Exemplo n.º 1
0
void
mag_geom_series(mag_t res, const mag_t x, ulong n)
{
    if (mag_is_zero(x))
    {
        if (n == 0)
            mag_one(res);
        else
            mag_zero(res);
    }
    else if (mag_is_inf(x))
    {
        mag_inf(res);
    }
    else
    {
        mag_t t;
        mag_init(t);
        mag_one(t);
        mag_sub_lower(t, t, x);

        if (mag_is_zero(t))
        {
            mag_inf(res);
        }
        else
        {
            mag_pow_ui(res, x, n);
            mag_div(res, res, t);
        }

        mag_clear(t);
    }
}
Exemplo n.º 2
0
/* bound (1 + 1/m)^n, m > 0, n >= 0 */
void
mag_binpow_uiui(mag_t b, ulong m, ulong n)
{
    mag_t t;

    if (m == 0)
    {
        mag_inf(b);
        return;
    }

    mag_init(t);

    /* bound by exp(n/m) <= 1 + (n/m) + (n/m)^2 */
    if (m > n)
    {
        mag_set_ui(t, n);   /* x = n/m */
        mag_div_ui(t, t, m);

        mag_mul(b, t, t);   /* x^2 */
        mag_add(b, b, t);   /* x */
        mag_one(t);
        mag_add(b, b, t);   /* 1 */
    }
    else
    {
        mag_one(b);
        mag_div_ui(b, b, m);
        mag_one(t);
        mag_add(t, t, b);
        mag_pow_ui(b, t, n);
    }

    mag_clear(t);
}
Exemplo n.º 3
0
void
mag_log_ui(mag_t t, ulong n)
{
    if (n <= 1)
    {
        if (n == 1)
            mag_zero(t);
        else
            mag_inf(t);
    }
    else
    {
        mag_set_ui(t, n-1);
        mag_log1p(t, t);
    }
}
Exemplo n.º 4
0
Arquivo: div.c Projeto: bluescarni/arb
void
arb_div(arb_t z, const arb_t x, const arb_t y, long prec)
{
    mag_t zr, xm, ym, yl, yw;
    int inexact;

    if (arb_is_exact(y))
    {
        arb_div_arf(z, x, arb_midref(y), prec);
    }
    else if (mag_is_inf(arb_radref(x)) || mag_is_inf(arb_radref(y)))
    {
        arf_div(arb_midref(z), arb_midref(x), arb_midref(y), prec, ARB_RND);
        mag_inf(arb_radref(z));
    }
    else
    {
        mag_init_set_arf(xm, arb_midref(x));
        mag_init_set_arf(ym, arb_midref(y));
        mag_init(zr);
        mag_init(yl);
        mag_init(yw);

        /* (|x|*yrad + |y|*xrad)/(y*(|y|-yrad)) */
        mag_mul(zr, xm, arb_radref(y));
        mag_addmul(zr, ym, arb_radref(x));
        arb_get_mag_lower(yw, y);

        arf_get_mag_lower(yl, arb_midref(y));
        mag_mul_lower(yl, yl, yw);

        mag_div(zr, zr, yl);

        inexact = arf_div(arb_midref(z), arb_midref(x), arb_midref(y), prec, ARB_RND);

        if (inexact)
            arf_mag_add_ulp(arb_radref(z), zr, arb_midref(z), prec);
        else
            mag_swap(arb_radref(z), zr);

        mag_clear(xm);
        mag_clear(ym);
        mag_clear(zr);
        mag_clear(yl);
        mag_clear(yw);
    }
}
Exemplo n.º 5
0
void
mag_root(mag_t y, const mag_t x, ulong n)
{
    if (n == 0)
    {
        mag_inf(y);
    }
    else if (n == 1 || mag_is_special(x))
    {
        mag_set(y, x);
    }
    else if (n == 2)
    {
        mag_sqrt(y, x);
    }
    else if (n == 4)
    {
        mag_sqrt(y, x);
        mag_sqrt(y, y);
    }
    else
    {
        fmpz_t e, f;

        fmpz_init_set_ui(e, MAG_BITS);
        fmpz_init(f);

        /* We evaluate exp(log(1+2^(kn)x)/n) 2^-k where k is chosen
           so that 2^(kn) x ~= 2^30. TODO: this rewriting is probably
           unnecessary with the new exp/log functions. */
        fmpz_sub(e, e, MAG_EXPREF(x));
        fmpz_cdiv_q_ui(e, e, n);
        fmpz_mul_ui(f, e, n);
        mag_mul_2exp_fmpz(y, x, f);
        mag_log1p(y, y);
        mag_div_ui(y, y, n);
        mag_exp(y, y);
        fmpz_neg(e, e);
        mag_mul_2exp_fmpz(y, y, e);

        fmpz_clear(e);
        fmpz_clear(f);
    }
}
Exemplo n.º 6
0
Arquivo: div.c Projeto: bluescarni/arb
void
arb_div_arf(arb_t z, const arb_t x, const arf_t y, long prec)
{
    mag_t zr, ym;
    int inexact;

    if (arf_is_zero(y))
    {
        arb_zero_pm_inf(z);
    }
    else if (arb_is_exact(x))
    {
        inexact = arf_div(arb_midref(z), arb_midref(x), y, prec, ARB_RND);

        if (inexact)
            arf_mag_set_ulp(arb_radref(z), arb_midref(z), prec);
        else
            mag_zero(arb_radref(z));
    }
    else if (mag_is_inf(arb_radref(x)))
    {
        arf_div(arb_midref(z), arb_midref(x), y, prec, ARB_RND);
        mag_inf(arb_radref(z));
    }
    else
    {
        mag_init(ym);
        mag_init(zr);

        arf_get_mag_lower(ym, y);
        mag_div(zr, arb_radref(x), ym);

        inexact = arf_div(arb_midref(z), arb_midref(x), y, prec, ARB_RND);

        if (inexact)
            arf_mag_add_ulp(arb_radref(z), zr, arb_midref(z), prec);
        else
            mag_swap(arb_radref(z), zr);

        mag_clear(ym);
        mag_clear(zr);
    }
}
Exemplo n.º 7
0
void
mag_set_d_lower(mag_t z, double c)
{
    if (c < 0.0)
        c = -c;

    if (c == 0.0 || (c != c))
    {
        mag_zero(z);
    }
    else if (c == D_INF)
    {
        mag_inf(z);
    }
    else
    {
        _fmpz_demote(MAG_EXPREF(z));
        MAG_SET_D_2EXP_LOWER(MAG_MAN(z), MAG_EXP(z), c, 0);
    }
}
Exemplo n.º 8
0
Arquivo: log.c Projeto: isuruf/arb
void
arb_log(arb_t y, const arb_t x, slong prec)
{
    if (arb_is_exact(x))
    {
        arb_log_arf(y, arb_midref(x), prec);
    }
    else
    {
        /*
        Let the input be [a-b, a+b]. We require a > b >= 0 (otherwise the
        interval contains zero or a negative number and the logarithm is not
        defined). The error is largest at a-b, and we have

        log(a) - log(a-b) = log(1 + b/(a-b)).
        */
        mag_t err;
        mag_init(err);

        arb_get_mag_lower_nonnegative(err, x);

        if (mag_is_zero(err))
        {
            mag_inf(err);
        }
        else
        {
            mag_div(err, arb_radref(x), err);
            mag_log1p(err, err);
        }

        arb_log_arf(y, arb_midref(x), prec);

        mag_add(arb_radref(y), arb_radref(y), err);
        mag_clear(err);
    }
}
Exemplo n.º 9
0
void
mag_pow_ui_lower(mag_t z, const mag_t x, ulong e)
{
    if (e <= 2)
    {
        if (e == 0)
            mag_one(z);
        else if (e == 1)
            mag_set(z, x);
        else
            mag_mul_lower(z, x, x);
    }
    else if (mag_is_inf(x))
    {
        mag_inf(z);
    }
    else
    {
        mag_t y;
        int i, bits;

        mag_init_set(y, x);

        bits = FLINT_BIT_COUNT(e);

        for (i = bits - 2; i >= 0; i--)
        {
            mag_mul_lower(y, y, y);
            if (e & (1UL << i))
                mag_mul_lower(y, y, x);
        }

        mag_swap(z, y);
        mag_clear(y);
    }
}
Exemplo n.º 10
0
void
mag_polylog_tail(mag_t u, const mag_t z, long sigma, ulong d, ulong N)
{
    mag_t TN, UN, t;

    if (N < 2)
    {
        mag_inf(u);
        return;
    }

    mag_init(TN);
    mag_init(UN);
    mag_init(t);

    if (mag_cmp_2exp_si(z, 0) >= 0)
    {
        mag_inf(u);
    }
    else
    {
        /* Bound T(N) */
        mag_pow_ui(TN, z, N);

        /* multiply by log(N)^d */
        if (d > 0)
        {
            mag_log_ui(t, N);
            mag_pow_ui(t, t, d);
            mag_mul(TN, TN, t);
        }

        /* multiply by 1/k^s */
        if (sigma > 0)
        {
            mag_set_ui_lower(t, N);
            mag_pow_ui_lower(t, t, sigma);
            mag_div(TN, TN, t);
        }
        else if (sigma < 0)
        {
            mag_set_ui(t, N);
            mag_pow_ui(t, t, -sigma);
            mag_mul(TN, TN, t);
        }

        /* Bound U(N) */
        mag_set(UN, z);

        /* multiply by (1 + 1/N)**S */
        if (sigma < 0)
        {
            mag_binpow_uiui(t, N, -sigma);
            mag_mul(UN, UN, t);
        }

        /* multiply by (1 + 1/(N log(N)))^d */
        if (d > 0)
        {
            ulong nl;

            /* rounds down */
            nl = mag_d_log_lower_bound(N) * N * (1 - 1e-13);

            mag_binpow_uiui(t, nl, d);
            mag_mul(UN, UN, t);
        }

        /* T(N) / (1 - U(N)) */
        if (mag_cmp_2exp_si(UN, 0) >= 0)
        {
            mag_inf(u);
        }
        else
        {
            mag_one(t);
            mag_sub_lower(t, t, UN);
            mag_div(u, TN, t);
        }
    }

    mag_clear(TN);
    mag_clear(UN);
    mag_clear(t);
}
Exemplo n.º 11
0
void
acb_modular_theta_const_sum(acb_t theta2, acb_t theta3, acb_t theta4,
    const acb_t q, long prec)
{
    mag_t qmag, err;
    double log2q_approx;
    int is_real, is_real_or_imag;
    long N;

    mag_init(qmag);
    mag_init(err);

    acb_get_mag(qmag, q);
    log2q_approx = mag_get_log2_d_approx(qmag);

    is_real = arb_is_zero(acb_imagref(q));
    is_real_or_imag = is_real || arb_is_zero(acb_realref(q));

    if (log2q_approx >= 0.0)
    {
        N = 1;
        mag_inf(err);
    }
    else
    {
        N = 0;

        while (0.05 * N * N < prec)
        {
            if (log2q_approx * ((N+2)*(N+2)/4) < -prec - 2)
                break;
            N++;
        }
        N = (N+2)*(N+2)/4;

        mag_geom_series(err, qmag, N);
        mag_mul_2exp_si(err, err, 1); /* each term is taken twice */

        if (mag_is_inf(err))
            N = 1;
    }

    if (N < 1800)
        acb_modular_theta_const_sum_basecase(theta2, theta3, theta4, q, N, prec);
    else
        acb_modular_theta_const_sum_rs(theta2, theta3, theta4, q, N, prec);

    if (is_real_or_imag)
        arb_add_error_mag(acb_realref(theta2), err);
    else
        acb_add_error_mag(theta2, err);

    if (is_real)
    {
        arb_add_error_mag(acb_realref(theta3), err);
        arb_add_error_mag(acb_realref(theta4), err);
    }
    else
    {
        acb_add_error_mag(theta3, err);
        acb_add_error_mag(theta4, err);
    }

    mag_clear(qmag);
    mag_clear(err);
}
Exemplo n.º 12
0
void
_arb_bell_sum_taylor(arb_t res, const fmpz_t n,
        const fmpz_t a, const fmpz_t b, const fmpz_t mmag, long tol)
{
    fmpz_t m, r, R, tmp;
    mag_t B, C, D, bound;
    arb_t t, u;
    long wp, k, N;

    if (_fmpz_sub_small(b, a) < 5)
    {
        arb_bell_sum_bsplit(res, n, a, b, mmag, tol);
        return;
    }

    fmpz_init(m);
    fmpz_init(r);
    fmpz_init(R);
    fmpz_init(tmp);

    /* r = max(m - a, b - m) */
    /* m = a + (b - a) / 2 */
    fmpz_sub(r, b, a);
    fmpz_cdiv_q_2exp(r, r, 1);
    fmpz_add(m, a, r);

    fmpz_mul_2exp(R, r, RADIUS_BITS);

    mag_init(B);
    mag_init(C);
    mag_init(D);
    mag_init(bound);

    arb_init(t);
    arb_init(u);

    if (fmpz_cmp(R, m) >= 0)
    {
        mag_inf(C);
        mag_inf(D);
    }
    else
    {
        /* C = exp(R * |F'(m)| + (1/2) R^2 * (n/(m-R)^2 + 1/(m-R))) */
        /* C = exp(R * (|F'(m)| + (1/2) R * (n/(m-R) + 1)/(m-R))) */
        /* D = (1/2) R * (n/(m-R) + 1)/(m-R) */
        fmpz_sub(tmp, m, R);
        mag_set_fmpz(D, n);
        mag_div_fmpz(D, D, tmp);
        mag_one(C);
        mag_add(D, D, C);
        mag_div_fmpz(D, D, tmp);
        mag_mul_fmpz(D, D, R);
        mag_mul_2exp_si(D, D, -1);

        /* C = |F'(m)| */
        wp = 20 + 1.05 * fmpz_bits(n);
        arb_set_fmpz(t, n);
        arb_div_fmpz(t, t, m, wp);
        fmpz_add_ui(tmp, m, 1);
        arb_set_fmpz(u, tmp);
        arb_digamma(u, u, wp);
        arb_sub(t, t, u, wp);
        arb_get_mag(C, t);

        /* C = exp(R * (C + D)) */
        mag_add(C, C, D);
        mag_mul_fmpz(C, C, R);
        mag_exp(C, C);
    }

    if (mag_cmp_2exp_si(C, tol / 4 + 2) > 0)
    {
        _arb_bell_sum_taylor(res, n, a, m, mmag, tol);
        _arb_bell_sum_taylor(t, n, m, b, mmag, tol);
        arb_add(res, res, t, 2 * tol);
    }
    else
    {
        arb_ptr mx, ser1, ser2, ser3;

        /* D = T(m) */
        wp = 20 + 1.05 * fmpz_bits(n);
        arb_set_fmpz(t, m);
        arb_pow_fmpz(t, t, n, wp);
        fmpz_add_ui(tmp, m, 1);
        arb_gamma_fmpz(u, tmp, wp);
        arb_div(t, t, u, wp);
        arb_get_mag(D, t);

        /* error bound: (b-a) * C * D * B^N / (1 - B), B = r/R */
        /*              ((b-a) * C * D * 2) * 2^(-N*RADIUS_BITS) */

        /* ((b-a) * C * D * 2) */
        mag_mul(bound, C, D);
        mag_mul_2exp_si(bound, bound, 1);
        fmpz_sub(tmp, b, a);
        mag_mul_fmpz(bound, bound, tmp);

        /* N = (tol + log2((b-a)*C*D*2) - mmag) / RADIUS_BITS */
        if (mmag == NULL)
        {
            /* estimate D ~= 2^mmag */
            fmpz_add_ui(tmp, MAG_EXPREF(C), tol);
            fmpz_cdiv_q_ui(tmp, tmp, RADIUS_BITS);
        }
        else
        {
            fmpz_sub(tmp, MAG_EXPREF(bound), mmag);
            fmpz_add_ui(tmp, tmp, tol);
            fmpz_cdiv_q_ui(tmp, tmp, RADIUS_BITS);
        }

        if (fmpz_cmp_ui(tmp, 5 * tol / 4) > 0)
            N = 5 * tol / 4;
        else if (fmpz_cmp_ui(tmp, 2) < 0)
            N = 2;
        else
            N = fmpz_get_ui(tmp);

        /* multiply by 2^(-N*RADIUS_BITS) */
        mag_mul_2exp_si(bound, bound, -N * RADIUS_BITS);

        mx = _arb_vec_init(2);
        ser1 = _arb_vec_init(N);
        ser2 = _arb_vec_init(N);
        ser3 = _arb_vec_init(N);

        /* estimate (this should work for moderate n and tol) */
        wp = 1.1 * tol + 1.05 * fmpz_bits(n) + 5;

        /* increase precision until convergence */
        while (1)
        {
            /* (m+x)^n / gamma(m+1+x) */
            arb_set_fmpz(mx, m);
            arb_one(mx + 1);
            _arb_poly_log_series(ser1, mx, 2, N, wp);
            for (k = 0; k < N; k++)
                arb_mul_fmpz(ser1 + k, ser1 + k, n, wp);
            arb_add_ui(mx, mx, 1, wp);
            _arb_poly_lgamma_series(ser2, mx, 2, N, wp);
            _arb_vec_sub(ser1, ser1, ser2, N, wp);
            _arb_poly_exp_series(ser3, ser1, N, N, wp);

            /* t = a - m, u = b - m */
            arb_set_fmpz(t, a);
            arb_sub_fmpz(t, t, m, wp);
            arb_set_fmpz(u, b);
            arb_sub_fmpz(u, u, m, wp);
            arb_power_sum_vec(ser1, t, u, N, wp);

            arb_zero(res);
            for (k = 0; k < N; k++)
                arb_addmul(res, ser3 + k, ser1 + k, wp);

            if (mmag != NULL)
            {
                if (_fmpz_sub_small(MAG_EXPREF(arb_radref(res)), mmag) <= -tol)
                    break;
            }
            else
            {
                if (arb_rel_accuracy_bits(res) >= tol)
                    break;
            }

            wp = 2 * wp;
        }

        /* add the series truncation bound */
        arb_add_error_mag(res, bound);

        _arb_vec_clear(mx, 2);
        _arb_vec_clear(ser1, N);
        _arb_vec_clear(ser2, N);
        _arb_vec_clear(ser3, N);
    }

    mag_clear(B);
    mag_clear(C);
    mag_clear(D);
    mag_clear(bound);
    arb_clear(t);
    arb_clear(u);

    fmpz_clear(m);
    fmpz_clear(r);
    fmpz_clear(R);
    fmpz_clear(tmp);
}
Exemplo n.º 13
0
/* note: z should be exact here */
void acb_lambertw_main(acb_t res, const acb_t z,
                const acb_t ez1, const fmpz_t k, int flags, slong prec)
{
    acb_t w, t, oldw, ew;
    mag_t err;
    slong i, wp, accuracy, ebits, kbits, mbits, wp_initial, extraprec;
    int have_ew;

    acb_init(t);
    acb_init(w);
    acb_init(oldw);
    acb_init(ew);
    mag_init(err);

    /* We need higher precision for large k, large exponents, or very close
       to the branch point at -1/e. todo: we should be recomputing
       ez1 to higher precision when close... */
    acb_get_mag(err, z);
    if (fmpz_is_zero(k) && mag_cmp_2exp_si(err, 0) < 0)
        ebits = 0;
    else
        ebits = fmpz_bits(MAG_EXPREF(err));

    if (fmpz_is_zero(k) || (fmpz_is_one(k) && arb_is_negative(acb_imagref(z)))
                        || (fmpz_equal_si(k, -1) && arb_is_nonnegative(acb_imagref(z))))
    {
        acb_get_mag(err, ez1);
        mbits = -MAG_EXP(err);
        mbits = FLINT_MAX(mbits, 0);
        mbits = FLINT_MIN(mbits, prec);
    }
    else
    {
        mbits = 0;
    }

    kbits = fmpz_bits(k);

    extraprec = FLINT_MAX(ebits, kbits);
    extraprec = FLINT_MAX(extraprec, mbits);

    wp = wp_initial = 40 + extraprec;

    accuracy = acb_lambertw_initial(w, z, ez1, k, wp_initial);
    mag_zero(arb_radref(acb_realref(w)));
    mag_zero(arb_radref(acb_imagref(w)));

    /* We should be able to compute e^w for the final certification
       during the Halley iteration. */
    have_ew = 0;

    for (i = 0; i < 5 + FLINT_BIT_COUNT(prec + extraprec); i++)
    {
        /* todo: should we restart? */
        if (!acb_is_finite(w))
            break;

        wp = FLINT_MIN(3 * accuracy, 1.1 * prec + 10);
        wp = FLINT_MAX(wp, 40);
        wp += extraprec;

        acb_set(oldw, w);
        acb_lambertw_halley_step(t, ew, z, w, wp);

        /* estimate the error (conservatively) */
        acb_sub(w, w, t, wp);
        acb_get_mag(err, w);
        acb_set(w, t);
        acb_add_error_mag(t, err);
        accuracy = acb_rel_accuracy_bits(t);

        if (accuracy > 2 * extraprec)
            accuracy *= 2.9;  /* less conservatively */

        accuracy = FLINT_MIN(accuracy, wp);
        accuracy = FLINT_MAX(accuracy, 0);

        if (accuracy > prec + extraprec)
        {
            /* e^w = e^oldw * e^(w-oldw) */
            acb_sub(t, w, oldw, wp);
            acb_exp(t, t, wp);
            acb_mul(ew, ew, t, wp);
            have_ew = 1;
            break;
        }

        mag_zero(arb_radref(acb_realref(w)));
        mag_zero(arb_radref(acb_imagref(w)));
    }

    wp = FLINT_MIN(3 * accuracy, 1.1 * prec + 10);
    wp = FLINT_MAX(wp, 40);
    wp += extraprec;

    if (acb_lambertw_check_branch(w, k, wp))
    {
        acb_t u, r, eu1;
        mag_t err, rad;

        acb_init(u);
        acb_init(r);
        acb_init(eu1);

        mag_init(err);
        mag_init(rad);

        if (have_ew)
            acb_set(t, ew);
        else
            acb_exp(t, w, wp);
        /* t = w e^w */
        acb_mul(t, t, w, wp);

        acb_sub(r, t, z, wp);

        /* Bound W' on the straight line path between t and z */
        acb_union(u, t, z, wp);

        arb_const_e(acb_realref(eu1), wp);
        arb_zero(acb_imagref(eu1));
        acb_mul(eu1, eu1, u, wp);
        acb_add_ui(eu1, eu1, 1, wp);

        if (acb_lambertw_branch_crossing(u, eu1, k))
        {
            mag_inf(err);
        }
        else
        {
            acb_lambertw_bound_deriv(err, u, eu1, k);
            acb_get_mag(rad, r);
            mag_mul(err, err, rad);
        }

        acb_add_error_mag(w, err);

        acb_set(res, w);

        acb_clear(u);
        acb_clear(r);
        acb_clear(eu1);
        mag_clear(err);
        mag_clear(rad);
    }
    else
    {
        acb_indeterminate(res);
    }

    acb_clear(t);
    acb_clear(w);
    acb_clear(oldw);
    acb_clear(ew);
    mag_clear(err);
}
Exemplo n.º 14
0
void
mag_log1p(mag_t z, const mag_t x)
{
    if (mag_is_special(x))
    {
        if (mag_is_zero(x))
            mag_zero(z);
        else
            mag_inf(z);
    }
    else
    {
        fmpz exp = MAG_EXP(x);

        if (!COEFF_IS_MPZ(exp))
        {
            /* Quick bound by x */
            if (exp < -10)
            {
                mag_set(z, x);
                return;
            }
            else if (exp < 1000)
            {
                double t;
                t = ldexp(MAG_MAN(x), exp - MAG_BITS);
                t = (1.0 + t) * (1 + 1e-14);
                t = mag_d_log_upper_bound(t);
                mag_set_d(z, t);
                return;
            }
        }
        else if (fmpz_sgn(MAG_EXPREF(x)) < 0)
        {
            /* Quick bound by x */
            mag_set(z, x);
            return;
        }

        /* Now we must have x >= 2^1000 */
        /* Use log(2^(exp-1) * (2*v)) = exp*log(2) + log(2*v) */
        {
            double t;
            fmpz_t b;
            mag_t u;

            mag_init(u);
            fmpz_init(b);

            /* incrementing the mantissa gives an upper bound for x+1 */
            t = ldexp(MAG_MAN(x) + 1, 1 - MAG_BITS);
            t = mag_d_log_upper_bound(t);
            mag_set_d(u, t);

            /* log(2) < 744261118/2^30 */
            _fmpz_add_fast(b, MAG_EXPREF(x), -1);
            fmpz_mul_ui(b, b, 744261118);
            mag_set_fmpz(z, b);
            _fmpz_add_fast(MAG_EXPREF(z), MAG_EXPREF(z), -30);

            mag_add(z, z, u);

            mag_clear(u);
            fmpz_clear(b);
        }
    }
}
Exemplo n.º 15
0
void
acb_hypgeom_2f1_continuation(acb_t res, acb_t res1,
    const acb_t a, const acb_t b, const acb_t c, const acb_t y,
    const acb_t z, const acb_t f0, const acb_t f1, long prec)
{
    mag_t A, nu, N, w, err, err1, R, T, goal;
    acb_t x;
    long j, k;

    mag_init(A);
    mag_init(nu);
    mag_init(N);
    mag_init(err);
    mag_init(err1);
    mag_init(w);
    mag_init(R);
    mag_init(T);
    mag_init(goal);
    acb_init(x);

    bound(A, nu, N, a, b, c, y, f0, f1);

    acb_sub(x, z, y, prec);

    /* |T(k)| <= A * binomial(N+k, k) * nu^k * |x|^k */
    acb_get_mag(w, x);
    mag_mul(w, w, nu); /* w = nu |x| */
    mag_mul_2exp_si(goal, A, -prec-2);

    /* bound for T(0) */
    mag_set(T, A);
    mag_inf(R);

    for (k = 1; k < 100 * prec; k++)
    {
        /* T(k) = T(k) * R(k), R(k) = (N+k)/k * w = (1 + N/k) w */
        mag_div_ui(R, N, k);
        mag_add_ui(R, R, 1);
        mag_mul(R, R, w);

        /* T(k) */
        mag_mul(T, T, R);

        if (mag_cmp(T, goal) <= 0 && mag_cmp_2exp_si(R, 0) < 0)
            break;
    }

    /* T(k) [1 + R + R^2 + R^3 + ...] */
    mag_geom_series(err, R, 0);
    mag_mul(err, T, err);

    /* Now compute T, R for the derivative */
    /* Coefficients are A * (k+1) * binomial(N+k+1, k+1) */
    mag_add_ui(T, N, 1);
    mag_mul(T, T, A);
    mag_inf(R);

    for (j = 1; j <= k; j++)
    {
        mag_add_ui(R, N, k + 1);
        mag_div_ui(R, R, k);
        mag_mul(R, R, w);
        mag_mul(T, T, R);
    }

    mag_geom_series(err1, R, 0);
    mag_mul(err1, T, err1);

    if (mag_is_inf(err))
    {
        acb_indeterminate(res);
        acb_indeterminate(res1);
    }
    else
    {
        evaluate_sum(res, res1, a, b, c, y, x, f0, f1, k, prec);

        acb_add_error_mag(res, err);
        acb_add_error_mag(res1, err1);
    }

    mag_clear(A);
    mag_clear(nu);
    mag_clear(N);
    mag_clear(err);
    mag_clear(err1);
    mag_clear(w);
    mag_clear(R);
    mag_clear(T);
    mag_clear(goal);
    acb_clear(x);
}
Exemplo n.º 16
0
/* computes the factors that are independent of n (all are upper bounds) */
void
acb_hypgeom_u_asymp_bound_factors(int * R, mag_t alpha,
    mag_t nu, mag_t sigma, mag_t rho, mag_t zinv,
    const acb_t a, const acb_t b, const acb_t z)
{
    mag_t r, u, zre, zim, zlo, sigma_prime;
    acb_t t;

    mag_init(r);
    mag_init(u);
    mag_init(zre);
    mag_init(zim);
    mag_init(zlo);
    mag_init(sigma_prime);
    acb_init(t);

    /* lower bounds for |re(z)|, |im(z)|, |z| */
    arb_get_mag_lower(zre, acb_realref(z));
    arb_get_mag_lower(zim, acb_imagref(z));
    acb_get_mag_lower(zlo, z); /* todo: hypot */

    /* upper bound for 1/|z| */
    mag_one(u);
    mag_div(zinv, u, zlo);

    /* upper bound for r = |b - 2a| */
    acb_mul_2exp_si(t, a, 1);
    acb_sub(t, b, t, MAG_BITS);
    acb_get_mag(r, t);

    /* determine region */
    *R = 0;

    if (mag_cmp(zlo, r) >= 0)
    {
        int znonneg = arb_is_nonnegative(acb_realref(z));

        if (znonneg && mag_cmp(zre, r) >= 0)
        {
            *R = 1;
        }
        else if (mag_cmp(zim, r) >= 0 || znonneg)
        {
            *R = 2;
        }
        else
        {
            mag_mul_2exp_si(u, r, 1);
            if (mag_cmp(zlo, u) >= 0)
                *R = 3;
        }
    }

    if (R == 0)
    {
        mag_inf(alpha);
        mag_inf(nu);
        mag_inf(sigma);
        mag_inf(rho);
    }
    else
    {
        /* sigma = |(b-2a)/z| */
        mag_mul(sigma, r, zinv);

        /* nu = (1/2 + 1/2 sqrt(1-4 sigma^2))^(-1/2) <= 1 + 2 sigma^2 */
        if (mag_cmp_2exp_si(sigma, -1) <= 0)
        {
            mag_mul(nu, sigma, sigma);
            mag_mul_2exp_si(nu, nu, 1);
            mag_one(u);
            mag_add(nu, nu, u);
        }
        else
        {
            mag_inf(nu);
        }

        /* modified sigma for alpha, beta, rho when in R3 */
        if (*R == 3)
            mag_mul(sigma_prime, sigma, nu);
        else
            mag_set(sigma_prime, sigma);

        /* alpha = 1/(1-sigma') */
        mag_one(alpha);
        mag_sub_lower(alpha, alpha, sigma_prime);
        mag_one(u);
        mag_div(alpha, u, alpha);

        /* rho = |2a^2-2ab+b|/2 + sigma'*(1+sigma'/4)/(1-sigma')^2 */
        mag_mul_2exp_si(rho, sigma_prime, -2);
        mag_one(u);
        mag_add(rho, rho, u);
        mag_mul(rho, rho, sigma_prime);
        mag_mul(rho, rho, alpha);
        mag_mul(rho, rho, alpha);
        acb_sub(t, a, b, MAG_BITS);
        acb_mul(t, t, a, MAG_BITS);
        acb_mul_2exp_si(t, t, 1);
        acb_add(t, t, b, MAG_BITS);
        acb_get_mag(u, t);
        mag_mul_2exp_si(u, u, -1);
        mag_add(rho, rho, u);
    }

    mag_clear(r);
    mag_clear(u);
    mag_clear(zre);
    mag_clear(zim);
    mag_clear(zlo);
    mag_clear(sigma_prime);
    acb_clear(t);
}
void
acb_rising_ui_get_mag(mag_t bound, const acb_t s, ulong n)
{
    if (n == 0)
    {
        mag_one(bound);
        return;
    }

    if (n == 1)
    {
        acb_get_mag(bound, s);
        return;
    }

    if (!acb_is_finite(s))
    {
        mag_inf(bound);
        return;
    }

    if (arf_sgn(arb_midref(acb_realref(s))) >= 0)
    {
        acb_rising_get_mag2_right(bound, acb_realref(s), acb_imagref(s), n);
    }
    else
    {
        arb_t a;
        long k;
        mag_t bound2, t, u;

        arb_init(a);
        mag_init(bound2);
        mag_init(t);
        mag_init(u);

        arb_get_mag(u, acb_imagref(s));
        mag_mul(u, u, u);
        mag_one(bound);

        for (k = 0; k < n; k++)
        {
            arb_add_ui(a, acb_realref(s), k, MAG_BITS);

            if (arf_sgn(arb_midref(a)) >= 0)
            {
                acb_rising_get_mag2_right(bound2, a, acb_imagref(s), n - k);
                mag_mul(bound, bound, bound2);
                break;
            }
            else
            {
                arb_get_mag(t, a);
                mag_mul(t, t, t);
                mag_add(t, t, u);
                mag_mul(bound, bound, t);
            }
        }

        arb_clear(a);
        mag_clear(bound2);
        mag_clear(t);
        mag_clear(u);
    }

    mag_sqrt(bound, bound);
}