Exemplo n.º 1
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("backlund_s_bound....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 500 * arb_test_multiplier(); iter++)
    {
        arb_t a, b;
        mag_t u, v;
        slong aprec, bprec;
        slong abits, bbits;

        aprec = 2 + n_randint(state, 1000);
        bprec = 2 + n_randint(state, 1000);
        abits = 2 + n_randint(state, 100);
        bbits = 2 + n_randint(state, 100);

        arb_init(a);
        arb_init(b);
        mag_init(u);
        mag_init(v);

        arb_randtest(a, state, aprec, abits);
        arb_randtest(b, state, bprec, bbits);

        if (arb_is_nonnegative(a) && arb_is_nonnegative(b))
        {
            acb_dirichlet_backlund_s_bound(u, a);
            acb_dirichlet_backlund_s_bound(v, b);

            if ((arb_lt(a, b) && mag_cmp(u, v) > 0) ||
                (arb_gt(a, b) && mag_cmp(u, v) < 0))
            {
                flint_printf("FAIL: increasing on t >= 0\n\n");
                flint_printf("a = "); arb_print(a); flint_printf("\n\n");
                flint_printf("b = "); arb_print(b); flint_printf("\n\n");
                flint_printf("u = "); mag_print(u); flint_printf("\n\n");
                flint_printf("v = "); mag_print(v); flint_printf("\n\n");
                flint_abort();
            }
        }

        arb_clear(a);
        arb_clear(b);
        mag_clear(u);
        mag_clear(v);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Exemplo n.º 2
0
void
mag_exp_tail(mag_t z, const mag_t x, ulong N)
{
    if (N == 0 || mag_is_inf(x))
    {
        mag_exp(z, x);
    }
    else if (mag_is_zero(x))
    {
        mag_zero(z);
    }
    else
    {
        mag_t t;
        mag_init(t);
        mag_set_ui_2exp_si(t, N, -1);

        /* bound by geometric series when N >= 2*x  <=> N/2 >= x */
        if (mag_cmp(t, x) >= 0)
        {
            /* 2 c^N / N! */
            mag_pow_ui(t, x, N);
            mag_rfac_ui(z, N);
            mag_mul(z, z, t);
            mag_mul_2exp_si(z, z, 1);
        }
        else
        {
            mag_exp(z, x);
        }

        mag_clear(t);
    }
}
Exemplo n.º 3
0
void
acb_hypgeom_erf_propagated_error(mag_t re, mag_t im, const acb_t z)
{
    mag_t x, y;

    mag_init(x);
    mag_init(y);

    /* |exp(-(x+y)^2)| = exp(y^2-x^2) */
    arb_get_mag(y, acb_imagref(z));
    mag_mul(y, y, y);

    arb_get_mag_lower(x, acb_realref(z));
    mag_mul_lower(x, x, x);

    if (mag_cmp(y, x) >= 0)
    {
        mag_sub(re, y, x);
        mag_exp(re, re);
    }
    else
    {
        mag_sub_lower(re, x, y);
        mag_expinv(re, re);
    }

    /* Radius. */
    mag_hypot(x, arb_radref(acb_realref(z)), arb_radref(acb_imagref(z)));
    mag_mul(re, re, x);

    /* 2/sqrt(pi) < 289/256 */
    mag_mul_ui(re, re, 289);
    mag_mul_2exp_si(re, re, -8);

    if (arb_is_zero(acb_imagref(z)))
    {
        /* todo: could bound magnitude even for complex numbers */
        mag_set_ui(y, 2);
        mag_min(re, re, y);

        mag_zero(im);
    }
    else if (arb_is_zero(acb_realref(z)))
    {
        mag_swap(im, re);
        mag_zero(re);
    }
    else
    {
        mag_set(im, re);
    }

    mag_clear(x);
    mag_clear(y);
}
Exemplo n.º 4
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("cmp....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 100000 * arb_test_multiplier(); iter++)
    {
        fmpr_t x, y;
        mag_t xb, yb;
        int c1, c2;

        fmpr_init(x);
        fmpr_init(y);

        mag_init(xb);
        mag_init(yb);

        mag_randtest_special(xb, state, 100);
        mag_randtest_special(yb, state, 100);

        mag_get_fmpr(x, xb);
        mag_get_fmpr(y, yb);

        c1 = fmpr_cmp(x, y);
        c2 = mag_cmp(xb, yb);

        if (c1 != c2)
        {
            flint_printf("FAIL\n\n");
            flint_printf("x = "); fmpr_print(x); flint_printf("\n\n");
            flint_printf("y = "); fmpr_print(y); flint_printf("\n\n");
            flint_printf("xb = "); mag_print(xb); flint_printf("\n\n");
            flint_printf("yb = "); mag_print(yb); flint_printf("\n\n");
            abort();
        }

        fmpr_clear(x);
        fmpr_clear(y);

        mag_clear(xb);
        mag_clear(yb);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Exemplo n.º 5
0
void
arb_sinc(arb_t z, const arb_t x, slong prec)
{
    mag_t c, r;
    mag_init(c);
    mag_init(r);
    mag_set_ui_2exp_si(c, 5, -1);
    arb_get_mag_lower(r, x);
    if (mag_cmp(c, r) < 0)
    {
        /* x is not near the origin */
        _arb_sinc_direct(z, x, prec);
    }
    else if (mag_cmp_2exp_si(arb_radref(x), 1) < 0)
    {
        /* determine error magnitude using the derivative bound */
        if (arb_is_exact(x))
        {
            mag_zero(c);
        }
        else
        {
            _arb_sinc_derivative_bound(r, x);
            mag_mul(c, arb_radref(x), r);
        }

        /* evaluate sinc at the midpoint of x */
        if (arf_is_zero(arb_midref(x)))
        {
            arb_one(z);
        }
        else
        {
            arb_get_mid_arb(z, x);
            _arb_sinc_direct(z, z, prec);
        }

        /* add the error */
        mag_add(arb_radref(z), arb_radref(z), c);
    }
    else
    {
        /* x has a large radius and includes points near the origin */
        arf_zero(arb_midref(z));
        mag_one(arb_radref(z));
    }

    mag_clear(c);
    mag_clear(r);
}
Exemplo n.º 6
0
int arb_calc_newton_step(arb_t xnew, arb_calc_func_t func,
    void * param, const arb_t x, const arb_t conv_region,
    const arf_t conv_factor, slong prec)
{
    mag_t err, v;
    arb_t t;
    arb_struct u[2];
    int result;

    mag_init(err);
    mag_init(v);
    arb_init(t);
    arb_init(u + 0);
    arb_init(u + 1);

    mag_mul(err, arb_radref(x), arb_radref(x));
    arf_get_mag(v, conv_factor);
    mag_mul(err, err, v);

    arf_set(arb_midref(t), arb_midref(x));
    mag_zero(arb_radref(t));

    func(u, t, param, 2, prec);

    arb_div(u, u, u + 1, prec);
    arb_sub(u, t, u, prec);

    mag_add(arb_radref(u), arb_radref(u), err);

    if (arb_contains(conv_region, u) &&
        (mag_cmp(arb_radref(u), arb_radref(x)) < 0))
    {
        arb_swap(xnew, u);
        result = ARB_CALC_SUCCESS;
    }
    else
    {
        arb_set(xnew, x);
        result = ARB_CALC_NO_CONVERGENCE;
    }

    arb_clear(t);
    arb_clear(u);
    arb_clear(u + 1);
    mag_clear(err);
    mag_clear(v);

    return result;
}
Exemplo n.º 7
0
int
_arb_poly_newton_step(arb_t xnew, arb_srcptr poly, long len,
    const arb_t x,
    const arb_t convergence_interval,
    const arf_t convergence_factor, long prec)
{
    arf_t err;
    arb_t t, u, v;
    int result;

    arf_init(err);
    arb_init(t);
    arb_init(u);
    arb_init(v);

    arf_set_mag(err, arb_radref(x));
    arf_mul(err, err, err, MAG_BITS, ARF_RND_UP);
    arf_mul(err, err, convergence_factor, MAG_BITS, ARF_RND_UP);

    arf_set(arb_midref(t), arb_midref(x));
    mag_zero(arb_radref(t));

    _arb_poly_evaluate2(u, v, poly, len, t, prec);

    arb_div(u, u, v, prec);
    arb_sub(u, t, u, prec);

    arb_add_error_arf(u, err);

    if (arb_contains(convergence_interval, u) &&
        (mag_cmp(arb_radref(u), arb_radref(x)) < 0))
    {
        arb_swap(xnew, u);
        result = 1;
    }
    else
    {
        arb_set(xnew, x);
        result = 0;
    }

    arb_clear(t);
    arb_clear(u);
    arb_clear(v);
    arf_clear(err);

    return result;
}
Exemplo n.º 8
0
void
do_plus(longint_t *var1, longint_t *var2) {
	longint_t temp;
	if (var1->nega == var2->nega) {
		/* same signs, can just add */
		simple_plus(var1, var2);
	} else {
		/* different signs, need to get them right way round */
		temp = *var2;
		if (mag_cmp(var1, var2)>=0) {
			/* can process in this order */
			simple_suba(var1, &temp);
		} else {
			/* need to reverse the order */
			simple_suba(&temp, var1);
			*var1 = temp;
		}
	}
}
Exemplo n.º 9
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("rel_accuracy_bits....");
    fflush(stdout);

    flint_randinit(state);

    /* test aliasing of c and a */
    for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
    {
        arb_t x;
        acb_t z;
        slong a1, a2;

        arb_init(x);
        acb_init(z);

        arb_randtest_special(x, state, 1 + n_randint(state, 200), 1 + n_randint(state, 200));
        acb_set_arb(z, x);

        a1 = arb_rel_accuracy_bits(x);
        a2 = acb_rel_accuracy_bits(z);

        if (a1 != a2)
        {
            flint_printf("FAIL: acb != arb\n\n");
            flint_printf("x = "); arb_print(x); flint_printf("\n\n");
            flint_printf("z = "); acb_print(z); flint_printf("\n\n");
            flint_printf("a1 = %wd, a2 = %wd\n\n", a1, a2);
            abort();
        }

        acb_randtest_special(z, state, 1 + n_randint(state, 200), 1 + n_randint(state, 200));

        a1 = acb_rel_accuracy_bits(z);

        if (n_randint(state, 2))
            arf_swap(arb_midref(acb_realref(z)), arb_midref(acb_imagref(z)));

        if (n_randint(state, 2))
            mag_swap(arb_radref(acb_realref(z)), arb_radref(acb_imagref(z)));

        a2 = acb_rel_accuracy_bits(z);

        if (a1 != a2)
        {
            flint_printf("FAIL: swapping\n\n");
            flint_printf("z = "); acb_print(z); flint_printf("\n\n");
            flint_printf("a1 = %wd, a2 = %wd\n\n", a1, a2);
            abort();
        }

        acb_randtest_special(z, state, 1 + n_randint(state, 200), 1 + n_randint(state, 200));

        if (arf_cmpabs(arb_midref(acb_realref(z)), arb_midref(acb_imagref(z))) >= 0)
            arf_set(arb_midref(x), arb_midref(acb_realref(z)));
        else
            arf_set(arb_midref(x), arb_midref(acb_imagref(z)));

        if (mag_cmp(arb_radref(acb_realref(z)), arb_radref(acb_imagref(z))) >= 0)
            mag_set(arb_radref(x), arb_radref(acb_realref(z)));
        else
            mag_set(arb_radref(x), arb_radref(acb_imagref(z)));

        a1 = acb_rel_accuracy_bits(z);
        a2 = arb_rel_accuracy_bits(x);

        if (a1 != a2)
        {
            flint_printf("FAIL: acb != arb (2)\n\n");
            flint_printf("x = "); arb_print(x); flint_printf("\n\n");
            flint_printf("z = "); acb_print(z); flint_printf("\n\n");
            flint_printf("a1 = %wd, a2 = %wd\n\n", a1, a2);
            abort();
        }

        arb_clear(x);
        acb_clear(z);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Exemplo n.º 10
0
Arquivo: bound.c Projeto: isuruf/arb
slong
hypgeom_bound(mag_t error, int r,
    slong A, slong B, slong K, const mag_t TK, const mag_t z, slong tol_2exp)
{
    mag_t Tn, t, u, one, tol, num, den;
    slong n, m;

    mag_init(Tn);
    mag_init(t);
    mag_init(u);
    mag_init(one);
    mag_init(tol);
    mag_init(num);
    mag_init(den);

    mag_one(one);
    mag_set_ui_2exp_si(tol, UWORD(1), -tol_2exp);

    /* approximate number of needed terms */
    n = hypgeom_estimate_terms(z, r, tol_2exp);

    /* required for 1 + O(1/k) part to be decreasing */
    n = FLINT_MAX(n, K + 1);

    /* required for z^k / (k!)^r to be decreasing */
    m = hypgeom_root_bound(z, r);
    n = FLINT_MAX(n, m);

    /*  We now have |R(k)| <= G(k) where G(k) is monotonically decreasing,
        and can bound the tail using a geometric series as soon
        as soon as G(k) < 1. */

    /* bound T(n-1) */
    hypgeom_term_bound(Tn, TK, K, A, B, r, z, n-1);

    while (1)
    {
        /* bound R(n) */
        mag_mul_ui(num, z, n);
        mag_mul_ui(num, num, n - B);

        mag_set_ui_lower(den, n - A);
        mag_mul_ui_lower(den, den, n - 2*B);

        if (r != 0)
        {
            mag_set_ui_lower(u, n);
            mag_pow_ui_lower(u, u, r);
            mag_mul_lower(den, den, u);
        }

        mag_div(t, num, den);

        /* multiply bound for T(n-1) by bound for R(n) to bound T(n) */
        mag_mul(Tn, Tn, t);

        /* geometric series termination check */
        /* u = max(1-t, 0), rounding down [lower bound] */
        mag_sub_lower(u, one, t);

        if (!mag_is_zero(u))
        {
            mag_div(u, Tn, u);

            if (mag_cmp(u, tol) < 0)
            {
                mag_set(error, u);
                break;
            }
        }

        /* move on to next term */
        n++;
    }

    mag_clear(Tn);
    mag_clear(t);
    mag_clear(u);
    mag_clear(one);
    mag_clear(tol);
    mag_clear(num);
    mag_clear(den);

    return n;
}
Exemplo n.º 11
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("root_bound_fujiwara....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
    {
        arb_poly_t a;
        arb_ptr roots;
        arb_t t;
        mag_t mag1, mag2;
        slong i, deg, prec;

        prec = 10 + n_randint(state, 400);
        deg = n_randint(state, 10);

        arb_init(t);
        arb_poly_init(a);
        mag_init(mag1);
        mag_init(mag2);
        roots = _arb_vec_init(deg);

        for (i = 0; i < deg; i++)
            arb_randtest(roots + i, state, prec, 1 + n_randint(state, 20));

        arb_poly_product_roots(a, roots, deg, prec);
        arb_randtest(t, state, prec, 1 + n_randint(state, 20));
        arb_poly_scalar_mul(a, a, t, prec);

        arb_poly_root_bound_fujiwara(mag1, a);

        for (i = 0; i < deg; i++)
        {
            arb_get_mag(mag2, roots + i);

            /* arb_get_mag gives an upper bound which due to rounding
               could be larger than mag1, so we pick a slightly
               smaller number */
            mag_mul_ui(mag2, mag2, 10000);
            mag_div_ui(mag2, mag2, 10001);

            if (mag_cmp(mag2, mag1) > 0)
            {
                flint_printf("FAIL\n");
                flint_printf("a = "); arb_poly_printd(a, 15); flint_printf("\n\n");
                flint_printf("root = "); arb_printd(roots + i, 15); flint_printf("\n\n");
                flint_printf("mag1 = "); mag_printd(mag1, 10); flint_printf("\n\n");
                flint_printf("mag2 = "); mag_printd(mag2, 10); flint_printf("\n\n");
                abort();
            }
        }

        _arb_vec_clear(roots, deg);
        arb_clear(t);
        arb_poly_clear(a);
        mag_clear(mag1);
        mag_clear(mag2);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Exemplo n.º 12
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("frobenius_norm....");
    fflush(stdout);

    flint_randinit(state);

    /* compare to the exact rational norm */
    for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
    {
        fmpq_mat_t Q;
        fmpq_t q;
        arb_mat_t A;
        slong n, qbits, prec;

        n = n_randint(state, 8);
        qbits = 1 + n_randint(state, 100);
        prec = 2 + n_randint(state, 200);

        fmpq_mat_init(Q, n, n);
        fmpq_init(q);

        arb_mat_init(A, n, n);

        fmpq_mat_randtest(Q, state, qbits);
        _fmpq_mat_sum_of_squares(q, Q);

        arb_mat_set_fmpq_mat(A, Q, prec);

        /* check that the arb interval contains the exact value */
        {
            arb_t a;
            arb_init(a);

            arb_mat_frobenius_norm(a, A, prec);
            arb_mul(a, a, a, prec);

            if (!arb_contains_fmpq(a, q))
            {
                flint_printf("FAIL (containment, iter = %wd)\n", iter);
                flint_printf("n = %wd, prec = %wd\n", n, prec);
                flint_printf("\n");

                flint_printf("Q = \n");
                fmpq_mat_print(Q);
                flint_printf("\n\n");
                flint_printf("frobenius_norm(Q)^2 = \n");
                fmpq_print(q);
                flint_printf("\n\n");

                flint_printf("A = \n");
                arb_mat_printd(A, 15);
                flint_printf("\n\n");
                flint_printf("frobenius_norm(A)^2 = \n");
                arb_printd(a, 15);
                flint_printf("\n\n");
                flint_printf("frobenius_norm(A)^2 = \n");
                arb_print(a);
                flint_printf("\n\n");

                abort();
            }

            arb_clear(a);
        }

        /* check that the upper bound is not less than the exact value */
        {
            mag_t b;
            fmpq_t y;

            mag_init(b);
            fmpq_init(y);

            arb_mat_bound_frobenius_norm(b, A);
            mag_mul(b, b, b);
            mag_get_fmpq(y, b);

            if (fmpq_cmp(q, y) > 0)
            {
                flint_printf("FAIL (bound, iter = %wd)\n", iter);
                flint_printf("n = %wd, prec = %wd\n", n, prec);
                flint_printf("\n");

                flint_printf("Q = \n");
                fmpq_mat_print(Q);
                flint_printf("\n\n");
                flint_printf("frobenius_norm(Q)^2 = \n");
                fmpq_print(q);
                flint_printf("\n\n");

                flint_printf("A = \n");
                arb_mat_printd(A, 15);
                flint_printf("\n\n");
                flint_printf("bound_frobenius_norm(A)^2 = \n");
                mag_printd(b, 15);
                flint_printf("\n\n");
                flint_printf("bound_frobenius_norm(A)^2 = \n");
                mag_print(b);
                flint_printf("\n\n");

                abort();
            }

            mag_clear(b);
            fmpq_clear(y);
        }

        fmpq_mat_clear(Q);
        fmpq_clear(q);
        arb_mat_clear(A);
    }

    /* check trace(A^T A) = frobenius_norm(A)^2 */
    for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
    {
        slong m, n, prec;
        arb_mat_t A, AT, ATA;
        arb_t t;

        prec = 2 + n_randint(state, 200);

        m = n_randint(state, 10);
        n = n_randint(state, 10);

        arb_mat_init(A, m, n);
        arb_mat_init(AT, n, m);
        arb_mat_init(ATA, n, n);
        arb_init(t);

        arb_mat_randtest(A, state, 2 + n_randint(state, 100), 10);
        arb_mat_transpose(AT, A);
        arb_mat_mul(ATA, AT, A, prec);
        arb_mat_trace(t, ATA, prec);
        arb_sqrt(t, t, prec);

        /* check the norm bound */
        {
            mag_t low, frobenius;

            mag_init(low);
            arb_get_mag_lower(low, t);

            mag_init(frobenius);
            arb_mat_bound_frobenius_norm(frobenius, A);

            if (mag_cmp(low, frobenius) > 0)
            {
                flint_printf("FAIL (bound)\n", iter);
                flint_printf("m = %wd, n = %wd, prec = %wd\n", m, n, prec);
                flint_printf("\n");

                flint_printf("A = \n");
                arb_mat_printd(A, 15);
                flint_printf("\n\n");

                flint_printf("lower(sqrt(trace(A^T A))) = \n");
                mag_printd(low, 15);
                flint_printf("\n\n");

                flint_printf("bound_frobenius_norm(A) = \n");
                mag_printd(frobenius, 15);
                flint_printf("\n\n");

                abort();
            }

            mag_clear(low);
            mag_clear(frobenius);
        }

        /* check the norm interval */
        {
            arb_t frobenius;

            arb_init(frobenius);
            arb_mat_frobenius_norm(frobenius, A, prec);

            if (!arb_overlaps(t, frobenius))
            {
                flint_printf("FAIL (overlap)\n", iter);
                flint_printf("m = %wd, n = %wd, prec = %wd\n", m, n, prec);
                flint_printf("\n");

                flint_printf("A = \n");
                arb_mat_printd(A, 15);
                flint_printf("\n\n");

                flint_printf("sqrt(trace(A^T A)) = \n");
                arb_printd(t, 15);
                flint_printf("\n\n");

                flint_printf("frobenius_norm(A) = \n");
                arb_printd(frobenius, 15);
                flint_printf("\n\n");

                abort();
            }

            arb_clear(frobenius);
        }

        arb_mat_clear(A);
        arb_mat_clear(AT);
        arb_mat_clear(ATA);
        arb_clear(t);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Exemplo n.º 13
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("2f1_continuation....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
    {
        acb_t a, b, c, z1, z2, f1, f2, g1, g2, h1, h2, aa, bb, cc;
        mag_t d0, d1, dt;

        slong prec;
        int regularized, ebits;

        acb_init(a); acb_init(b); acb_init(c);
        acb_init(aa); acb_init(bb); acb_init(cc);
        acb_init(z1); acb_init(z2);
        acb_init(f1); acb_init(f2);
        acb_init(g1); acb_init(g2);
        acb_init(h1); acb_init(h2);
        mag_init(d0); mag_init(d1); mag_init(dt);

        prec = 2 + n_randint(state, 300);
        ebits = 10;
        regularized = n_randint(state, 2);

        acb_randtest_param(a, state, 1 + n_randint(state, 400), 1 + n_randint(state, ebits / 2));
        acb_randtest_param(b, state, 1 + n_randint(state, 400), 1 + n_randint(state, ebits / 2));
        acb_randtest_param(c, state, 1 + n_randint(state, 400), 1 + n_randint(state, ebits / 2));
        acb_randtest(h1, state, 1 + n_randint(state, 400), 1 + n_randint(state, ebits));
        acb_randtest(h2, state, 1 + n_randint(state, 400), 1 + n_randint(state, ebits));

        do {
            int left, upper, lower;

            acb_randtest_param(z1, state, 1 + n_randint(state, 400), 1 + n_randint(state, ebits));
            acb_randtest_param(z2, state, 1 + n_randint(state, 400), 1 + n_randint(state, ebits));

            /* we test both convergent and non-convergent cases, but
               try to be more efficient by generating more convergent cases */
            if (n_randint(state, 2))
            {
                acb_sub_ui(aa, z1, 1, prec);
                acb_get_mag(d0, z1);
                acb_get_mag(d1, aa);
                acb_get_mag(dt, z2);

                if (mag_cmp(dt, d0) >= 0 || mag_cmp(dt, d1) >= 0)
                    continue;
            }

            acb_add(z2, z1, z2, prec);

            /* for the test, don't cross the branch cut */
            acb_sub_ui(aa, z1, 1, prec);
            acb_sub_ui(bb, z2, 1, prec);

            left = arb_is_negative(acb_realref(aa)) && arb_is_negative(acb_realref(bb));
            upper = arb_is_positive(acb_imagref(aa)) && arb_is_positive(acb_imagref(bb));
            lower = arb_is_nonpositive(acb_imagref(aa)) && arb_is_nonpositive(acb_imagref(bb));

            if (left || upper || lower)
                break;
        } while (1);

        acb_add_ui(aa, a, 1, prec);
        acb_add_ui(bb, b, 1, prec);
        acb_add_ui(cc, c, 1, prec);

        acb_hypgeom_2f1(f1, a, b, c, z1, regularized, prec);
        acb_hypgeom_2f1(f2, aa, bb, cc, z1, regularized, prec);
        acb_mul(f2, f2, a, prec);
        acb_mul(f2, f2, b, prec);
        if (!regularized)
            acb_div(f2, f2, c, prec);

        acb_hypgeom_2f1_continuation(h1, h2, a, b, c, z1, z2, f1, f2, prec);

        if (acb_is_finite(h1) || acb_is_finite(h2))
        {
            acb_hypgeom_2f1(g1, a, b, c, z2, regularized, prec);
            acb_hypgeom_2f1(g2, aa, bb, cc, z2, regularized, prec);
            acb_mul(g2, g2, a, prec);
            acb_mul(g2, g2, b, prec);
            if (!regularized)
                acb_div(g2, g2, c, prec);

            if (!acb_overlaps(g1, h1) || !acb_overlaps(g2, h2))
            {
                flint_printf("FAIL: consistency\n\n");
                flint_printf("regularized = %d, prec = %wd\n\n", regularized, prec);
                flint_printf("a = "); acb_printd(a, 30); flint_printf("\n\n");
                flint_printf("b = "); acb_printd(b, 30); flint_printf("\n\n");
                flint_printf("c = "); acb_printd(c, 30); flint_printf("\n\n");
                flint_printf("z1 = "); acb_printd(z1, 30); flint_printf("\n\n");
                flint_printf("z2 = "); acb_printd(z2, 30); flint_printf("\n\n");
                flint_printf("F(a,b,c,z1) and F'(a,b,c,z1):\n");
                flint_printf("f1 = "); acb_printd(f1, 30); flint_printf("\n\n");
                flint_printf("f2 = "); acb_printd(f2, 30); flint_printf("\n\n");
                flint_printf("F(a,b,c,z2) and F'(a,b,c,z2):\n");
                flint_printf("g1 = "); acb_printd(g1, 30); flint_printf("\n\n");
                flint_printf("g2 = "); acb_printd(g2, 30); flint_printf("\n\n");
                flint_printf("Computed F and F':\n");
                flint_printf("h1 = "); acb_printd(h1, 30); flint_printf("\n\n");
                flint_printf("h2 = "); acb_printd(h2, 30); flint_printf("\n\n");
                flint_abort();
            }
        }

        acb_clear(a); acb_clear(b); acb_clear(c);
        acb_clear(aa); acb_clear(bb); acb_clear(cc);
        acb_clear(z1); acb_clear(z2);
        acb_clear(f1); acb_clear(f2);
        acb_clear(g1); acb_clear(g2);
        acb_clear(h1); acb_clear(h2);
        mag_clear(d0); mag_clear(d1); mag_clear(dt);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Exemplo n.º 14
0
/* computes the factors that are independent of n (all are upper bounds) */
void
acb_hypgeom_u_asymp_bound_factors(int * R, mag_t alpha,
    mag_t nu, mag_t sigma, mag_t rho, mag_t zinv,
    const acb_t a, const acb_t b, const acb_t z)
{
    mag_t r, u, zre, zim, zlo, sigma_prime;
    acb_t t;

    mag_init(r);
    mag_init(u);
    mag_init(zre);
    mag_init(zim);
    mag_init(zlo);
    mag_init(sigma_prime);
    acb_init(t);

    /* lower bounds for |re(z)|, |im(z)|, |z| */
    arb_get_mag_lower(zre, acb_realref(z));
    arb_get_mag_lower(zim, acb_imagref(z));
    acb_get_mag_lower(zlo, z); /* todo: hypot */

    /* upper bound for 1/|z| */
    mag_one(u);
    mag_div(zinv, u, zlo);

    /* upper bound for r = |b - 2a| */
    acb_mul_2exp_si(t, a, 1);
    acb_sub(t, b, t, MAG_BITS);
    acb_get_mag(r, t);

    /* determine region */
    *R = 0;

    if (mag_cmp(zlo, r) >= 0)
    {
        int znonneg = arb_is_nonnegative(acb_realref(z));

        if (znonneg && mag_cmp(zre, r) >= 0)
        {
            *R = 1;
        }
        else if (mag_cmp(zim, r) >= 0 || znonneg)
        {
            *R = 2;
        }
        else
        {
            mag_mul_2exp_si(u, r, 1);
            if (mag_cmp(zlo, u) >= 0)
                *R = 3;
        }
    }

    if (R == 0)
    {
        mag_inf(alpha);
        mag_inf(nu);
        mag_inf(sigma);
        mag_inf(rho);
    }
    else
    {
        /* sigma = |(b-2a)/z| */
        mag_mul(sigma, r, zinv);

        /* nu = (1/2 + 1/2 sqrt(1-4 sigma^2))^(-1/2) <= 1 + 2 sigma^2 */
        if (mag_cmp_2exp_si(sigma, -1) <= 0)
        {
            mag_mul(nu, sigma, sigma);
            mag_mul_2exp_si(nu, nu, 1);
            mag_one(u);
            mag_add(nu, nu, u);
        }
        else
        {
            mag_inf(nu);
        }

        /* modified sigma for alpha, beta, rho when in R3 */
        if (*R == 3)
            mag_mul(sigma_prime, sigma, nu);
        else
            mag_set(sigma_prime, sigma);

        /* alpha = 1/(1-sigma') */
        mag_one(alpha);
        mag_sub_lower(alpha, alpha, sigma_prime);
        mag_one(u);
        mag_div(alpha, u, alpha);

        /* rho = |2a^2-2ab+b|/2 + sigma'*(1+sigma'/4)/(1-sigma')^2 */
        mag_mul_2exp_si(rho, sigma_prime, -2);
        mag_one(u);
        mag_add(rho, rho, u);
        mag_mul(rho, rho, sigma_prime);
        mag_mul(rho, rho, alpha);
        mag_mul(rho, rho, alpha);
        acb_sub(t, a, b, MAG_BITS);
        acb_mul(t, t, a, MAG_BITS);
        acb_mul_2exp_si(t, t, 1);
        acb_add(t, t, b, MAG_BITS);
        acb_get_mag(u, t);
        mag_mul_2exp_si(u, u, -1);
        mag_add(rho, rho, u);
    }

    mag_clear(r);
    mag_clear(u);
    mag_clear(zre);
    mag_clear(zim);
    mag_clear(zlo);
    mag_clear(sigma_prime);
    acb_clear(t);
}
Exemplo n.º 15
0
void
acb_hypgeom_2f1_continuation(acb_t res, acb_t res1,
    const acb_t a, const acb_t b, const acb_t c, const acb_t y,
    const acb_t z, const acb_t f0, const acb_t f1, long prec)
{
    mag_t A, nu, N, w, err, err1, R, T, goal;
    acb_t x;
    long j, k;

    mag_init(A);
    mag_init(nu);
    mag_init(N);
    mag_init(err);
    mag_init(err1);
    mag_init(w);
    mag_init(R);
    mag_init(T);
    mag_init(goal);
    acb_init(x);

    bound(A, nu, N, a, b, c, y, f0, f1);

    acb_sub(x, z, y, prec);

    /* |T(k)| <= A * binomial(N+k, k) * nu^k * |x|^k */
    acb_get_mag(w, x);
    mag_mul(w, w, nu); /* w = nu |x| */
    mag_mul_2exp_si(goal, A, -prec-2);

    /* bound for T(0) */
    mag_set(T, A);
    mag_inf(R);

    for (k = 1; k < 100 * prec; k++)
    {
        /* T(k) = T(k) * R(k), R(k) = (N+k)/k * w = (1 + N/k) w */
        mag_div_ui(R, N, k);
        mag_add_ui(R, R, 1);
        mag_mul(R, R, w);

        /* T(k) */
        mag_mul(T, T, R);

        if (mag_cmp(T, goal) <= 0 && mag_cmp_2exp_si(R, 0) < 0)
            break;
    }

    /* T(k) [1 + R + R^2 + R^3 + ...] */
    mag_geom_series(err, R, 0);
    mag_mul(err, T, err);

    /* Now compute T, R for the derivative */
    /* Coefficients are A * (k+1) * binomial(N+k+1, k+1) */
    mag_add_ui(T, N, 1);
    mag_mul(T, T, A);
    mag_inf(R);

    for (j = 1; j <= k; j++)
    {
        mag_add_ui(R, N, k + 1);
        mag_div_ui(R, R, k);
        mag_mul(R, R, w);
        mag_mul(T, T, R);
    }

    mag_geom_series(err1, R, 0);
    mag_mul(err1, T, err1);

    if (mag_is_inf(err))
    {
        acb_indeterminate(res);
        acb_indeterminate(res1);
    }
    else
    {
        evaluate_sum(res, res1, a, b, c, y, x, f0, f1, k, prec);

        acb_add_error_mag(res, err);
        acb_add_error_mag(res1, err1);
    }

    mag_clear(A);
    mag_clear(nu);
    mag_clear(N);
    mag_clear(err);
    mag_clear(err1);
    mag_clear(w);
    mag_clear(R);
    mag_clear(T);
    mag_clear(goal);
    acb_clear(x);
}