Exemplo n.º 1
0
void MyMIWI_Init(void) {

    // Configure Pins for MRF24J40MB
    mPORTESetBits(RST_MIWI);
    mPORTESetPinsDigitalOut(RST_MIWI);

    mPORTBSetBits(MIWI_WAKE);
    mPORTBSetPinsDigitalOut(MIWI_WAKE);

    // Configure the INT3 controller for MIWI
    // Set RD10/INT3 as input
    mPORTDSetPinsDigitalIn(BIT_10);
    // Clear corresponding bits in INTCON for falling edge trigger
    INTCONCLR = _INTCON_INT3EP_MASK;
    // Set up interrupt prioirty and sub-priority
    INTSetVectorPriority(INT_EXTERNAL_3_VECTOR, My_INT_EXTERNAL_3_PRIORITY);
    INTSetVectorSubPriority(INT_EXTERNAL_3_VECTOR, My_INT_EXTERNAL_3_SUB_PRIORITY);
    // Clear the interrupt flags
    INTClearFlag(INT_INT3);
    // Enable INT3
    INTEnable(INT_INT3, INT_ENABLED);

    // WARNING : Change in file MRF24J40.c in Microchip Application Library
    // the line : void __ISR(_EXTERNAL_1_VECTOR, ipl4) _INT1Interrupt(void)
    // by       : void __ISR(_EXTERNAL_3_VECTOR, ipl4) _INT3Interrupt(void)
}
Exemplo n.º 2
0
void MyCyclone_Init(void)
{
    // Configure Reset Pin = GPIO_2[10] = RD7
    mPORTDClearBits(RST_FPGA);
    mPORTDSetPinsDigitalOut(RST_FPGA);

    // Do a Reset
    mPORTDSetBits(RST_FPGA);
    mPORTDClearBits(RST_FPGA);

    // Do Interrupts Initialization
    // Set RD8/INT1 and RD9/INT2 as inputs
    mPORTDSetPinsDigitalIn(BIT_8 | BIT_9);
    // Clear corresponding bits in INTCON for falling edge trigger
    INTCONCLR = _INTCON_INT1EP_MASK | _INTCON_INT2EP_MASK;
    // Set up interrupt prioirty and sub-priority
    INTSetVectorPriority(INT_EXTERNAL_1_VECTOR, My_INT_EXTERNAL_1_PRIORITY);
    INTSetVectorSubPriority(INT_EXTERNAL_1_VECTOR, My_INT_EXTERNAL_1_SUB_PRIORITY);
    INTSetVectorPriority(INT_EXTERNAL_2_VECTOR, My_INT_EXTERNAL_2_PRIORITY);
    INTSetVectorSubPriority(INT_EXTERNAL_2_VECTOR, My_INT_EXTERNAL_2_SUB_PRIORITY);
    // Clear the interrupt flags
    INTClearFlag(INT_INT1);
    INTClearFlag(INT_INT2);
    // Enable INT1 & INT2
    INTEnable(INT_INT1, INT_ENABLED);
    INTEnable(INT_INT2, INT_ENABLED);
    // Enable KEY0 and KEY1 interrupts and IOs of the MyExpansionBoard_IO_v2
    MyCyclone_Write(CYCLONE_CONFIG,CYCLONE_ENABLE_INT_KEY0 | CYCLONE_ENABLE_INT_KEY1 | CYCLONE_ENABLE_IO_AB | CYCLONE_ENABLE_IO_CD);
}
Exemplo n.º 3
0
int main()
{
i=0;
lcdini();

DDPCON=0x0000;
mPORTDSetPinsDigitalIn(BIT_7|BIT_13|BIT_6);                           //Set Portd pins DigitalIn
mPORTASetPinsDigitalOut(BIT_0|BIT_1|BIT_2|BIT_3|BIT_4|BIT_5|BIT_6);
mPORTAClearBits(BIT_0|BIT_1|BIT_2|BIT_3|BIT_4|BIT_5|BIT_6);
mPORTASetPinsDigitalIn(BIT_7);
char x;

while(1)
{
    switch(i)                                                                              //Switch case to select function
	{
		case 0:
        mode();
		break;
		case 1:
        batteryv();
		break;
		case 2:
		temps();
        break;
	}
    
    if(i==3)
    {
     lcdcmd(0x01);
     break;
    }
}
}	
Exemplo n.º 4
0
//Function to initialize buttons BTN1, BTN2, and BTN3
void initButtons()
{
	speeds = 1;
	int x;
	for(x = 0; x<4; x++)
	{
		samples[x] = 0x00;
		waitingFor[x] = 1;
	}
	mPORTGSetPinsDigitalIn(BIT_6 | BIT_7);
	mPORTDSetPinsDigitalIn(BIT_13 );
	mPORTFSetPinsDigitalIn(BIT_4 | BIT_13);
}
Exemplo n.º 5
0
void InitializeIO(void)
{
    //Initializing CSN and CE pins as output
    mPORTFSetPinsDigitalOut(BIT_0 | BIT_1);
    mPORTFClearBits(BIT_0 | BIT_1);
    //Initializing IRQ pin as input
    mPORTDSetPinsDigitalIn(BIT_13);
    mPORTDClearBits(BIT_13);
    //Setting CSN bit active
    LATFbits.LATF1 = 1;
    //Initializing LEDs
    mPORTDSetPinsDigitalOut(BIT_1 | BIT_2);
    mPORTDClearBits(BIT_1 | BIT_2);
    //Initializing MOSI/SDO1 and SCK as output
    mPORTDSetPinsDigitalOut(BIT_10);
    mPORTDSetPinsDigitalOut(BIT_0);
    //Initializing MISO/SDI1 as input
    mPORTCSetPinsDigitalIn(BIT_4);
}
void setupHardware()
{
    SYSTEMConfig(SYS_CLOCK, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);

    mPORTDSetPinsDigitalOut(BIT_1); //yellow LED
    mPORTGSetPinsDigitalOut(BIT_6); //green LED

    //A1 PIR Input (CN4 module, RB2)
    //A2 STB current consumption (AN3)
    //D0 IR Output
    mPORTDSetPinsDigitalOut(BIT_3); //D1 STB IRF control
    mPORTDSetPinsDigitalIn(BIT_4); //D2 BUT OTG
    mPORTDSetPinsDigitalOut(BIT_5); //D3 SHD RED LED Command OFF acqusition notificaiton
    mPORTDSetPinsDigitalOut(BIT_6); //D4 SHD GREEN LED Command ON acqusition notificaiton
    //D5 IR input (RD7)
    //D6 SHD BUT1
    //D7 SHD BUT2
    mPORTBSetPinsDigitalOut(BIT_14); //D9 monitor relay control

    DDPCONbits.JTAGEN = 0;

    initLEDs();
    initUART();

    initADC();
    setupCNModuleAnd_IR_PIR_Input();
    //setupCNModuleAndPIRInput();
    configureRTC();
    setupIRTransmit();

    switchMonitorOff();
    switchSTBOff();

    INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR);
    INTEnableInterrupts();

    T2CONbits.ON = 1;
}
void setupCNModuleAnd_IR_PIR_Input()
{
    //T2 used to sample IR Input signals
    setupTimer2();

    //IR INPUT
    mPORTDSetPinsDigitalIn(BIT_7); //D5 IR Input (CN16 module, RD7)
    //PIR input
    mPORTBSetPinsDigitalIn(BIT_2); //A1 PIR Input (CN4 module, RB2)

    // setup the change notice options
    //(ensure that CN continues working in sleep mode)
    mCNOpen(CN_OFF | CN_IDLE_CON, CN16_ENABLE | CN4_ENABLE, CN16_PULLUP_ENABLE | CN4_PULLUP_ENABLE);

    // read port(s) to clear mismatch
    mPORTDReadBits(BIT_7);
    mPORTBReadBits(BIT_2);
    mPORTBReadBits(BIT_4);

    // configure interrupts and clear change notice interrupt flag
    ConfigIntCN(CHANGE_INT_ON | CHANGE_INT_PRI_3);
    mCNClearIntFlag(); // Clear interrupt flag
}
Exemplo n.º 8
0
/****************************************************************************
  Function:
    static void InitializeBoard(void)

  Description:
    This routine initializes the hardware.  It is a generic initialization
    routine for many of the Microchip development boards, using definitions
    in HardwareProfile.h to determine specific initialization.

  Precondition:
    None

  Parameters:
    None - None

  Returns:
    None

  Remarks:
    None
 ***************************************************************************/
static void InitializeBoard(void) {
    // WiFi Module hardware Initialization handled by Library

    // Enable multi-vectored interrupts
    INTEnableSystemMultiVectoredInt();

    // Enable optimal performance
    SYSTEMConfigPerformance(GetSystemClock());
    mOSCSetPBDIV(OSC_PB_DIV_1); // Use 1:1 CPU Core:Peripheral clocks

    // Disable JTAG port so we get our I/O pins back, but first
    // wait 50ms so if you want to reprogram the part with
    // JTAG, you'll still have a tiny window before JTAG goes away.
    // The PIC32 Starter Kit debuggers use JTAG and therefore must not
    // disable JTAG.
    DelayMs(50);
    DDPCONbits.JTAGEN = 0;

    // LEDs
    LEDS_OFF();
    mPORTESetPinsDigitalOut(BIT_5 | BIT_6 | BIT_7);

    // Switches
    mPORTDSetPinsDigitalIn(BIT_4 | BIT_5 | BIT_6);
    ConfigCNPullups(CN13_PULLUP_ENABLE | CN14_PULLUP_ENABLE | CN15_PULLUP_ENABLE);

    // LCD
    mPORTESetPinsDigitalOut(BIT_0 | BIT_1 | BIT_2 | BIT_3);
    //Configure LCD SPI pins
    mPORTFSetPinsDigitalOut(BIT_8);
    mPORTDSetPinsDigitalOut(BIT_15);

    //SPI Flash
    mPORTDSetPinsDigitalOut(BIT_14);


    //UART
    mPORTFSetPinsDigitalOut(BIT_5);
    mPORTFSetPinsDigitalIn(BIT_4);

    //MiWi
#if defined(MRF24J40) || defined(MRF49XA)
    PHY_CS = 1;
    mPORTDSetPinsDigitalOut(BIT_9);

    PHY_RESETn = 1;
    mPORTDSetPinsDigitalOut(BIT_11);
#endif

#if defined(MRF49XA)
    nFSEL_TRIS = 0;
    FINT_TRIS = 1;

    nFSEL = 1;
#elif defined(MRF24J40)
    PHY_WAKE = 1;
    mPORTBSetPinsDigitalOut(BIT_9);
#else
    Data_nCS_TRIS = 0;
    Config_nCS_TRIS = 0;
    Data_nCS = 1;
    Config_nCS = 1;
    IRQ1_INT_TRIS = 1;
    IRQ0_INT_TRIS = 1;

#endif

    /* Set the Port Directions of SDO, SDI, Clock & Slave Select Signal */
    /* Set SCK port pin to output */
    mPORTDSetPinsDigitalOut(BIT_10);
    /* Set SDO port pin to output */
    mPORTDSetPinsDigitalOut(BIT_0);
    /* Set SDI port pin to input */
    mPORTCSetPinsDigitalIn(BIT_4);
    /* Set INT1, INT2 port pins to input */
    mPORTESetPinsDigitalIn(BIT_8 | BIT_9);

    /* Clear SPI1CON register */
    SPI1CONCLR = 0xFFFFFFFF;

#ifdef HARDWARE_SPI
    unsigned int pbFreq;

    /* Enable SPI1, Set to Master Mode & Set CKE bit : Serial output data changes on transition
      from active clock state to Idle clock state */
    SPI1CON = 0x00008120;
    /* Peripheral Bus Frequency = System Clock / PB Divider */
    pbFreq = (DWORD) CLOCK_FREQ / (1 << mOSCGetPBDIV());

    /* PB Frequency can be maximum 40 MHz */
    if (pbFreq > (2 * MAX_SPI_CLK_FREQ_FOR_P2P)) {
        {
            unsigned int SPI_Clk_Freq;

            unsigned char SPI_Brg1 = 1;

            //For the SPI1
            /* Continue the loop till you find SPI Baud Rate Register Value */
            while (1) {
                /* SPI Clock Calculation as per PIC32 Manual */
                SPI_Clk_Freq = pbFreq / (2 * (SPI_Brg1 + 1));

                if (SPI_Clk_Freq <= MAX_SPI_CLK_FREQ_FOR_P2P) {
                    break;
                }

                SPI_Brg1++;
            }



            mSpiChnSetBrg(1, SPI_Brg1);

        }
    } else {
        /* Set SPI1 Baud Rate */
        mSpiChnSetBrg(1, 0);

    }

#endif

    /* Set the Interrupt Priority */
    mINT2SetIntPriority(4);

#if defined(MRF89XA)
    mINT1SetIntPriority(4);
#endif

    /* Set Interrupt Subpriority Bits for INT2 */
    mINT2SetIntSubPriority(2);

#if defined(MRF89XA)
    mINT2SetIntSubPriority(1);
#endif

    /* Set INT2 to falling edge */
    mINT2SetEdgeMode(0);

#if defined(MRF89XA)
    mINT1SetEdgeMode(1);
    mINT2SetEdgeMode(1);
#endif

    /* Enable INT2 */
    mINT2IntEnable(1);

#if defined(MRF89XA)
    mINT2IntEnable(1);
#endif

    /* Enable Multi Vectored Interrupts */
    //    INTEnableSystemMultiVectoredInt();

#if defined(MRF89XA)
    PHY_IRQ1 = 0;
    PHY_IRQ0 = 0;
    PHY_RESETn_TRIS = 1;
#else
    RFIF = 0;
    if (RF_INT_PIN == 0) {
        RFIF = 1;
    }
#endif

    // Initialize the EEPROM
    XEEInit();

    // UART Initialization
#if defined(STACK_USE_UART)
    UARTTX_TRIS = 0;
    UARTRX_TRIS = 1;
    UMODE = 0x8000; // Set UARTEN.  Note: this must be done before setting UTXEN
    USTA = 0x00001400; // RXEN set, TXEN set
#define CLOSEST_UBRG_VALUE ((GetPeripheralClock()+8ul*BAUD_RATE)/16/BAUD_RATE-1)
#define BAUD_ACTUAL (GetPeripheralClock()/16/(CLOSEST_UBRG_VALUE+1))

#define BAUD_ERROR ((BAUD_ACTUAL > BAUD_RATE) ? BAUD_ACTUAL-BAUD_RATE : BAUD_RATE-BAUD_ACTUAL)
#define BAUD_ERROR_PRECENT	((BAUD_ERROR*100+BAUD_RATE/2)/BAUD_RATE)
#if (BAUD_ERROR_PRECENT > 3)
#warning UART frequency error is worse than 3%
#elif (BAUD_ERROR_PRECENT > 2)
#warning UART frequency error is worse than 2%
#endif

    UBRG = CLOSEST_UBRG_VALUE;
#endif


}
Exemplo n.º 9
0
main()
{
    // Disable JTAG (on RA0 and RA1 )
    mJTAGPortEnable( DEBUG_JTAGPORT_OFF );

    // Configure the device for maximum performance but do not change the PBDIV
    // Given the options, this function will change the flash wait states, RAM
    // wait state and enable prefetch cache but will not change the PBDIV.
    // The PBDIV value is already set via the pragma FPBDIV option above..
    SYSTEMConfig(GetSystemClock(), SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);

    initializeUART();
    initializeADC();
    initializeLCD();
    initializeRPG();
    
    /* Initialize SD card */
    setup_SDSPI();
    SD_setStart();
    /* Fill tempBuffer[] with int 0 to 63
     * Write it to the current block.
     * Empty tempBuffer[] to all 0.
     * Read from the current block to make sure that it returns the right value.
     */
    fillTempBuffer();
    testSDReadWrite(tempBuffer);

    curr_read_block = curr_block;
    
    ConfigTimer1(); // Enable Timer1 for second counts
    configureInterrupts();

    // T2CON = 0x8030; // TMR1 on, prescale 1:256 PB

    mPORTASetPinsDigitalOut( LED_MASK ); // LEDs = output
    mPORTDSetPinsDigitalIn( PB_MASK_D ); // PBs on D = input

    curr_state = READY;
    // enable interrupts
    INTEnableInterrupts();
    int i = 0;
    while( 1 )
    {
        if (getPrintToUARTFlag() == 1){
            LCDMenuControl();
        
            //mPORTAToggleBits( LED_MASK );
            convertAndPrintIntegerToString("i => ", i++);
            convertAndPrintIntegerToString("timeElapse => ", timeElapsed);
            convertAndPrintIntegerToString("timeElapsedLEDSample => ", timeElapsedLEDSample);
            convertAndPrintIntegerToString("timeElapsedLEDTurnedOff => ", timeElapsedLEDTurnedOff);
            convertAndPrintIntegerToString("sampleLEDNow => ", sampleLEDNow);

            convertAndPrintIntegerToString(" ADC Value => ", getChannel5Value());
            printShadowDetect();
            printLightLevel();
            drawLightDetectedBar();
            controlPowerRelay();

            switch(curr_state) {
            case READY : WriteString("State => READY     ");
                        break;
            case SLEEP : WriteString("State => SLEEP    ");
                        break;
            case HIBERNATE : WriteString("State => HIBERNATE");
                        break;
            case BUSY : WriteString("State => BUSY     ");
                        break;
            }

            WriteString("\r");
            
            setPrintToUARTFlag(0);
        }
        if (NEW_BYTE_RECEIVED == 1){
            curr_state = READY;
            NEW_BYTE_RECEIVED = 0;
            //mPORTAToggleBits( LED_MASK );
            char tempArray[] = "g";
            tempArray[0] = characterByteReceived;
            WriteString(tempArray);
            if(curr_state = HIBERNATE) {
                addByteToBuffer(characterByteReceived);
            }
            else {
                PutCharacter(characterByteReceived);
            }
        }
        if(bufferIndex == 512) {
            SDWriteBlock(currBlock);
            currBlock++;
            bufferIndex = 0;
        }
         if((curr_state == READY) && (timeElapsed >= SLEEP_TIMEOUT) && (timeElapsed < HIBERNATE_TIMEOUT)) {
             curr_state = SLEEP;
         }
         else if((curr_state == SLEEP) && (timeElapsed >= HIBERNATE_TIMEOUT)) {
             curr_state = HIBERNATE;
             timeElapsed = 0;
         }
        if (transmitDataFromSDCard == 1) {
            transmitDataFromSDCard = 0;
            forwardDataToPrinter();
        }
    } // main (while) loop

    return 0;

} // main
//********************************
//********************************
//********** INITIALISE **********
//********************************
//********************************
void initialise (void)
{
	BYTE data;
	
	//##### GENERAL NOTE ABOUT PIC32'S #####
	//Try and use the peripheral libraries instead of special function registers for everything (literally everything!) to avoid
	//bugs that can be caused by the pipeline and interrupts.
	

	//---------------------------------
	//----- CONFIGURE PERFORMANCE -----
	//---------------------------------
	
	//----- SETUP EVERYTHING FOR OPTIMUM PERFORMANCE -----
	SYSTEMConfigPerformance(80000000ul);		//Note this sets peripheral bus to '1' max speed (regardless of configuration bit setting)
												//Use PBCLK divider of 1:1 to calculate UART baud, timer tick etc


	//----- SET PERIPHERAL BUS DIVISOR -----
	//To minimize dynamic power the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance
	mOSCSetPBDIV(OSC_PB_DIV_2);			//OSC_PB_DIV_1, OSC_PB_DIV_2, OSC_PB_DIV_4, OSC_PB_DIV_8, 

	//----- SETUP INTERRUPTS -----
	INTEnableSystemMultiVectoredInt();

	//-------------------------
	//----- SETUP IO PINS -----
	//-------------------------
	//(Device will powerup with all IO pins as inputs)

	//----- TURN OFF THE JTAG PORT -----
	//(JTAG is on by default)
	//mJTAGPortEnable(0);		//Must be on for Microchip Multimedia Development board

	#define	PORTA_IO	0xc2ff				//Setup the IO pin type (0 = output, 1 = input)
	mPORTAWrite(0xc033);					//Set initial ouput pin states
	mPORTASetPinsDigitalIn(PORTA_IO);		//(Sets high bits as input)
	mPORTASetPinsDigitalOut(~PORTA_IO);		//(Sets high bits as output)
	
	#define	PORTB_IO	0xfbff				//Setup the IO pin type (0 = output, 1 = input)
	mPORTBWrite(0x6d13);					//Set initial ouput pin states
	mPORTBSetPinsDigitalIn(PORTB_IO);		//(Sets high bits as input)
	mPORTBSetPinsDigitalOut(~PORTB_IO);		//(Sets high bits as output)

	mPORTBSetPinsDigitalIn(BIT_0 | BIT_1 | BIT_3 | BIT_4 | BIT_15);			//Joystick inputs

	#define	PORTC_IO	0xf01e				//Setup the IO pin type (0 = output, 1 = input)
	mPORTCWrite(0x3018);					//Set initial ouput pin states
	mPORTCSetPinsDigitalIn(PORTC_IO);		//(Sets high bits as input)
	mPORTCSetPinsDigitalOut(~PORTC_IO);		//(Sets high bits as output)

	#define	PORTD_IO	0x7bfe				//Setup the IO pin type (0 = output, 1 = input)
	mPORTDWrite(0xbdaf);					//Set initial ouput pin states
	mPORTDSetPinsDigitalIn(PORTD_IO);		//(Sets high bits as input)
	mPORTDSetPinsDigitalOut(~PORTD_IO);		//(Sets high bits as output)

	mPORTDSetPinsDigitalOut(BIT_2 | BIT_1);		//LED's 2 and 3
	mPORTDSetPinsDigitalIn(BIT_9);

	#define	PORTE_IO	0x03ff				//Setup the IO pin type (0 = output, 1 = input)
	mPORTEWrite(0x02a2);					//Set initial ouput pin states
	mPORTESetPinsDigitalIn(PORTE_IO);		//(Sets high bits as input)
	mPORTESetPinsDigitalOut(~PORTE_IO);		//(Sets high bits as output)

	#define	PORTF_IO	0x111f				//Setup the IO pin type (0 = output, 1 = input)
	mPORTFWrite(0x0039);					//Set initial ouput pin states
	mPORTFSetPinsDigitalIn(PORTF_IO);		//(Sets high bits as input)
	mPORTFSetPinsDigitalOut(~PORTF_IO);		//(Sets high bits as output)

	#define	PORTG_IO	0xd3cf				//Setup the IO pin type (0 = output, 1 = input)
	mPORTGWrite(0xf203);					//Set initial ouput pin states
	mPORTGSetPinsDigitalIn(PORTG_IO);		//(Sets high bits as input)
	mPORTGSetPinsDigitalOut(~PORTG_IO);		//(Sets high bits as output)



	//Read pins using:
	// mPORTAReadBits(BIT_0);
	//Write pins using:
	// mPORTAClearBits(BIT_0);
	// mPORTASetBits(BIT_0);
	// mPORTAToggleBits(BIT_0);



	//----- INPUT CHANGE NOTIFICATION CONFIGURATION -----
	//EnableCN0();
	ConfigCNPullups(CN2_PULLUP_ENABLE | CN3_PULLUP_ENABLE | CN5_PULLUP_ENABLE | CN6_PULLUP_ENABLE | CN12_PULLUP_ENABLE);		//Joystick pins



	//----- SETUP THE A TO D PINS -----
	ENABLE_ALL_DIG;


	//---------------------
	//----- SETUP USB -----
	//---------------------
	//The USB specifications require that USB peripheral devices must never source current onto the Vbus pin.  Additionally, USB peripherals should not source
	//current on D+ or D- when the host/hub is not actively powering the Vbus line.  When designing a self powered (as opposed to bus powered) USB peripheral
	//device, the firmware should make sure not to turn on the USB module and D+ or D- pull up resistor unless Vbus is actively powered.  Therefore, the
	//firmware needs some means to detect when Vbus is being powered by the host. A 5V tolerant I/O pin can be connected to Vbus (through a resistor), and
	//can be used to detect when Vbus is high (host actively powering), or low (host is shut down or otherwise not supplying power).  The USB firmware
	//can then periodically poll this I/O pin to know when it is okay to turn on the USB module/D+/D- pull up resistor.  When designing a purely bus powered
	//peripheral device, it is not possible to source current on D+ or D- when the host is not actively providing power on Vbus. Therefore, implementing this
	//bus sense feature is optional.  This firmware can be made to use this bus sense feature by making sure "USE_USB_BUS_SENSE_IO" has been defined in the
	//HardwareProfile.h file.    
    //	#if defined(USE_USB_BUS_SENSE_IO)
    //	tris_usb_bus_sense = INPUT_PIN; // See HardwareProfile.h
    //	#endif
    
	//If the host PC sends a GetStatus (device) request, the firmware must respond	and let the host know if the USB peripheral device is currently bus powered
	//or self powered.  See chapter 9 in the official USB specifications for details regarding this request.  If the peripheral device is capable of being both
	//self and bus powered, it should not return a hard coded value for this request.  Instead, firmware should check if it is currently self or bus powered, and
	//respond accordingly.  If the hardware has been configured like demonstrated on the PICDEM FS USB Demo Board, an I/O pin can be polled to determine the
	//currently selected power source.  On the PICDEM FS USB Demo Board, "RA2" is used for	this purpose.  If using this feature, make sure "USE_SELF_POWER_SENSE_IO"
	//has been defined in HardwareProfile.h, and that an appropriate I/O pin has been mapped to it in HardwareProfile.h.
    //	#if defined(USE_SELF_POWER_SENSE_IO)
    //	tris_self_power = INPUT_PIN;	// See HardwareProfile.h
    //	#endif
    
    
    //Enable the USB port now - we will check to see if Vbus is  powered at the end of init and disable it if not.
    //USBDeviceInit();	//usb_device.c.  Initializes USB module SFRs and firmware variables to known states.

	

	//------------------------
	//----- SETUP TIMERS -----
	//------------------------
	//(INCLUDE THE USAGE OF ALL TIMERS HERE EVEN IF NOT SETUP HERE SO THIS IS THE ONE POINT OF
	//REFERENCE TO KNOW WHICH TIMERS ARE IN USE AND FOR WHAT).

	//----- SETUP TIMER 1 -----
	//Used for: Available
	//OpenTimer1((T1_ON | T1_IDLE_CON | T1_GATE_OFF | T1_PS_1_4 | T1_SOURCE_INT), 20000);

	//----- SETUP TIMER 2 -----
	//Used for: 
	//OpenTimer2((T2_ON | T2_IDLE_CON | T2_GATE_OFF | T2_PS_1_1 | T2_SOURCE_INT), 0xffff);		//0xffff = 305Hz

	//----- SETUP TIMER 3 -----
	//Used for: 
	//OpenTimer3((T3_ON | T3_IDLE_CON | T3_GATE_OFF | T3_PS_1_1 | T3_SOURCE_INT), PIEZO_TIMER_PERIOD);

	//----- SETUP TIMER 4 -----
	//Used for: 
	//OpenTimer4((T4_ON | T4_IDLE_CON | T4_GATE_OFF | T4_PS_1_1 | T4_SOURCE_INT), 20000);

	//----- SETUP TIMER 5 -----
	//Used for: Heartbeat
	OpenTimer5((T5_ON | T5_IDLE_CON | T5_GATE_OFF | T5_PS_1_1 | T5_SOURCE_INT), 40000);		//1mS with 80MHz osc and PB_DIV_2
	ConfigIntTimer5(T5_INT_ON | T5_INT_PRIOR_7);											//1=lowest priority to 7=highest priority.  ISR function must specify same value



	//---------------------------------
	//----- SETUP EVAL BOARD CPLD -----
	//---------------------------------
	//Graphics bus width = 16
	mPORTGSetPinsDigitalOut(BIT_14);
	mPORTGSetBits(BIT_14);

	//SPI source select = SPI3 (not used)
	mPORTGSetPinsDigitalOut(BIT_12);
	mPORTGClearBits(BIT_12);
	
	//SPI peripheral destination select = Expansion Slot (not used)
	mPORTASetPinsDigitalOut(BIT_7 | BIT_6);
	mPORTASetBits(BIT_7);
	mPORTAClearBits(BIT_6);


	//--------------------------------------
    //----- PARALLEL MASTER PORT SETUP -----
	//--------------------------------------
    PMMODE = 0;
    PMAEN = 0;
    PMCON = 0;
    PMMODE = 0x0610;
    PMCONbits.PTRDEN = 1;                   //Enable RD line
    PMCONbits.PTWREN = 1;                   //Enable WR line
    PMCONbits.PMPEN = 1;                    //Enable PMP


	//------------------------------
	//----- INITIALISE DISPLAY -----
	//------------------------------
	display_initialise();


	display_test();

	//LOAD OUR GLOBAL HTML STYLES FILE READY FOR DISPLAY HTML PAGES
	BYTE dummy_styles_count;
	DWORD file_size;
	if (display_html_setup_read_file(global_css, 0, &file_size))
	{
		dummy_styles_count = 0;
		display_html_read_styles(&file_size, &dummy_styles_count, 1);			//1 = this is global styles file
	}

}
Exemplo n.º 11
0
int main() {
    // Initialize Sockets and IP address containers
    //
    SOCKET 	serverSock, clientSock = INVALID_SOCKET;
    IP_ADDR	curr_ip, ip;

    // Initialize buffer length variables
    //
    int rlen, sent, bytesSent;
    
    // Initialize the Send/Recv buffers
    //
    char rbfr[10];

    // Socket struct descriptor
    //
    struct sockaddr_in addr;
    int addrlen = sizeof(struct sockaddr_in);

    // System clock containers
    //
    unsigned int sys_clk, pb_clk;

    // Initialize LED Variables:
    // Setup the LEDs on the PIC32 board
    // RD0, RD1 and RD2 as outputs
    //
    mPORTDSetPinsDigitalOut(BIT_0 | BIT_1 | BIT_2 ); 
    mPORTDClearBits(BIT_0 | BIT_1 | BIT_2); // Clear previous LED status.
    
    // Setup the switches on the PIC32 board as inputs
    //		
    mPORTDSetPinsDigitalIn(BIT_6 | BIT_7 | BIT_13);     // RD6, RD7, RD13 as inputs

    // Setup the system clock to use CPU frequency
    //
    sys_clk = GetSystemClock();
    pb_clk = SYSTEMConfigWaitStatesAndPB(sys_clk);

    // interrupts enabled
    INTEnableSystemMultiVectoredInt();

    // system clock enabled
    SystemTickInit(sys_clk, TICKS_PER_SECOND);

    // Initialize TCP/IP
    //
    TCPIPSetDefaultAddr(DEFAULT_IP_ADDR, DEFAULT_IP_MASK, DEFAULT_IP_GATEWAY,
            DEFAULT_MAC_ADDR);

    if (!TCPIPInit(sys_clk)) return -1;
    DHCPInit();

    // Port to bind socket to
    //
    addr.sin_port = 6653;
    addr.sin_addr.S_un.S_addr = IP_ADDR_ANY;

    // Initialize TCP server socket
    //
    if((serverSock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) == 
        SOCKET_ERROR)  return -1;
       
    // Ensure we bound to the socket. End Program if bind fails
    //
    if(bind(serverSock, (struct sockaddr*) &addr, addrlen ) == 
        SOCKET_ERROR)
        return -1;

    // Listen to up to five clients on server socket
    //
    listen(serverSock, 5);

    // We store our desired transfer paragraph 
    //
    char myStr[] = "TCP/IP (Transmission Control Protocol/Internet Protocol) is "
        "the basic  communication language or protocol of the Internet. "
        "It can also be used as a communications protocol in a private "
        "network (either an intranet or an extranet). When you are set up "
        "with direct access to the Internet, your computer is provided "
        "with a copy of the TCP/IP program just as every other computer "
        "that you may send messages to or get information from also has "
        "a copy of TCP/IP. TCP/IP is a two-layer program. The higher "
        "layer, Transmission Control Protocol, manages the assembling "
        "of a message or file into smaller packets that are transmitted "
        "over the Internet and received by a TCP layer that reassembles "
        "the packets into the original message. The lower layer, "
        "Internet Protocol, handles the address part of each packet so "
        "that it gets to the right destination. Each gateway computer on "
        "the network checks this address to see where to forward the "
        "message. Even though some packets from the same message are "
        "routed differently than others, they'll be reassembled at the "
        "destination.\0";
    
    // Chunk up our data
    //
    // Copy our string into our buffer
    //
    int tlen = strlen(myStr);
    
    char tbfr1[tlen1+1];

    // Loop forever
    //
    while(1) {
        // Refresh TCIP and DHCP
        //
        TCPIPProcess();
        DHCPTask();

        // Get the machines IP address and save to variable
        //
        ip.Val = TCPIPGetIPAddr();

        // DHCP server change IP address?
        //
        if(curr_ip.Val != ip.Val) curr_ip.Val = ip.Val;	

        // TCP Server Code
        //
        if(clientSock == INVALID_SOCKET) {
            // Start listening for incoming connections
            //
            clientSock = accept(serverSock, (struct sockaddr*) &addr, &addrlen);

            // Upon connection to a client blink LEDS.
            //
            if(clientSock != INVALID_SOCKET) {
                setsockopt(clientSock, SOL_SOCKET, TCP_NODELAY, 
                    (char*)&tlen, sizeof(int));
                mPORTDSetBits(BIT_0);   // LED1=1
                DelayMsec(50);
                mPORTDClearBits(BIT_0); // LED1=0
                mPORTDSetBits(BIT_1);   // LED2=1
                DelayMsec(50);
                mPORTDClearBits(BIT_1); // LED2=0
                mPORTDSetBits(BIT_2);   // LED3=1
                DelayMsec(50);
                mPORTDClearBits(BIT_2); // LED3=0
            }
        }
        else {
            // We are connected to a client already. We start
            // by receiving the message being sent by the client
            //
            rlen = recvfrom(clientSock, rbfr, sizeof(rbfr), 0, NULL, 
                NULL);

            // Check to see if socket is still alive
            //
            if(rlen > 0) {
                // If the received message first byte is '02' it signifies
                // a start of message
                //
                if (rbfr[0]==2) {
                    //mPORTDSetBits(BIT_0);	// LED1=1

                    // Check to see if message begins with
                    // '0271' to see if the message is a a global reset
                    //
                    if(rbfr[1]==71) {
                        mPORTDSetBits(BIT_0);   // LED1=1
                        DelayMsec(50);
                        mPORTDClearBits(BIT_0); // LED1=0
                    }
                }
                // If the received message starts with a second byte is
                // '84' it signifies a initiate transfer
                //
                if(rbfr[1]==84){
                    mPORTDSetBits(BIT_2);   // LED3=1
                    bytesSent = 0;
                    //sent = 0;
                    while (bytesSent < tlen){
                        memcpy(tbfr1, myStr+bytesSent, tlen1);
                        if (bytesSent > 1049){
                            tbfr1[tlen-bytesSent+1] = '\0';
                            send(clientSock, tbfr1, tlen-bytesSent+1, 0);
                        }
                        else{
                            tbfr1[tlen1] = '\0';
                            // Loop until we send the full message
                            //
                            send(clientSock, tbfr1, tlen1+1, 0);
                        }
                        bytesSent += tlen1;
                        DelayMsec(50);
                    }
                    mPORTDClearBits(BIT_2);	// LED3=0
                }
                mPORTDClearBits(BIT_0); // LED1=0
            }

            // The client has closed the socket so we close as well
            //
            else if(rlen < 0) {
                closesocket(clientSock);
                clientSock = SOCKET_ERROR;
            }
        }
    }
}
Exemplo n.º 12
0
/*******************************************************************************
 * Function:    BoardInit(void)
 * PreCondition:None
 * Input:       None
 * Output:      None
 * Overview:    SPI pins and SFR, Maintenance Tasks Timer, External Interrupts,
 *              and other board issues initialization.
 * Note:        This routine needs to be called before initialising MiWi stack
 *              or invoking other function that operates on MiWi stack.
 ******************************************************************************/
void BoardInit(void){
    #if defined(__PIC32MX__)

    // RADIO INTERFACES & SPI INIT -------------------------------------------//
        #if defined HARDWARE_SPI
            /* Peripheral Bus Frequency = System Clock / PB Divider */
            unsigned int pbFreq;
            pbFreq = (DWORD) CLOCK_FREQ/(1 << mOSCGetPBDIV());

            unsigned int SPI_Clk_Freq;
            unsigned char SPI_Brg;
        #endif

        #if defined MRF24J40
            PHY_CS_TRIS = OUTPUT_PIN;
            PHY_CS = 1;
            PHY_RESETn_TRIS = OUTPUT_PIN;
            PHY_RESETn = 1;

            MRF24J40_INT_TRIS = INPUT_PIN;

            SDI_TRIS = INPUT_PIN;
            SDO_TRIS = OUTPUT_PIN;
            SCK_TRIS = OUTPUT_PIN;
            SPI_SDO = 0;
            SPI_SCK = 0;

            PHY_WAKE_TRIS = OUTPUT_PIN;
            PHY_WAKE = 1;

            MRF24J40_PWR_TRIS = OUTPUT_PIN;
            MRF24J40_PWR = 1;

            SPICONCLR = 0xFFFFFFFF;             // Clear SPIxCON register

            #ifdef HARDWARE_SPI
                /* Enable SPI, Set to Master Mode & Set CKE bit : Serial output
                 * data changes on transition from active clock state to Idle
                 * clock state */
                SPICON = 0x00008120;

                /* PB Frequency can be maximum 40 MHz */
                if(pbFreq > (2 * MAX_SPI_CLK_FREQ_FOR_P2P)){
                    SPI_Brg = 1;
                    /* Continue the loop till you find SPI Baud Rate Reg Value */
                    while(1){
                        /* SPI Clock Calculation as per PIC32 Manual */
                        SPI_Clk_Freq = pbFreq / (2 * (SPI_Brg + 1));

                        if(SPI_Clk_Freq <= MAX_SPI_CLK_FREQ_FOR_P2P){
                            break;
                        }
                        SPI_Brg++;
                    }
                    #if defined MRF24J40_IN_SPI1
                    mSpiChnSetBrg (1, SPI_Brg);
                    #elif defined MRF24J40_IN_SPI2
                    mSpiChnSetBrg (2, SPI_Brg);
                    #elif defined MRF24J40_IN_SPI3
                        mSpiChnSetBrg (1A, SPI_Brg);
                    #elif defined MRF24J40_IN_SPI4
                        mSpiChnSetBrg (3A, SPI_Brg);
                    #endif
               }
               else{
                    #if defined MRF24J40_IN_SPI1
                    mSpiChnSetBrg (1, 0);
                    #elif defined MRF24J40_IN_SPI2
                    mSpiChnSetBrg (2, 0);
                    #elif defined MRF24J40_IN_SPI3
                        mSpiChnSetBrg (1A, 0);
                    #elif defined MRF24J40_IN_SPI4
                        mSpiChnSetBrg (3A, SPI_Brg);
                    #endif
               }
            #endif
        #endif
        #if defined(MRF49XA_1)
            // pruebas de funcionamiento
   /*        MRF49XA_1_PHY_CS_TRIS    = OUTPUT_PIN;
             MRF49XA_1_PHY_CS = 0;
             MRF49XA_1_PHY_CS = 1;

             MRF49XA_1_PHY_RESETn_TRIS  = OUTPUT_PIN;
             MRF49XA_1_PHY_RESETn = 0;
             MRF49XA_1_PHY_RESETn = 1;

             MRF49XA_1_INT_TRIS = OUTPUT_PIN;
             MRF49XA_1_INT_PIN = 0;
             MRF49XA_1_INT_PIN = 1;

             MRF49XA_1_SDI_TRIS = OUTPUT_PIN;
             MRF49XA_1_SPI_SDI = 0;
             MRF49XA_1_SPI_SDI = 1;

             MRF49XA_1_SDO_TRIS = OUTPUT_PIN;
             MRF49XA_1_SPI_SDO = 0;
             MRF49XA_1_SPI_SDO = 1;

             MRF49XA_1_SCK_TRIS = OUTPUT_PIN;
             MRF49XA_1_SPI_SCK = 0;
             MRF49XA_1_SPI_SCK = 1;

             MRF49XA_1_nFSEL_TRIS = OUTPUT_PIN;
             MRF49XA_1_nFSEL = 0;
             MRF49XA_1_nFSEL = 1;

             MRF49XA_1_FINT_TRIS = OUTPUT_PIN;
             MRF49XA_1_FINT = 0;
             MRF49XA_1_FINT = 1;
*/
            // configuration.   Juan: Added; Agus: Modified to a standard way
            MRF49XA_1_PHY_CS_TRIS = OUTPUT_PIN;
            MRF49XA_1_PHY_CS = 1;
            MRF49XA_1_PHY_RESETn_TRIS = OUTPUT_PIN;
            MRF49XA_1_PHY_RESETn = 1;

            MRF49XA_1_INT_TRIS = INPUT_PIN;

            MRF49XA_1_SDI_TRIS = INPUT_PIN;
            MRF49XA_1_SDO_TRIS = OUTPUT_PIN;
            MRF49XA_1_SCK_TRIS = OUTPUT_PIN;
            MRF49XA_1_SPI_SDO = 0;
            MRF49XA_1_SPI_SCK = 0;

            MRF49XA_1_nFSEL_TRIS = OUTPUT_PIN;
            MRF49XA_1_FINT_TRIS = INPUT_PIN;
            MRF49XA_1_nFSEL = 1;          // nFSEL inactive





            #ifdef cNGD_PLATFORM
//                MRF49XA_1_PWR_TRIS = OUTPUT_PIN;
//                MRF49XA_1_PWR = 1;
            #endif

            MRF49XA_1_SPICONCLR = 0xFFFFFFFF;       //Clear SPIxCON register

            #ifdef HARDWARE_SPI
                /* Enable SPI1, Set to Master Mode & Set CKE bit : Serial output
                * data changes on transition from active clock state to Idle
                * clock state */
                MRF49XA_1_SPICON = 0x00008120;

                /* PB Frequency can be maximum 40 MHz */
                if(pbFreq > (2 * MAX_SPI_CLK_FREQ_FOR_P2P)){
                    SPI_Brg = 1;
                    /* Continue the loop till you find SPI Baud Rate Reg Value */
                    while(1){
                        /* SPI Clock Calculation as per PIC32 Manual */
                        SPI_Clk_Freq = pbFreq / (2 * (SPI_Brg + 1));
                        if(SPI_Clk_Freq <= MAX_SPI_CLK_FREQ_FOR_P2P){
                            break;
                        }
                        SPI_Brg++;
                    }
                    #if defined MRF49XA_1_IN_SPI1
                    mSpiChnSetBrg (1, SPI_Brg);
                    #elif defined MRF49XA_1_IN_SPI2
                    mSpiChnSetBrg (2, SPI_Brg);
                    #elif defined MRF49XA_1_IN_SPI3
                        mSpiChnSetBrg (1A, SPI_Brg);
                    #endif
               }
               else{
                    #if defined MRF49XA_1_IN_SPI1
                    mSpiChnSetBrg (1, 0);
                    #elif defined MRF49XA_1_IN_SPI2
                    mSpiChnSetBrg (2, 0);
                    #elif defined MRF49XA_1_IN_SPI3
                        mSpiChnSetBrg (1A, 0);
                    #endif
               }
            #endif
        #endif
        #if defined(MRF49XA_2)

            MRF49XA_2_PHY_CS_TRIS = OUTPUT_PIN;
            MRF49XA_2_PHY_CS = 1;
            MRF49XA_2_PHY_RESETn_TRIS = OUTPUT_PIN;
            MRF49XA_2_PHY_RESETn = 1;

            MRF49XA_2_INT_TRIS = 1;

            MRF49XA_2_SDI_TRIS = INPUT_PIN;
            MRF49XA_2_SDO_TRIS = OUTPUT_PIN;
            MRF49XA_2_SCK_TRIS = OUTPUT_PIN;
            MRF49XA_2_SPI_SDO = 0;
            MRF49XA_2_SPI_SCK = 0;

            MRF49XA_2_nFSEL_TRIS = OUTPUT_PIN;
            MRF49XA_2_FINT_TRIS = INPUT_PIN;
            MRF49XA_2_nFSEL = 1;          // nFSEL inactive

            #ifdef cNGD_PLATFORM
                MRF49XA_2_PWR_TRIS = OUTPUT_PIN;
                MRF49XA_2_PWR = 1;
            #endif

            MRF49XA_2_SPICONCLR = 0xFFFFFFFF;       // Clear SPIxCON register

            #ifdef HARDWARE_SPI
                /* Enable SPI1, Set to Master Mode & Set CKE bit : Serial output
                * data changes on transition from active clock state to Idle
                * clock state */
                MRF49XA_2_SPICON = 0x00008120;

                /* PB Frequency can be maximum 40 MHz */
                if(pbFreq > (2 * MAX_SPI_CLK_FREQ_FOR_P2P)){
                    SPI_Brg = 1;
                    /* Continue the loop till you find SPI Baud Rate Reg Value */
                    while(1){
                        /* SPI Clock Calculation as per PIC32 Manual */
                        SPI_Clk_Freq = pbFreq / (2 * (SPI_Brg + 1));
                        if(SPI_Clk_Freq <= MAX_SPI_CLK_FREQ_FOR_P2P){
                            break;
                        }
                        SPI_Brg++;
                    }
                    #if defined MRF49XA_2_IN_SPI1
                    mSpiChnSetBrg (1, SPI_Brg);
                    #elif defined MRF49XA_2_IN_SPI2
                    mSpiChnSetBrg (2, SPI_Brg);
                    #elif defined MRF49XA_2_IN_SPI3
                        mSpiChnSetBrg (1A, SPI_Brg);
                    #endif
               }
               else{
                    #if defined MRF49XA_2_IN_SPI1
                    mSpiChnSetBrg (1, 0);
                    #elif defined MRF49XA_2_IN_SPI2
                    mSpiChnSetBrg (2, 0);
                    #elif defined MRF49XA_2_IN_SPI3
                        mSpiChnSetBrg (1A, 0);
                    #endif
               }
            #endif
        #endif
        #if defined MRF89XA
            Data_nCS_TRIS = 0;
            Config_nCS_TRIS = 0;
            Data_nCS = 1;
            Config_nCS = 1;
            PHY_IRQ1_TRIS = 1;

            //... REVIEW...
        #endif

    // SPI & EXTERNAL INTERRUPTS PINS AND CONFIGURATION ----------------------//
        /* Set the SPI Port Directions (SDO, SDI, SCK) for every SPI module.*/
            #if defined SPI1_IN_USE
  
                SDI1_TRIS = INPUT_PIN;   //DIGITAL IN
                SDO1_TRIS = OUTPUT_PIN;  //DIGITAL OUT
                SCK1_TRIS = OUTPUT_PIN;  //DIGITAL OUT

            #endif

            #if defined SPI2_IN_USE

                SDI2_TRIS = INPUT_PIN;   //DIGITAL IN
                SDO2_TRIS = OUTPUT_PIN;  //DIGITAL OUT
                SCK2_TRIS = OUTPUT_PIN;  //DIGITAL OUT

            #endif

            #if defined SPI3_IN_USE

                SDI3_TRIS = INPUT_PIN;   //DIGITAL IN
                SDO3_TRIS = OUTPUT_PIN;  //DIGITAL OUT
                SCK3_TRIS = OUTPUT_PIN;  //DIGITAL OUT

            #endif

            #if defined SPI4_IN_USE

                SDI4_TRIS = INPUT_PIN;   //DIGITAL IN
                SDO4_TRIS = OUTPUT_PIN;  //DIGITAL OUT
                SCK4_TRIS = OUTPUT_PIN;  //DIGITAL OUT

            #endif

        /* Set the external interrups Pin Directions and Priority*/
            #if defined INT1_IN_USE

                INT1_TRIS = INPUT_PIN; // DIGITAL IN
                mINT1SetIntPriority(4);
                mINT1SetIntSubPriority(2);
                mINT1SetEdgeMode(0);                //0: Falling Edge.
                // Enable INT1
                mINT1IntEnable(1); 
            #endif
            #if defined INT2_IN_USE
                
                INT2_TRIS = INPUT_PIN; // DIGITAL IN
                mINT2SetIntPriority(4);
                mINT2SetIntSubPriority(2);
                mINT2SetEdgeMode(0);                //0: Falling Edge.
                /* Enable INT2 */
                mINT2IntEnable(1);
            #endif
            #if defined INT3_IN_USE
                
                INT3_TRIS = INPUT_PIN; // DIGITAL IN
                mINT3SetIntPriority(4);
                mINT3SetIntSubPriority(2);
                mINT3SetEdgeMode(0);                //0: Falling Edge.
                /* Enable INT3 */
                mINT3IntEnable(1);
            #endif
            #if defined INT4_IN_USE
               
                INT4_TRIS = INPUT_PIN; // DIGITAL IN
                mINT4SetIntPriority(4);
                mINT4SetIntSubPriority(2);
                mINT4SetEdgeMode(0);                //0: Falling Edge.
                /* Enable INT4 */
                mINT4IntEnable(1);
            #endif

     // LEDs
        #ifdef cNGD_PLATFORM
               mJTAGPortEnable(0); //Needed due to multiplexed pins
            
               LED1_TRIS = OUTPUT_PIN;
               LED2_TRIS = OUTPUT_PIN;
               LED3_TRIS = OUTPUT_PIN;
               LED1 = 0;
               LED2 = 0;
               LED3 = 0;
                              
        #endif


    // TIMER 1 FOR TIME_SYNC -------------------------------------------------//
        #if defined(ENABLE_TIME_SYNC)   
        //TIMER 1 MAY BE USED FOR SLEEP MODE AND/OR FOR STACKS MAINTENANCE. IT
        //NEEDS ADAPTATION BEFORE ENABLING TIME_SYNC WITH TIMER 1 TOO!
            T1CON = 0;
            T1CON = 0x0012;
            T1CONSET = 0x8000;
            PR1 = 0xFFFF;
            IFS0bits.T1IF = 0;

            mT1IntEnable(1);
            mT1SetIntPriority(4);

            while(T1CONbits.TWIP);
            TMR1 = 0;
        #endif
    // TIMER 1 FOR NODE STACKS AUTO-MAINTENANCE ------------------------------//
        #if defined NODE_DOES_MAINTENANCE_TASKS
            T1CON = 0x0070;             //Disable timer, PBCLK source, PS=256
            TMR1  = 0x0000;             //Reset count
            PR1   = MAINTENANCE_PERIOD; //Set period.

            IPC1SET = 0x00000005;   //Set Priority level 1, Subpriority level 1
            IFS0CLR = 0x00000010;   //Clear T1IF
            IEC0SET = 0x00000010;   //Set T1IE
            //Timer will be triggered after initialization.
        #endif
//************************************* TODO
    // IOPORT CN - For waking up the node manually. --------------------------//
        mPORTDSetPinsDigitalIn(BIT_5); // CN14
        CNCON = 0x8000;         //Module enabled.
        CNEN = 0x00004000;      //Enable CN14
        CNPUE = 0x00004000;     //Enable CN14 weak pull-up.
        ReadBUTTONS();          //Clear PORT mismatch condition.
        IFS1CLR = 0x00000001;   //Clear the CN interrupt flag status bit
        IPC6SET = 0x00180000;   //Set CN priority 6, subpriority 0.
        //It will be enabled only during sleep mode time interval
    //------------------------------------------------------------------------//
																										// Lo modifico en el wifi config
        #if defined(ENABLE_NVM)     //REVIEW
            //EE_nCS_TRIS = 0;//FERNANDO, CUIDADO NO SE SI LA PILA REALMENTE FUNCIONA CON FLASH MEMORY
            //EE_nCS = 1;
        #endif

    // INTERRUPTION FLAGS AND EXT_INT PIN FINAL SETTINGS ---------------------//
        #if defined MRF49XA_1
            MRF49XA_1_IF = 0;
            if(MRF49XA_1_INT_PIN == 0){
                MRF49XA_1_IF = 1;
            }
        #endif
        #if defined MRF49XA_2
            MRF49XA_2_IF = 0;
            if(MRF49XA_2_INT_PIN == 0){
                MRF49XA_2_IF = 1;
            }
        #endif
        #if defined MRF89XA
            PHY_IRQ1 = 0;
        #endif
        #if defined MRF24J40
            MRF24J40_IF = 0;
            if(MRF24J40_INT_PIN == 0){
                MRF24J40_IF = 1;
            }
        #endif

    #else   //Not PIC32.
        #error "Unknown target board."
    #endif
}
Exemplo n.º 13
0
/*******************************************************************************
 * Function:    BoardInit(void)
 * PreCondition:None
 * Input:       None
 * Output:      None
 * Overview:    SPI pins and SFR, Maintenance Tasks Timer, External Interrupts,
 *              and other board issues initialization.
 * Note:        This routine needs to be called before initialising MiWi stack
 *              or invoking other function that operates on MiWi stack.
 ******************************************************************************/
void BoardInit(void){
    #if defined(__PIC32MX__)

    // RADIO INTERFACES & SPI INIT -------------------------------------------//
        #if defined HARDWARE_SPI
            /* Peripheral Bus Frequency = System Clock / PB Divider */
            unsigned int pbFreq;
            pbFreq = (DWORD) CLOCK_FREQ/(1 << mOSCGetPBDIV());

            unsigned int SPI_Clk_Freq;
            unsigned char SPI_Brg;
        #endif

        #if defined MRF24J40
            PHY_CS_TRIS = 0;
            PHY_CS = 1;
            PHY_RESETn_TRIS = 0;
            PHY_RESETn = 1;

            MRF24J40_INT_TRIS = 1;

            SDI_TRIS = 1;
            SDO_TRIS = 0;
            SCK_TRIS = 0;
            SPI_SDO = 0;
            SPI_SCK = 0;

            PHY_WAKE_TRIS = 0;
            PHY_WAKE = 1;

            SPICONCLR = 0xFFFFFFFF;             // Clear SPIxCON register

            #ifdef HARDWARE_SPI
                /* Enable SPI, Set to Master Mode & Set CKE bit : Serial output
                 * data changes on transition from active clock state to Idle
                 * clock state */
                SPICON = 0x00008120;

                /* PB Frequency can be maximum 40 MHz */
                if(pbFreq > (2 * MAX_SPI_CLK_FREQ_FOR_P2P)){
                    SPI_Brg = 1;
                    /* Continue the loop till you find SPI Baud Rate Reg Value */
                    while(1){
                        /* SPI Clock Calculation as per PIC32 Manual */
                        SPI_Clk_Freq = pbFreq / (2 * (SPI_Brg + 1));

                        if(SPI_Clk_Freq <= MAX_SPI_CLK_FREQ_FOR_P2P){
                            break;
                        }
                        SPI_Brg++;
                    }
                    #if defined MRF24J40_IN_SPI1
                    mSpiChnSetBrg (1, SPI_Brg);
                    #elif defined MRF24J40_IN_SPI2
                    mSpiChnSetBrg (2, SPI_Brg);
                    #elif defined MRF24J40_IN_SPI3
                        mSpiChnSetBrg (1A, SPI_Brg);
                    #elif defined MRF24J40_IN_SPI4
                        mSpiChnSetBrg (3A, SPI_Brg);
                    #endif
               }
               else{
                    #if defined MRF24J40_IN_SPI1
                    mSpiChnSetBrg (1, 0);
                    #elif defined MRF24J40_IN_SPI2
                    mSpiChnSetBrg (2, 0);
                    #elif defined MRF24J40_IN_SPI3
                        mSpiChnSetBrg (1A, 0);
                    #elif defined MRF24J40_IN_SPI4
                        mSpiChnSetBrg (3A, SPI_Brg);
                    #endif
               }
            #endif
        #endif
        #if defined(MRF49XA_1)
            //Configuration for Guilja's Expansion Board, Connection SLot 1 --//
            mPORTESetPinsDigitalOut(BIT_1); //nCS
            mPORTBSetPinsDigitalIn(BIT_2);  //FINT      //Juan: Added.
            //----------------------------------------------------------------//

            MRF49XA_1_PHY_CS_TRIS = 0;
            MRF49XA_1_PHY_CS = 1;
            MRF49XA_1_PHY_RESETn_TRIS = 0;
            MRF49XA_1_PHY_RESETn = 1;

            MRF49XA_1_INT_TRIS = 1;

            MRF49XA_1_SDI_TRIS = 1;
            MRF49XA_1_SDO_TRIS = 0;
            MRF49XA_1_SCK_TRIS = 0;
            MRF49XA_1_SPI_SDO = 0;
            MRF49XA_1_SPI_SCK = 0;

            MRF49XA_1_nFSEL_TRIS = 0;
            MRF49XA_1_FINT_TRIS = 1;
            MRF49XA_1_nFSEL = 1;          // nFSEL inactive

            MRF49XA_1_SPICONCLR = 0xFFFFFFFF;       //Clear SPIxCON register

            #ifdef HARDWARE_SPI
                /* Enable SPI1, Set to Master Mode & Set CKE bit : Serial output
                * data changes on transition from active clock state to Idle
                * clock state */
                MRF49XA_1_SPICON = 0x00008120;

                /* PB Frequency can be maximum 40 MHz */
                if(pbFreq > (2 * MAX_SPI_CLK_FREQ_FOR_P2P)){
                    SPI_Brg = 1;
                    /* Continue the loop till you find SPI Baud Rate Reg Value */
                    while(1){
                        /* SPI Clock Calculation as per PIC32 Manual */
                        SPI_Clk_Freq = pbFreq / (2 * (SPI_Brg + 1));
                        if(SPI_Clk_Freq <= MAX_SPI_CLK_FREQ_FOR_P2P){
                            break;
                        }
                        SPI_Brg++;
                    }
                    #if defined MRF49XA_1_IN_SPI1
                    mSpiChnSetBrg (1, SPI_Brg);
                    #elif defined MRF49XA_1_IN_SPI2
                    mSpiChnSetBrg (2, SPI_Brg);
                    #elif defined MRF49XA_1_IN_SPI3
                        mSpiChnSetBrg (1A, SPI_Brg);
                    #endif
               }
               else{
                    #if defined MRF49XA_1_IN_SPI1
                    mSpiChnSetBrg (1, 0);
                    #elif defined MRF49XA_1_IN_SPI2
                    mSpiChnSetBrg (2, 0);
                    #elif defined MRF49XA_1_IN_SPI3
                        mSpiChnSetBrg (1A, 0);
                    #endif
               }
            #endif
        #endif
        #if defined(MRF49XA_2)
            MRF49XA_2_PHY_CS_TRIS = 0;
            MRF49XA_2_PHY_CS = 1;
            MRF49XA_2_PHY_RESETn_TRIS = 0;
            MRF49XA_2_PHY_RESETn = 1;

            MRF49XA_2_INT_TRIS = 1;

            MRF49XA_2_SDI_TRIS = 1;
            MRF49XA_2_SDO_TRIS = 0;
            MRF49XA_2_SCK_TRIS = 0;
            MRF49XA_2_SPI_SDO = 0;
            MRF49XA_2_SPI_SCK = 0;

            MRF49XA_2_nFSEL_TRIS = 0;
            MRF49XA_2_FINT_TRIS = 1;
            MRF49XA_2_nFSEL = 1;          // nFSEL inactive

            MRF49XA_2_SPICONCLR = 0xFFFFFFFF;       // Clear SPIxCON register

            #ifdef HARDWARE_SPI
                /* Enable SPI1, Set to Master Mode & Set CKE bit : Serial output
                * data changes on transition from active clock state to Idle
                * clock state */
                MRF49XA_2_SPICON = 0x00008120;

                /* PB Frequency can be maximum 40 MHz */
                if(pbFreq > (2 * MAX_SPI_CLK_FREQ_FOR_P2P)){
                    SPI_Brg = 1;
                    /* Continue the loop till you find SPI Baud Rate Reg Value */
                    while(1){
                        /* SPI Clock Calculation as per PIC32 Manual */
                        SPI_Clk_Freq = pbFreq / (2 * (SPI_Brg + 1));
                        if(SPI_Clk_Freq <= MAX_SPI_CLK_FREQ_FOR_P2P){
                            break;
                        }
                        SPI_Brg++;
                    }
                    #if defined MRF49XA_2_IN_SPI1
                    mSpiChnSetBrg (1, SPI_Brg);
                    #elif defined MRF49XA_2_IN_SPI2
                    mSpiChnSetBrg (2, SPI_Brg);
                    #elif defined MRF49XA_2_IN_SPI3
                        mSpiChnSetBrg (1A, SPI_Brg);
                    #endif
               }
               else{
                    #if defined MRF49XA_2_IN_SPI1
                    mSpiChnSetBrg (1, 0);
                    #elif defined MRF49XA_2_IN_SPI2
                    mSpiChnSetBrg (2, 0);
                    #elif defined MRF49XA_2_IN_SPI3
                        mSpiChnSetBrg (1A, 0);
                    #endif
               }
            #endif
        #endif
       

    // SPI & EXTERNAL INTERRUPTS PINS AND CONFIGURATION ----------------------//
#if (defined __32MX675F256L__ || defined ____32MX675F512__)
        /* Set the SPI Port Directions (SDO, SDI, SCK) for every SPI module.*/
            #if defined MRF49XA_1_IN_SPI1 || defined MRF49XA_2_IN_SPI1 || \
                defined MRF89XA_IN_SPI1   || defined MRF24J40_IN_SPI1  || \
                defined MRF24WB0M_IN_SPI1
                mPORTDSetPinsDigitalOut(BIT_0);     //SDO1
                mPORTDSetPinsDigitalOut(BIT_10);    //SCK1
                mPORTCSetPinsDigitalIn(BIT_4);      //SDI1
            #endif
            #if defined MRF49XA_1_IN_SPI2 || defined MRF49XA_2_IN_SPI2 || \
                defined MRF89XA_IN_SPI2   || defined MRF24J40_IN_SPI2  || \
                defined MRF24WB0M
                mPORTGSetPinsDigitalOut(BIT_8);     //SDO2
                mPORTGSetPinsDigitalOut(BIT_6);     //SCK2
                mPORTGSetPinsDigitalIn(BIT_7);      //SDI2
            #endif
            #if defined MRF49XA_1_IN_SPI3 || defined MRF49XA_2_IN_SPI3 || \
                defined MRF89XA_IN_SPI3   || defined MRF24J40_IN_SPI3  || \
                defined MRF24WB0M
                mPORTFSetPinsDigitalOut(BIT_8);     //SDO3
                mPORTDSetPinsDigitalOut(BIT_15);    //SCK3
                mPORTFSetPinsDigitalIn(BIT_2);      //SDI3
            #endif
//            #if defined MRF24WB0M_IN_SPI4
//                mPORTFSetPinsDigitalOut(BIT_5);     //SDO4
//                mPORTFSetPinsDigitalOut(BIT_13);    //SCK4
//                mPORTFSetPinsDigitalIn(BIT_4);      //SDI4
//            #endif

   #endif
#endif
       

    // TIMER 1 FOR TIME_SYNC -------------------------------------------------//
        #if defined(ENABLE_TIME_SYNC)   
        //TIMER 1 MAY BE USED FOR SLEEP MODE AND/OR FOR STACKS MAINTENANCE. IT
        //NEEDS ADAPTATION BEFORE ENABLING TIME_SYNC WITH TIMER 1 TOO!
            T1CON = 0;
            T1CON = 0x0012;
            T1CONSET = 0x8000;
            PR1 = 0xFFFF;
            IFS0bits.T1IF = 0;

            mT1IntEnable(1);
            mT1SetIntPriority(4);

            while(T1CONbits.TWIP);
            TMR1 = 0;
        #endif
    // TIMER 1 FOR NODE STACKS AUTO-MAINTENANCE ------------------------------//
        #if defined NODE_DOES_MAINTENANCE_TASKS
            T1CON = 0x0070;             //Disable timer, PBCLK source, PS=256
            TMR1  = 0x0000;             //Reset count
            PR1   = MAINTENANCE_PERIOD; //Set period.

            IPC1SET = 0x00000005;   //Set Priority level 1, Subpriority level 1
            IFS0CLR = 0x00000010;   //Clear T1IF
            IEC0SET = 0x00000010;   //Set T1IE
            //Timer will be triggered after initialization.
        #endif

    // IOPORT CN - For waking up the node manually. --------------------------//
        mPORTDSetPinsDigitalIn(BIT_5); // CN14
        CNCON = 0x8000;         //Module enabled.
        CNEN = 0x00004000;      //Enable CN14
        CNPUE = 0x00004000;     //Enable CN14 weak pull-up.
        ReadBUTTONS();          //Clear PORT mismatch condition.
        IFS1CLR = 0x00000001;   //Clear the CN interrupt flag status bit
        IPC6SET = 0x00180000;   //Set CN priority 6, subpriority 0.
        //It will be enabled only during sleep mode time interval
    //------------------------------------------------------------------------//


        																										// Lo modifico en el wifi config
        #if defined(ENABLE_NVM)     //REVIEW
            //EE_nCS_TRIS = 0;//FERNANDO, CUIDADO NO SE SI LA PILA REALMENTE FUNCIONA CON FLASH MEMORY
            //EE_nCS = 1;
        #endif

    // INTERRUPTION FLAGS AND EXT_INT PIN FINAL SETTINGS ---------------------//
        #if defined MRF49XA_1
            MRF49XA_1_IF = 0;
            if(MRF49XA_1_INT_PIN == 0){
                MRF49XA_1_IF = 1;
            }
        #endif
        #if defined MRF49XA_2
            MRF49XA_2_IF = 0;
            if(MRF49XA_2_INT_PIN == 0){
                MRF49XA_2_IF = 1;
            }
        #endif
        #if defined MRF89XA
            PHY_IRQ1 = 0;
        #endif
        #if defined MRF24J40
            MRF24J40_IF = 0;
            if(MRF24J40_INT_PIN == 0){
                MRF24J40_IF = 1;
            }
        #endif
}