] = (uint32_t)rp->r_o1;
			lwp->lwp_arg[2] = (uint32_t)rp->r_o2;
			lwp->lwp_arg[3] = (uint32_t)rp->r_o3;
			lwp->lwp_arg[4] = (uint32_t)rp->r_o4;
			lwp->lwp_arg[5] = (uint32_t)rp->r_o5;
			if (nargs > 6) {
				ua = (caddr_t)(uintptr_t)(caddr32_t)(uintptr_t)
				    (rp->r_sp + MINFRAME32);
				for (i = 6; i < nargs; i++) {
					uint32_t a;
					if (fuword32(ua, &a) != 0)
						return (-1);
					lwp->lwp_arg[i] = a;
					ua += sizeof (a);
				}
			}
		}
	} else {
		ASSERT(datamodel == DATAMODEL_LP64);
		lwp->lwp_arg[0] = rp->r_o0;
		lwp->lwp_arg[1] = rp->r_o1;
		lwp->lwp_arg[2] = rp->r_o2;
		lwp->lwp_arg[3] = rp->r_o3;
		lwp->lwp_arg[4] = rp->r_o4;
		lwp->lwp_arg[5] = rp->r_o5;
		if (nargs > 6) {
			ua = (caddr_t)rp->r_sp + MINFRAME + STACK_BIAS;
			for (i = 6; i < nargs; i++) {
				unsigned long a;
				if (fulword(ua, &a) != 0)
					return (-1);
				lwp->lwp_arg[i] = a;
				ua += sizeof (a);
			}
		}
	}

out:
	lwp->lwp_ap = lwp->lwp_arg;
	lwp->lwp_argsaved = 1;
	t->t_post_sys = 1;	/* so lwp_ap will be reset */
	return (0);
}
Exemplo n.º 6
0
int
lwp_setprivate(klwp_t *lwp, int which, uintptr_t base)
{
	pcb_t *pcb = &lwp->lwp_pcb;
	struct regs *rp = lwptoregs(lwp);
	kthread_t *t = lwptot(lwp);
	int thisthread = t == curthread;
	int rval;

	if (thisthread)
		kpreempt_disable();

#if defined(__amd64)

	/*
	 * 32-bit compatibility processes point to the per-cpu GDT segment
	 * descriptors that are virtualized to the lwp.  That allows 32-bit
	 * programs to mess with %fs and %gs; in particular it allows
	 * things like this:
	 *
	 *	movw	%gs, %ax
	 *	...
	 *	movw	%ax, %gs
	 *
	 * to work, which is needed by emulators for legacy application
	 * environments ..
	 *
	 * 64-bit processes may also point to a per-cpu GDT segment descriptor
	 * virtualized to the lwp.  However the descriptor base is forced
	 * to zero (because we can't express the full 64-bit address range
	 * in a long mode descriptor), so don't reload segment registers
	 * in a 64-bit program! 64-bit processes must have selector values
	 * of zero for %fs and %gs to use the 64-bit fs_base and gs_base
	 * respectively.
	 */
	if (pcb->pcb_rupdate == 0) {
		pcb->pcb_ds = rp->r_ds;
		pcb->pcb_es = rp->r_es;
		pcb->pcb_fs = rp->r_fs;
		pcb->pcb_gs = rp->r_gs;
		pcb->pcb_rupdate = 1;
		t->t_post_sys = 1;
	}
	ASSERT(t->t_post_sys);

	switch (which) {
	case _LWP_FSBASE:
		if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) {
			set_usegd(&pcb->pcb_fsdesc, SDP_LONG, 0, 0,
			    SDT_MEMRWA, SEL_UPL, SDP_BYTES, SDP_OP32);
			rval = pcb->pcb_fs = 0;	/* null gdt descriptor */
		} else {
			set_usegd(&pcb->pcb_fsdesc, SDP_SHORT, (void *)base, -1,
			    SDT_MEMRWA, SEL_UPL, SDP_PAGES, SDP_OP32);
			rval = pcb->pcb_fs = LWPFS_SEL;
		}
		if (thisthread)
			gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc);

		pcb->pcb_fsbase = base;
		break;
	case _LWP_GSBASE:
		if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) {
			set_usegd(&pcb->pcb_gsdesc, SDP_LONG, 0, 0,
			    SDT_MEMRWA, SEL_UPL, SDP_BYTES, SDP_OP32);
			rval = pcb->pcb_gs = 0;	/* null gdt descriptor */
		} else {
			set_usegd(&pcb->pcb_gsdesc, SDP_SHORT, (void *)base, -1,
			    SDT_MEMRWA, SEL_UPL, SDP_PAGES, SDP_OP32);
			rval = pcb->pcb_gs = LWPGS_SEL;
		}
		if (thisthread)
			gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc);

		pcb->pcb_gsbase = base;
		break;
	default:
		rval = -1;
		break;
	}

#elif defined(__i386)

	/*
	 * 32-bit processes point to the per-cpu GDT segment
	 * descriptors that are virtualized to the lwp.
	 */

	switch	(which) {
	case _LWP_FSBASE:
		set_usegd(&pcb->pcb_fsdesc, (void *)base, -1,
		    SDT_MEMRWA, SEL_UPL, SDP_PAGES, SDP_OP32);
		if (thisthread)
			gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc);

		rval = rp->r_fs = LWPFS_SEL;
		break;
	case _LWP_GSBASE:
		set_usegd(&pcb->pcb_gsdesc, (void *)base, -1,
		    SDT_MEMRWA, SEL_UPL, SDP_PAGES, SDP_OP32);
		if (thisthread)
			gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc);

		rval = rp->r_gs = LWPGS_SEL;
		break;
	default:
		rval = -1;
		break;
	}

#endif	/* __i386 */

	if (thisthread)
		kpreempt_enable();
	return (rval);
}
Exemplo n.º 7
0
static int
lwp_getprivate(klwp_t *lwp, int which, uintptr_t base)
{
	pcb_t *pcb = &lwp->lwp_pcb;
	struct regs *rp = lwptoregs(lwp);
	uintptr_t sbase;
	int error = 0;

	ASSERT(lwptot(lwp) == curthread);

	kpreempt_disable();
	switch (which) {
#if defined(__amd64)

	case _LWP_FSBASE:
		if ((sbase = pcb->pcb_fsbase) != 0) {
			if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) {
				if (pcb->pcb_rupdate == 1) {
					if (pcb->pcb_fs == 0)
						break;
				} else {
					if (rp->r_fs == 0)
						break;
				}
			} else {
				if (pcb->pcb_rupdate == 1) {
					if (pcb->pcb_fs == LWPFS_SEL)
						break;
				} else {
					if (rp->r_fs == LWPFS_SEL)
						break;
				}
			}
		}
		error = EINVAL;
		break;
	case _LWP_GSBASE:
		if ((sbase = pcb->pcb_gsbase) != 0) {
			if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) {
				if (pcb->pcb_rupdate == 1) {
					if (pcb->pcb_gs == 0)
						break;
				} else {
					if (rp->r_gs == 0)
						break;
				}
			} else {
				if (pcb->pcb_rupdate == 1) {
					if (pcb->pcb_gs == LWPGS_SEL)
						break;
				} else {
					if (rp->r_gs == LWPGS_SEL)
						break;
				}
			}
		}
		error = EINVAL;
		break;

#elif defined(__i386)

	case _LWP_FSBASE:
		if (rp->r_fs == LWPFS_SEL) {
			sbase = USEGD_GETBASE(&pcb->pcb_fsdesc);
			break;
		}
		error = EINVAL;
		break;
	case _LWP_GSBASE:
		if (rp->r_gs == LWPGS_SEL) {
			sbase = USEGD_GETBASE(&pcb->pcb_gsdesc);
			break;
		}
		error = EINVAL;
		break;

#endif	/* __i386 */

	default:
		error = ENOTSUP;
		break;
	}
	kpreempt_enable();

	if (error != 0)
		return (error);

	if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) {
		if (sulword((void *)base, sbase) == -1)
			error = EFAULT;
#if defined(_SYSCALL32_IMPL)
	} else {
		if (suword32((void *)base, (uint32_t)sbase) == -1)
			error = EFAULT;
#endif
	}
	return (error);
}
Exemplo n.º 8
0
/*
 * Add any lwp-associated context handlers to the lwp at the beginning
 * of the lwp's useful life.
 *
 * All paths which create lwp's invoke lwp_create(); lwp_create()
 * invokes lwp_stk_init() which initializes the stack, sets up
 * lwp_regs, and invokes this routine.
 *
 * All paths which destroy lwp's invoke lwp_exit() to rip the lwp
 * apart and put it on 'lwp_deathrow'; if the lwp is destroyed it
 * ends up in thread_free() which invokes freectx(t, 0) before
 * invoking lwp_stk_fini().  When the lwp is recycled from death
 * row, lwp_stk_fini() is invoked, then thread_free(), and thus
 * freectx(t, 0) as before.
 *
 * In the case of exec, the surviving lwp is thoroughly scrubbed
 * clean; exec invokes freectx(t, 1) to destroy associated contexts.
 * On the way back to the new image, it invokes setregs() which
 * in turn invokes this routine.
 */
void
lwp_installctx(klwp_t *lwp)
{
	kthread_t *t = lwptot(lwp);
	int thisthread = t == curthread;
#ifdef _SYSCALL32_IMPL
	void (*restop)(klwp_t *) = lwp_getdatamodel(lwp) == DATAMODEL_NATIVE ?
	    lwp_segregs_restore : lwp_segregs_restore32;
#else
	void (*restop)(klwp_t *) = lwp_segregs_restore;
#endif

	/*
	 * Install the basic lwp context handlers on each lwp.
	 *
	 * On the amd64 kernel, the context handlers are responsible for
	 * virtualizing %ds, %es, %fs, and %gs to the lwp.  The register
	 * values are only ever changed via sys_rtt when the
	 * pcb->pcb_rupdate == 1.  Only sys_rtt gets to clear the bit.
	 *
	 * On the i386 kernel, the context handlers are responsible for
	 * virtualizing %gs/%fs to the lwp by updating the per-cpu GDTs
	 */
	ASSERT(removectx(t, lwp, lwp_segregs_save, restop,
	    NULL, NULL, NULL, NULL) == 0);
	if (thisthread)
		kpreempt_disable();
	installctx(t, lwp, lwp_segregs_save, restop,
	    NULL, NULL, NULL, NULL);
	if (thisthread) {
		/*
		 * Since we're the right thread, set the values in the GDT
		 */
		restop(lwp);
		kpreempt_enable();
	}

	/*
	 * If we have sysenter/sysexit instructions enabled, we need
	 * to ensure that the hardware mechanism is kept up-to-date with the
	 * lwp's kernel stack pointer across context switches.
	 *
	 * sep_save zeros the sysenter stack pointer msr; sep_restore sets
	 * it to the lwp's kernel stack pointer (kstktop).
	 */
	if (is_x86_feature(x86_featureset, X86FSET_SEP)) {
#if defined(__amd64)
		caddr_t kstktop = (caddr_t)lwp->lwp_regs;
#elif defined(__i386)
		caddr_t kstktop = ((caddr_t)lwp->lwp_regs - MINFRAME) +
		    SA(sizeof (struct regs) + MINFRAME);
#endif
		ASSERT(removectx(t, kstktop,
		    sep_save, sep_restore, NULL, NULL, NULL, NULL) == 0);

		if (thisthread)
			kpreempt_disable();
		installctx(t, kstktop,
		    sep_save, sep_restore, NULL, NULL, NULL, NULL);
		if (thisthread) {
			/*
			 * We're the right thread, so set the stack pointer
			 * for the first sysenter instruction to use
			 */
			sep_restore(kstktop);
			kpreempt_enable();
		}
	}

	if (PROC_IS_BRANDED(ttoproc(t)))
		lwp_attach_brand_hdlrs(lwp);
}