Exemplo n.º 1
0
bool Message::send(mach_msg_option_t options,
    mach_msg_timeout_t timeout,
    mach_port_name_t notify)
{
    return check(mach_msg_overwrite(*this,
        options | MACH_SEND_MSG,
        length(),
        0, MACH_PORT_NULL,
        timeout, notify,
        NULL, 0));
}
Exemplo n.º 2
0
bool Message::sendReceive(mach_port_t receivePort,
    mach_msg_option_t options,
    mach_msg_timeout_t timeout,
    mach_port_name_t notify)
{
    return check(mach_msg_overwrite(*this,
        options | MACH_SEND_MSG | MACH_RCV_MSG,
        length(),
        mSize, receivePort,
        timeout, notify,
        NULL, 0));
}
Exemplo n.º 3
0
int main(UNUSED int argc, char **argv) {
    pid_t pid = argv[1] ? atoi(argv[1]) : 1; /* for testing */

    void *event_system = IOHIDEventSystemCreate(NULL);
    if (!event_system) {
        ib_log("couldn't create HID event system");
    } else {

            /* consumer page -> Volume Increment */
        if (button_pressed(event_system, 0x0c, 0xe9) ||
            /* telephony page -> Flash */
            button_pressed(event_system, 0x0b, 0x21)) {
            ib_log("disabling due to button press");
            return 0;
        }
    }
    mach_port_t port = 0;
    kern_return_t kr = mach_port_allocate(mach_task_self(),
                                          MACH_PORT_RIGHT_RECEIVE,
                                          &port);
    if (kr) {
        ib_log("mach_port_allocate: %x", kr);
        return 0;
    }
    const char *lib = "/Library/Substitute/Helpers/posixspawn-hook.dylib";
    struct shuttle shuttle = {
        .type = SUBSTITUTE_SHUTTLE_MACH_PORT,
        .u.mach.right_type = MACH_MSG_TYPE_MAKE_SEND,
        .u.mach.port = port
    };
    char *error;
    int ret = substitute_dlopen_in_pid(pid, lib, 0, &shuttle, 1, &error);
    if (ret) {
        ib_log("substitute_dlopen_in_pid: %s/%s",
               substitute_strerror(ret), error);
        return 0;
    }
    /* wait for it to finish */
    static struct {
        mach_msg_header_t hdr;
        mach_msg_trailer_t huh;
    } msg;
    kr = mach_msg_overwrite(NULL, MACH_RCV_MSG, 0, sizeof(msg), port,
                            MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL,
                            &msg.hdr, 0);
    if (kr)
        ib_log("mach_msg_overwrite: %x", kr);
}
Exemplo n.º 4
0
static void ExceptionThread(mach_port_t port)
{
	Common::SetCurrentThreadName("Mach exception thread");
	#pragma pack(4)
	struct
	{
		mach_msg_header_t Head;
		NDR_record_t NDR;
		exception_type_t exception;
		mach_msg_type_number_t codeCnt;
		int64_t code[2];
		int flavor;
		mach_msg_type_number_t old_stateCnt;
		natural_t old_state[x86_THREAD_STATE64_COUNT];
		mach_msg_trailer_t trailer;
	} msg_in;

	struct
	{
		mach_msg_header_t Head;
		NDR_record_t NDR;
		kern_return_t RetCode;
		int flavor;
		mach_msg_type_number_t new_stateCnt;
		natural_t new_state[x86_THREAD_STATE64_COUNT];
	} msg_out;
	#pragma pack()
	memset(&msg_in, 0xee, sizeof(msg_in));
	memset(&msg_out, 0xee, sizeof(msg_out));
	mach_msg_header_t *send_msg = nullptr;
	mach_msg_size_t send_size = 0;
	mach_msg_option_t option = MACH_RCV_MSG;
	while (true)
	{
		// If this isn't the first run, send the reply message.  Then, receive
		// a message: either a mach_exception_raise_state RPC due to
		// thread_set_exception_ports, or MACH_NOTIFY_NO_SENDERS due to
		// mach_port_request_notification.
		CheckKR("mach_msg_overwrite", mach_msg_overwrite(send_msg, option, send_size, sizeof(msg_in), port, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL, &msg_in.Head, 0));

		if (msg_in.Head.msgh_id == MACH_NOTIFY_NO_SENDERS)
		{
			// the other thread exited
			mach_port_destroy(mach_task_self(), port);
			return;
		}

		if (msg_in.Head.msgh_id != 2406)
		{
			PanicAlert("unknown message received");
			return;
		}

		if (msg_in.flavor != x86_THREAD_STATE64)
		{
			PanicAlert("unknown flavor %d (expected %d)", msg_in.flavor, x86_THREAD_STATE64);
			return;
		}

		x86_thread_state64_t *state = (x86_thread_state64_t *) msg_in.old_state;

		bool ok = JitInterface::HandleFault((uintptr_t) msg_in.code[1], state);

		// Set up the reply.
		msg_out.Head.msgh_bits = MACH_MSGH_BITS(MACH_MSGH_BITS_REMOTE(msg_in.Head.msgh_bits), 0);
		msg_out.Head.msgh_remote_port = msg_in.Head.msgh_remote_port;
		msg_out.Head.msgh_local_port = MACH_PORT_NULL;
		msg_out.Head.msgh_id = msg_in.Head.msgh_id + 100;
		msg_out.NDR = msg_in.NDR;
		if (ok)
		{
			msg_out.RetCode = KERN_SUCCESS;
			msg_out.flavor = x86_THREAD_STATE64;
			msg_out.new_stateCnt = x86_THREAD_STATE64_COUNT;
			memcpy(msg_out.new_state, msg_in.old_state, x86_THREAD_STATE64_COUNT * sizeof(natural_t));
		}
		else
		{
			// Pass the exception to the next handler (debugger or crash).
			msg_out.RetCode = KERN_FAILURE;
			msg_out.flavor = 0;
			msg_out.new_stateCnt = 0;
		}
		msg_out.Head.msgh_size = offsetof(__typeof__(msg_out), new_state) + msg_out.new_stateCnt * sizeof(natural_t);

		send_msg = &msg_out.Head;
		send_size = msg_out.Head.msgh_size;
		option |= MACH_SEND_MSG;
	}
}
Exemplo n.º 5
0
void MachServer::runServerThread(bool doTimeout)
{
	// allocate request/reply buffers
    Message bufRequest(mMaxSize);
    Message bufReply(mMaxSize);
	
	// all exits from runServerThread are through exceptions
	try {
		// register as a worker thread
		perThread().server = this;

		for (;;) {
			// progress hook
			eventDone();
			
			// process all pending timers
			while (processTimer()) {}
		
			// check for worker idle timeout
			{	StLock<Mutex> _(managerLock);
				// record idle thread low-water mark in scan interval
				if (idleCount < leastIdleWorkers)
					leastIdleWorkers = idleCount;
				
				// perform self-timeout processing
				if (doTimeout) {
					if (workerCount > maxWorkerCount)	// someone reduced maxWorkerCount recently...
						break;							// ... so release this thread immediately
					Time::Absolute rightNow = Time::now();
					if (rightNow >= nextCheckTime) {	// reaping period complete; process
						UInt32 idlers = leastIdleWorkers;
                        secinfo("machserver", "reaping workers: %d %d", (uint32_t) workerCount, (uint32_t) idlers);
						nextCheckTime = rightNow + workerTimeout;
						leastIdleWorkers = INT_MAX;
						if (idlers > 1)					// multiple idle threads throughout measuring interval...
							break;						// ... so release this thread now
					}
				}
			}
			
			// determine next timeout (if any)
            bool indefinite = false;
			Time::Interval timeout = workerTimeout;
			{	StLock<Mutex> _(managerLock);
				if (timers.empty()) {
					indefinite = !doTimeout;
				} else {
					timeout = max(Time::Interval(0), timers.next() - Time::now());
					if (doTimeout && workerTimeout < timeout)
						timeout = workerTimeout;
                }
			}

			// receive next IPC request (or wait for timeout)
			mach_msg_return_t mr = indefinite ?
				mach_msg_overwrite(bufRequest,
					MACH_RCV_MSG | mMsgOptions,
					0, mMaxSize, mPortSet,
					MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL,
					(mach_msg_header_t *) 0, 0)
                    :
				mach_msg_overwrite(bufRequest,
					MACH_RCV_MSG | MACH_RCV_TIMEOUT | MACH_RCV_INTERRUPT | mMsgOptions,
					0, mMaxSize, mPortSet,
					mach_msg_timeout_t(timeout.mSeconds()), MACH_PORT_NULL,
					(mach_msg_header_t *) 0, 0);
					
			switch (mr) {
			case MACH_MSG_SUCCESS:
				// process received request message below
				break;
			default:
                secinfo("machserver", "received error: %d", mr);
				continue;
			}
			
			// process received message
			if (bufRequest.msgId() >= MACH_NOTIFY_FIRST &&
				bufRequest.msgId() <= MACH_NOTIFY_LAST) {
				// mach kernel notification message
				// we assume this is quick, so no thread arbitration here
				cdsa_notify_server(bufRequest, bufReply);
			} else {
				// normal request message
				StLock<MachServer, &MachServer::busy, &MachServer::idle> _(*this);
                secinfo("machserver", "begin request: %d, %d", bufRequest.localPort().port(), bufRequest.msgId());
				
				// try subsidiary handlers first
				bool handled = false;
				for (HandlerSet::const_iterator it = mHandlers.begin();
						it != mHandlers.end(); it++)
					if (bufRequest.localPort() == (*it)->port()) {
						(*it)->handle(bufRequest, bufReply);
						handled = true;
					}
				if (!handled) {
					// unclaimed, send to main handler
                    handle(bufRequest, bufReply);
                }

                secinfo("machserver", "end request");
			}

			// process reply generated by handler
            if (!(bufReply.bits() & MACH_MSGH_BITS_COMPLEX) &&
                bufReply.returnCode() != KERN_SUCCESS) {
                    if (bufReply.returnCode() == MIG_NO_REPLY)
						continue;
                    // don't destroy the reply port right, so we can send an error message
                    bufRequest.remotePort(MACH_PORT_NULL);
                    mach_msg_destroy(bufRequest);
            }

            if (bufReply.remotePort() == MACH_PORT_NULL) {
                // no reply port, so destroy the reply
                if (bufReply.bits() & MACH_MSGH_BITS_COMPLEX)
                    bufReply.destroy();
                continue;
            }

            /*
             *  We don't want to block indefinitely because the client
             *  isn't receiving messages from the reply port.
             *  If we have a send-once right for the reply port, then
             *  this isn't a concern because the send won't block.
             *  If we have a send right, we need to use MACH_SEND_TIMEOUT.
             *  To avoid falling off the kernel's fast RPC path unnecessarily,
             *  we only supply MACH_SEND_TIMEOUT when absolutely necessary.
             */
			mr = mach_msg_overwrite(bufReply,
                          (MACH_MSGH_BITS_REMOTE(bufReply.bits()) ==
                                                MACH_MSG_TYPE_MOVE_SEND_ONCE) ?
                          MACH_SEND_MSG | mMsgOptions :
                          MACH_SEND_MSG | MACH_SEND_TIMEOUT | mMsgOptions,
                          bufReply.length(), 0, MACH_PORT_NULL,
                          0, MACH_PORT_NULL, NULL, 0);
			switch (mr) {
			case MACH_MSG_SUCCESS:
				break;
			default:
                secinfo("machserver", "send error: %d %d", mr, bufReply.remotePort().port());
				bufReply.destroy();
				break;
			}

            
            // clean up after the transaction
            releaseDeferredAllocations();
        }
		perThread().server = NULL;
		
	} catch (...) {
		perThread().server = NULL;
		throw;
	}
}
Exemplo n.º 6
0
static tb_bool_t it_inject(pid_t pid, tb_char_t const* path) 
{
    // check
    tb_assert_and_check_return_val(pid && path, tb_false);

    // trace
    tb_trace_d("inject: pid: %lu, path: %s: ..", (tb_size_t)pid, path);

#ifdef TB_ARCH_ARM64
    // uses libsubstrate first?
    if (tb_file_info("/usr/lib/libsubstrate.dylib", tb_null))
    {
        // init library
        tb_bool_t   ok = tb_false;
        tb_handle_t library = tb_dynamic_init("/usr/lib/libsubstrate.dylib");
        if (library)
        {
            // trace
            tb_trace_d("library: %p", library);

            // the func
            it_MSHookProcess_t pMSHookProcess = tb_dynamic_func(library, "MSHookProcess");
            if (pMSHookProcess)
            {
                // trace
                tb_trace_d("MSHookProcess: %p", pMSHookProcess);

                // hook process
                ok = pMSHookProcess(pid, path)? tb_true : tb_false;
            }

            // exit library
            tb_dynamic_exit(library);

            // trace
            tb_trace_i("%s", ok? "ok" : "no");

            // ok?
            return ok;
        }
    }
#endif

    // pid => task
    task_t task = 0;
    if (task_for_pid(mach_task_self(), (tb_int_t)pid, &task)) 
    {
        tb_trace_i("task_for_pid: %lu failed, errno: %d", (tb_size_t)pid, errno);
        return tb_false;
    }

    // trace
    tb_trace_d("task: %u", task);

    // stuff
    cpu_type_t cputype; it_addr_bundle_t addrs;
    if (!it_stuff(task, &cputype, &addrs)) return tb_false;

    // trace
    tb_trace_d("dlopen: %p", addrs.dlopen);
    tb_trace_d("syscall: %p", addrs.syscall);

    // alloc stack 
    mach_vm_address_t stack_address = 0;
    if (mach_vm_allocate(task, &stack_address, it_stack_size, VM_FLAGS_ANYWHERE)) return tb_false;

    // write path
    mach_vm_address_t stack_end = stack_address + it_stack_size - 0x100;
    if (mach_vm_write(task, stack_address, (vm_offset_t)it_address_cast(path), strlen(path) + 1)) return tb_false;

    /* the first one is the return address
     *
     * syscall(SYS_bsdthread_create, 0xdeadbeef, 0xdeadbeef, 128 * 1024, 0, 0)
     */
    tb_uint32_t args_32[] = {0, 360, 0xdeadbeef, 0xdeadbeef, 128 * 1024, 0, 0};
    tb_uint64_t args_64[] = {0, 360, 0xdeadbeef, 0xdeadbeef, 128 * 1024, 0, 0};

    // init thread state 
    union
    {
        it_arm_thread_state_t       arm;
        it_arm_thread_state64_t     arm64;
        it_x86_thread_state32_t     x86;
        it_x86_thread_state64_t     x64;
        natural_t                   nat;

    }state;
    thread_state_flavor_t           state_flavor;
    mach_msg_type_number_t          state_count;
    memset(&state, 0, sizeof(state));   

    // init thread state for the cpu type
    switch (cputype)
    {
    case CPU_TYPE_ARM:
        {
            tb_trace_i("cputype: arm");
            memcpy(&state.arm.r[0], args_32 + 1, 4 * sizeof(tb_uint32_t));
            if (mach_vm_write(task, stack_end, (vm_offset_t)it_address_cast(args_32 + 5), 2 * sizeof(tb_uint32_t))) return tb_false;

            state.arm.sp    = (tb_uint32_t) stack_end;
            state.arm.pc    = (tb_uint32_t) addrs.syscall;
            state.arm.lr    = (tb_uint32_t) args_32[0];

            state_flavor    = ARM_THREAD_STATE;
            state_count     = sizeof(state.arm) / sizeof(state.nat);

            // trace
            tb_trace_d("init: pc: %x", state.arm.pc);
            tb_trace_d("init: lr: %x", state.arm.lr);
            tb_trace_d("init: sp: %x", state.arm.sp);
        }
        break;
    case CPU_TYPE_ARM64:
        {
            tb_trace_i("cputype: arm64");
            memcpy(&state.arm64.x[0], args_64 + 1, 6 * sizeof(tb_uint64_t));

            state.arm64.sp  = (tb_uint64_t) stack_end;
//          state.arm64.fp  = (tb_uint64_t) stack_end;
            state.arm64.pc  = (tb_uint64_t) addrs.syscall;
            state.arm64.lr  = (tb_uint64_t) args_64[0];

            state_flavor    = ARM_THREAD_STATE64;
            state_count     = sizeof(state.arm64) / sizeof(state.nat);

            // trace
            tb_trace_d("init: pc: %llx", state.arm64.pc);
            tb_trace_d("init: lr: %llx", state.arm64.lr);
            tb_trace_d("init: sp: %llx", state.arm64.sp);
        }
        break;
    case CPU_TYPE_X86:
        {
            tb_trace_i("cputype: x86");
            if (mach_vm_write(task, stack_end, (vm_offset_t)it_address_cast(args_32), 7 * 4)) return tb_false;

            state.x86.esp   = state.x86.ebp = (tb_uint32_t) stack_end;
            state.x86.eip   = (tb_uint32_t)addrs.syscall;

            state_flavor    = x86_THREAD_STATE32;
            state_count     = sizeof(state.x86) / sizeof(state.nat);
        }
        break;
    case CPU_TYPE_X86_64:
        {
            tb_trace_i("cputype: x64");
            state.x64.rdi   = args_64[1];
            state.x64.rsi   = args_64[2];
            state.x64.rdx   = args_64[3];
            state.x64.rcx   = args_64[4];
            state.x64.r8    = args_64[5];
            state.x64.r9    = args_64[6];

            state.x64.rsp   = state.x64.rbp = stack_end;
            state.x64.rip   = addrs.syscall;

            state_flavor    = x86_THREAD_STATE64;
            state_count     = sizeof(state.x64) / sizeof(state.nat);
        }
        break;
    default:
        tb_trace_i("cputype: unknown: %lx", (tb_size_t)cputype);
        return tb_false;
    }

    // init a remote thread
    thread_act_t thread = 0;
    if (thread_create(task, &thread)) return tb_false;

    // trace
    tb_trace_d("init: thread: %x", thread);

    // alloc port
    mach_port_t exc = 0;
    mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &exc);
    if (mach_port_insert_right(mach_task_self(), exc, exc, MACH_MSG_TYPE_MAKE_SEND)) return tb_false;

    // swap port
    exception_mask_t        em[2];
    exception_handler_t     eh[2];
    exception_behavior_t    eb[2];
    thread_state_flavor_t   ef[2];
    mach_msg_type_number_t  em_count = 2;
    if (task_swap_exception_ports(task, EXC_MASK_BAD_ACCESS, exc, EXCEPTION_STATE_IDENTITY, state_flavor, em, &em_count, eh, eb, ef)) return tb_false;
    tb_assert_and_check_return_val(em_count <= 1, tb_false);

    // resume thread, done: syscall(SYS_bsdthread_create, 0xdeadbeef, 0xdeadbeef, 128 * 1024, 0, 0)
    if (thread_set_state(thread, state_flavor, &state.nat, state_count)) return tb_false;
    if (thread_resume(thread)) return tb_false;

    // we expect three exceptions: one from thread when it returns, one from the new thread when it calls the fake handler, and one from the new thread when it returns from dlopen.
    tb_bool_t started_dlopen = tb_false;
    while (1) 
    {
        // recv msg
        it_exception_message_t msg;
        if (mach_msg_overwrite(tb_null, MACH_RCV_MSG, 0, sizeof(msg), exc, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL, (tb_pointer_t) &msg, sizeof(msg))) return tb_false;

        // trace
        tb_trace_d("recv: msg: from thread: %x", msg.thread.name);

        // check
        tb_assert_and_check_return_val((msg.Head.msgh_bits & MACH_MSGH_BITS_COMPLEX), tb_false);
        tb_assert_and_check_return_val((msg.msgh_body.msgh_descriptor_count != 0), tb_false);
        tb_assert_and_check_return_val((msg.Head.msgh_size >= offsetof(it_exception_message_t, old_state)), tb_false);
        tb_assert_and_check_return_val((msg.old_stateCnt == state_count), tb_false);
        tb_assert_and_check_return_val((msg.Head.msgh_size >= offsetof(it_exception_message_t, old_state) + msg.old_stateCnt * sizeof(natural_t)), tb_false);

        // the msg state
        memcpy(&state, msg.old_state, sizeof(state));

        // dump
//      tb_dump_data((tb_byte_t const*)&state, sizeof(state));

        // done
        if (msg.thread.name == thread)
        {
            tb_trace_d("terminate");
            if (thread_terminate(thread)) return tb_false;
        } 
        else
        {
            // init cond
            tb_bool_t cond = tb_false;
            switch(cputype)
            {
            case CPU_TYPE_ARM:      
                {
                    // trace
                    tb_trace_d("recv: pc: %x", state.arm.pc);
                    tb_trace_d("recv: lr: %x", state.arm.lr);
                    tb_trace_d("recv: sp: %x", state.arm.sp);

                    // cond
                    cond = ((state.arm.pc & ~1) == 0xdeadbeee)? tb_true : tb_false;
                }
                break;
            case CPU_TYPE_ARM64:
                {
                    // trace
                    tb_trace_d("recv: pc: %llx", state.arm64.pc);
                    tb_trace_d("recv: lr: %llx", state.arm64.lr);
                    tb_trace_d("recv: sp: %llx", state.arm64.sp);

                    // cond
                    cond = ((state.arm64.pc & ~1) == 0xdeadbeee)? tb_true : tb_false;
                }
                break;
            case CPU_TYPE_X86:
                cond = (state.x86.eip == 0xdeadbeef)? tb_true : tb_false; 
                break;
            case CPU_TYPE_X86_64:
                cond = (state.x64.rip == 0xdeadbeef)? tb_true : tb_false;
                break;
            }

            tb_trace_d("cond: %d, started_dlopen: %d", cond, started_dlopen);
            if (!cond)
            {
                // let the normal crash mechanism handle it
                task_set_exception_ports(task, em[0], eh[0], eb[0], ef[0]);
                tb_assert_and_check_return_val(0, tb_false);
            }
            else if (started_dlopen)
            {
                tb_trace_d("terminate");
                if (thread_terminate(msg.thread.name)) return tb_false;
                break;
            }
            else 
            {
                // done: dlopen(path, RTLD_LAZY)
                switch(cputype)
                {
                case CPU_TYPE_ARM:
                    {
                        state.arm.r[0] = (tb_uint32_t) stack_address;
                        state.arm.r[1] = RTLD_LAZY;
                        state.arm.pc = (tb_uint32_t) addrs.dlopen;
                        state.arm.lr = 0xdeadbeef;
                    }
                    break;
                case CPU_TYPE_ARM64:
                    {
                        state.arm64.x[0] = (tb_uint64_t) stack_address;
                        state.arm64.x[1] = RTLD_LAZY;
                        state.arm64.pc = (tb_uint64_t) addrs.dlopen;
                        state.arm64.lr = 0xdeadbeef;
                    }
                    break;
                case CPU_TYPE_X86:
                    {
                        tb_uint32_t stack_stuff[3] = {0xdeadbeef, (tb_uint32_t)stack_address, RTLD_LAZY};
                        if (mach_vm_write(task, (mach_vm_address_t)state.x86.esp, (vm_offset_t)it_address_cast(&stack_stuff), sizeof(stack_stuff))) return tb_false;
                    }
                    state.x86.eip = (tb_uint32_t) addrs.dlopen;
                    break;
                case CPU_TYPE_X86_64:
                    {
                        tb_uint64_t stack_stuff = 0xdeadbeef;
                        if (mach_vm_write(task, (mach_vm_address_t)state.x64.rsp, (vm_offset_t)it_address_cast(&stack_stuff), sizeof(stack_stuff))) return tb_false;
                        state.x64.rip = addrs.dlopen;
                        state.x64.rdi = stack_address;
                        state.x64.rsi = RTLD_LAZY;
                    }
                    break;
                }

                it_exception_reply_t reply;
                memcpy(&reply.Head, &msg.Head, sizeof(mach_msg_header_t));
                reply.Head.msgh_bits &= ~MACH_MSGH_BITS_COMPLEX;
                reply.Head.msgh_size = offsetof(it_exception_reply_t, new_state) + state_count * sizeof(natural_t);
                reply.Head.msgh_id += 100;
                memcpy(&reply.NDR, &msg.NDR, sizeof(NDR_record_t));
                reply.RetCode = 0;
                reply.flavor = state_flavor;
                reply.new_stateCnt = state_count;
                memcpy(&reply.new_state, &state, sizeof(state));

                if (thread_set_state(msg.thread.name, state_flavor, &state.nat, state_count)) return tb_false;
                if (mach_msg(&reply.Head, MACH_SEND_MSG, reply.Head.msgh_size, 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL)) return tb_false;
                started_dlopen = tb_true;
            }
        }
    }

    // exit
    if (stack_address) vm_deallocate(task, stack_address, it_stack_size);
    if (thread)
    {
        thread_terminate(thread);
        mach_port_deallocate(mach_task_self(), thread);
    }
    if (task) mach_port_deallocate(mach_task_self(), task);
    if (exc) mach_port_deallocate(mach_task_self(), exc);

    // ok
    tb_trace_i("ok");
    return tb_true;
}
Exemplo n.º 7
0
void client(void *tsd) {
	mach_msg_header_t *request;
	mach_msg_header_t *reply;
	mach_msg_option_t option;
	kern_return_t ret;
	int idx;

	tsd_t			*ts = (tsd_t *)tsd;

#ifdef SWAP_BUFFERS
	mach_msg_header_t *tmp;
#endif

	request = (mach_msg_header_t *)ts->request_msg;
	reply = (mach_msg_header_t *)ts->reply_msg;
	
    for (idx = 0; idx < ts->num_msgs; idx++) {
	request->msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 
					    MACH_MSG_TYPE_MAKE_SEND_ONCE);
	request->msgh_size = ts->request_msg_size;
	request->msgh_remote_port = ts->server_port;
	request->msgh_local_port = ts->reply_port;

	if (ts->msg_type == msg_type_complex) {
	    ipc_complex_message *complexmsg = (ipc_complex_message *)request;

	    request->msgh_bits |=  MACH_MSGH_BITS_COMPLEX;
	    complexmsg->body.msgh_descriptor_count = 1;
	    complexmsg->descriptor.address =  ts->ints;
	    complexmsg->descriptor.size = ts->num_ints * sizeof(u_int32_t);
	    complexmsg->descriptor.deallocate = FALSE;
	    complexmsg->descriptor.copy = MACH_MSG_VIRTUAL_COPY;
	    complexmsg->descriptor.type =  MACH_MSG_OOL_DESCRIPTOR;
	}

	if (ts->oneway) {
	    request->msgh_id = 0;
	    option = MACH_SEND_MSG;
	} else {
	    request->msgh_id = 1;
	    option = MACH_SEND_MSG|MACH_RCV_MSG;
	}

	if (ts->verbose) printf("Sending request\n");
#ifdef SWAP_BUFFERS
	ret = mach_msg(	request,
			option,
			ts->request_msg_size,
			ts->reply_msg_size,
			ts->reply_port,
			MACH_MSG_TIMEOUT_NONE,
			MACH_PORT_NULL);
	if (MACH_MSG_SUCCESS != ret) {
	    mach_error("client: mach_msg: ", ret);
	    fprintf(stderr, "bailing after %u iterations\n", idx);
	    exit(1);
	}
	tmp = request;
	request = reply;
	reply = tmp;
#else
	ret = mach_msg_overwrite(request,
				 option,
				 ts->request_msg_size,
				 ts->reply_msg_size,
				 ts->reply_port,
				 MACH_MSG_TIMEOUT_NONE,
				 MACH_PORT_NULL,
				 reply,
				 0);
	if (MACH_MSG_SUCCESS != ret) {
	    mach_error("client: mach_msg_overwrite: ", ret);
	    fprintf(stderr, "bailing after %u iterations\n", idx);
	    exit(1);
	}
#endif
	if (ts->verbose && !ts->oneway) printf("Received reply\n");
    }
}