Exemplo n.º 1
0
extern "C" magma_int_t
magma_sgeqrf_expert_batched(
    magma_int_t m, magma_int_t n, 
    float **dA_array, magma_int_t ldda, 
    float **dR_array, magma_int_t lddr,
    float **dT_array, magma_int_t lddt,
    float **dtau_array, magma_int_t provide_RT,
    magma_int_t *info_array, magma_int_t batchCount, magma_queue_t queue)
{
#define dA(i, j)  (dA + (i) + (j)*ldda)   // A(i, j) means at i row, j column
    
    /* Local Parameter */
    magma_int_t nb = magma_get_sgeqrf_batched_nb(m);
    
    magma_int_t nnb = 8;
    magma_int_t min_mn = min(m, n);

    /* Check arguments */
    cudaMemset(info_array, 0, batchCount*sizeof(magma_int_t));
    magma_int_t arginfo = 0;
    if (m < 0)
        arginfo = -1;
    else if (n < 0)
        arginfo = -2;
    else if (ldda < max(1,m))
        arginfo = -4;
    else if (lddr < min_mn && provide_RT == 1)
        arginfo = -6;
    else if (lddr < min(min_mn, nb))
        arginfo = -6;
    else if (lddt < min(min_mn, nb))
        arginfo = -8;

    if (arginfo != 0) {
        magma_xerbla( __func__, -(arginfo) );
        return arginfo;
    }

    /* Quick return if possible */
    if (m == 0 || n == 0)
        if (min_mn == 0 ) return arginfo;

    if ( m >  2048 || n > 2048 ) {
        printf("=========================================================================================\n");
        printf("   WARNING batched routines are designed for small sizes it might be better to use the\n   Native/Hybrid classical routines if you want performance\n");
        printf("=========================================================================================\n");
    }


    magma_int_t i, k, ib=nb, jb=nnb, offset_RT=0, use_stream;
    magma_int_t ldw, offset; 

    float **dW0_displ = NULL;
    float **dW1_displ = NULL;
    float **dW2_displ = NULL;
    float **dW3_displ = NULL;
    float **dW4_displ = NULL;
    float **dW5_displ = NULL;
    float **dR_displ  = NULL;
    float **dT_displ  = NULL;

    float *dwork = NULL;
    float **cpuAarray = NULL;
    float **cpuTarray = NULL;

    magma_malloc((void**)&dW0_displ, batchCount * sizeof(*dW0_displ));
    magma_malloc((void**)&dW1_displ, batchCount * sizeof(*dW1_displ));
    magma_malloc((void**)&dW2_displ, batchCount * sizeof(*dW2_displ));
    magma_malloc((void**)&dW3_displ, batchCount * sizeof(*dW3_displ));
    magma_malloc((void**)&dW4_displ, batchCount * sizeof(*dW4_displ));
    magma_malloc((void**)&dW5_displ, batchCount * sizeof(*dW5_displ));
    magma_malloc((void**)&dR_displ,  batchCount * sizeof(*dR_displ));
    magma_malloc((void**)&dT_displ,  batchCount * sizeof(*dT_displ));

    magma_smalloc(&dwork,  (2 * nb * n) * batchCount);
    magma_malloc_cpu((void**) &cpuAarray, batchCount*sizeof(float*));
    magma_malloc_cpu((void**) &cpuTarray, batchCount*sizeof(float*));

    /* check allocation */
    if ( dW0_displ == NULL || dW1_displ == NULL || dW2_displ == NULL || 
         dW3_displ == NULL || dW4_displ == NULL || dW5_displ == NULL || 
         dR_displ  == NULL || dT_displ  == NULL || dwork     == NULL ||
         cpuAarray == NULL || cpuTarray == NULL ) {
        magma_free(dW0_displ);
        magma_free(dW1_displ);
        magma_free(dW2_displ);
        magma_free(dW3_displ);
        magma_free(dW4_displ);
        magma_free(dW5_displ);
        magma_free(dR_displ);
        magma_free(dT_displ);
        magma_free(dwork);
        magma_free_cpu(cpuAarray);
        magma_free_cpu(cpuTarray);
        magma_int_t info = MAGMA_ERR_DEVICE_ALLOC;
        magma_xerbla( __func__, -(info) );
        return info;
    }

    magma_sdisplace_pointers(dR_displ, dR_array, lddr, 0, 0, batchCount, queue); 
    magma_sdisplace_pointers(dT_displ, dT_array, lddt, 0, 0, batchCount, queue); 
    // set dR and dT to zero. if provide_RT == 0 only a tile of size nbxnb is used and overwritten at each step
    magmablas_slaset_batched( MagmaFull, lddr, (provide_RT > 0 ? n:min(min_mn,nb)), MAGMA_S_ZERO, MAGMA_S_ZERO, dR_displ, lddr, batchCount, queue ); 
    magmablas_slaset_batched( MagmaFull, lddt, (provide_RT > 0 ? n:min(min_mn,nb)), MAGMA_S_ZERO, MAGMA_S_ZERO, dT_displ, lddt, batchCount, queue );
    /*
    if ( provide_RT > 0 )
    {
        magmablas_slaset_q( MagmaFull, lddr, n*batchCount, MAGMA_S_ZERO, MAGMA_S_ZERO, dR, lddr, queue );
        magmablas_slaset_q( MagmaFull, lddt, n*batchCount, MAGMA_S_ZERO, MAGMA_S_ZERO, dT, lddt, queue );
    }
    else
    {
        magmablas_slaset_q( MagmaFull, lddr, nb*batchCount, MAGMA_S_ZERO, MAGMA_S_ZERO, dR, lddr, queue );
        magmablas_slaset_q( MagmaFull, lddt, nb*batchCount, MAGMA_S_ZERO, MAGMA_S_ZERO, dT, lddt, queue );
    }
    */
    magma_int_t streamid;
    const magma_int_t nbstreams=10;
    magma_queue_t queues[nbstreams];
    for (i=0; i < nbstreams; i++) {
        magma_device_t cdev;
        magma_getdevice( &cdev );
        magma_queue_create( cdev, &queues[i] );
    }
    magma_getvector( batchCount, sizeof(float*), dA_array, 1, cpuAarray, 1, queue);
    magma_getvector( batchCount, sizeof(float*), dT_array, 1, cpuTarray, 1, queue);


    for (i=0; i < min_mn; i += nb)
    {
        ib = min(nb, min_mn-i);  
        //===============================================
        // panel factorization
        //===============================================

        magma_sdisplace_pointers(dW0_displ, dA_array, ldda, i, i, batchCount, queue); 
        magma_sdisplace_pointers(dW2_displ, dtau_array, 1, i, 0, batchCount, queue);
        if ( provide_RT > 0 )
        {
            offset_RT = i;
            magma_sdisplace_pointers(dR_displ, dR_array, lddr, (provide_RT == 1 ? offset_RT:0), offset_RT, batchCount, queue); 
            magma_sdisplace_pointers(dT_displ, dT_array, lddt, 0, offset_RT, batchCount, queue); 
        }

        //dwork is used in panel factorization and trailing matrix update
        //dW4_displ, dW5_displ are used as workspace and configured inside
        magma_sgeqrf_panel_batched(m-i, ib, jb, 
                                   dW0_displ, ldda, 
                                   dW2_displ, 
                                   dT_displ, lddt, 
                                   dR_displ, lddr,
                                   dW1_displ,
                                   dW3_displ,
                                   dwork, 
                                   dW4_displ, dW5_displ,
                                   info_array,
                                   batchCount, queue);
           
        //===============================================
        // end of panel
        //===============================================

        //===============================================
        // update trailing matrix
        //===============================================
        if ( (n-ib-i) > 0)
        {
            //dwork is used in panel factorization and trailing matrix update
            //reset dW4_displ
            ldw = nb;
            magma_sset_pointer( dW4_displ, dwork, 1, 0, 0,  ldw*n, batchCount, queue );
            offset = ldw*n*batchCount;
            magma_sset_pointer( dW5_displ, dwork + offset, 1, 0, 0,  ldw*n, batchCount, queue );    

            // set the diagonal of v as one and the upper triangular part as zero already set inside geqrf_panel
            //magmablas_slaset_batched( MagmaUpper, ib, ib, MAGMA_S_ZERO, MAGMA_S_ONE, dW0_displ, ldda, batchCount, queue ); 
            //magma_sdisplace_pointers(dW2_displ, dtau_array, 1, i, 0, batchCount, queue); 

            // it is faster since it is using BLAS-3 GEMM routines, different from lapack implementation 
            magma_slarft_batched(m-i, ib, 0,
                             dW0_displ, ldda,
                             dW2_displ,
                             dT_displ, lddt, 
                             dW4_displ, nb*lddt,
                             batchCount, queue);

            
            // perform C = (I-V T^H V^H) * C, C is the trailing matrix
            //-------------------------------------------
            //          USE STREAM  GEMM
            //-------------------------------------------
            use_stream = magma_srecommend_cublas_gemm_stream(MagmaNoTrans, MagmaNoTrans, m-i-ib, n-i-ib, ib);
            if ( use_stream )   
            { 
                magma_queue_sync(queue); 
                for (k=0; k < batchCount; k++)
                {
                    streamid = k%nbstreams;                                       
                    // the queue gemm must take cpu pointer 
                    magma_slarfb_gpu_gemm( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise,
                                m-i, n-i-ib, ib,
                                cpuAarray[k] + i + i * ldda, ldda, 
                                cpuTarray[k] + offset_RT*lddt, lddt,
                                cpuAarray[k] + i + (i+ib) * ldda, ldda,
                                dwork + nb * n * k, -1,
                                dwork + nb * n * batchCount + nb * n * k, -1, queues[streamid] );
                }

                // need to synchronise to be sure that panel does not start before
                // finishing the update at least of the next panel
                // if queue is NULL, no need to sync
                if ( queue != NULL ) {
                    for (magma_int_t s=0; s < nbstreams; s++)
                        magma_queue_sync(queues[s]);
                }
            }
            //-------------------------------------------
            //          USE BATCHED GEMM
            //-------------------------------------------
            else
            {
                //direct trailing matrix in dW1_displ
                magma_sdisplace_pointers(dW1_displ, dA_array, ldda, i, i+ib, batchCount, queue); 

                magma_slarfb_gemm_batched( 
                            MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, 
                            m-i, n-i-ib, ib,
                            (const float**)dW0_displ, ldda,
                            (const float**)dT_displ, lddt,
                            dW1_displ,  ldda,
                            dW4_displ,  ldw,
                            dW5_displ, ldw,
                            batchCount, queue );
            }
        }// update the trailing matrix 
        //===============================================

        // copy dR back to V after the trailing matrix update, 
        // only when provide_RT=0 otherwise the nbxnb block of V is set to diag=1/0
        // The upper portion of V could be set totaly to 0 here
        if ( provide_RT == 0 )
        {
            magmablas_slacpy_batched( MagmaUpper, ib, ib, dR_displ, lddr, dW0_displ, ldda, batchCount, queue );
        }
    }

    magma_queue_sync(queue);
    for (k=0; k < nbstreams; k++) {
        magma_queue_destroy( queues[k] );
    }
    
    magma_free(dW0_displ);
    magma_free(dW1_displ);
    magma_free(dW2_displ);
    magma_free(dW3_displ);
    magma_free(dW4_displ);
    magma_free(dW5_displ);
    magma_free(dR_displ);
    magma_free(dT_displ);
    magma_free(dwork);
    magma_free_cpu(cpuAarray);
    magma_free_cpu(cpuTarray);

    return arginfo;
}
Exemplo n.º 2
0
extern "C" magma_int_t
magma_sbulge_applyQ_v2(
    magma_side_t side,
    magma_int_t NE, magma_int_t N,
    magma_int_t NB, magma_int_t Vblksiz,
    magmaFloat_ptr dE, magma_int_t ldde,
    float *V, magma_int_t ldv,
    float *T, magma_int_t ldt,
    magma_int_t *info)
{
    //%===========================
    //%   local variables
    //%===========================
    magma_int_t Vm, Vn, mt, nt;
    magma_int_t myrow, mycol, blkj, blki;
    magma_int_t blkid,vpos,tpos;
    magma_int_t firstrow, nbcolinvolvd;
    magma_int_t versionL  = 113;
    magma_int_t versionR  = 92;
    magma_int_t Vchunksiz = 10;
    *info=0;

    /* Quick return */
    if ( NE == 0 ) {
        return *info;
    }
    if ( N == 0 ) {
        return *info;
    }
    if ( NB == 0 ) {
        return *info;
    }
    /* ==========================================
     * some infos for developer
     * Initialisation and checking nb of cores
     * ==========================================*/
    /* we have 2 algo for left (113 114) and 2 algo for right (91 92)
     * which correspond to versionL versionR.
     * They are very similar (detail explained in tech report and matlab code)
     * however version 114 and 92 improve locality.
     * while version 113 is used in case WNATZ=1 (construct Q2) which allow
     * the construction to be done in an optimized way taking into
     * consideration that the matrix is Identity so making less flops.
     *
    */

    // Initialize streaming and events
    magma_device_sync();
    magma_queue_t orig_stream;
    magmablasGetKernelStream( &orig_stream );

    magma_queue_t stream[2];
    magma_queue_create( &stream[0] );
    magma_queue_create( &stream[1] );

    magma_event_t myevent[2];
    cudaEventCreateWithFlags(&myevent[0],cudaEventDisableTiming);
    cudaEventCreateWithFlags(&myevent[1],cudaEventDisableTiming);



    // Azzam 21/11/2012
    // NOTE THAT dwork was of size 2*NE*Vblksiz+...
    // but I am thinking why not modifing it to NE*Vblksiz+...
    // BUT NO because the 2* is used because of making 2 streams working and so
    // they might be using dwork in parallel
    float *dwork, *dwork0, *dwork1, *dwvt0, *dwvt1;
    float *dT0, *dV0, *dT1, *dV1;
    magma_int_t lddv = ldv;
    magma_int_t lddt = ldt;
    magma_int_t lddw = 0;
    magma_int_t lddwork  = ((NE+31)/32)*32;
    magma_int_t dwVTsiz  = lddv*Vblksiz; // lddv*lddv + lddv*lddwork; (v2) // lddv*Vblksiz; (v1,v3)
    magma_int_t dworksiz = lddwork*Vblksiz;  // lddv*Vblksiz; (v2)   // NE*Vblksiz=lddwork*Vblksiz; (v1,v3)

    if (MAGMA_SUCCESS != magma_smalloc( &dwork, 2*dworksiz + 2*dwVTsiz +  2*Vchunksiz* (Vblksiz* (lddv+lddt)) )) {
       printf ("!!!!  magma_sbulge_applyQ magma_alloc failed for: dwork\n" );
       exit(-1);
    }
    dwork0 = dwork;               // size = dworksiz;
    dwork1 = dwork0 + dworksiz;   // size = dworksiz;
    dwvt0  = dwork + 2*dworksiz;  // size = dwVTsiz;
    dwvt1  = dwvt0 + dwVTsiz;     // size = dwVTsiz;
    dV0    = dwork + 2*dworksiz + 2*dwVTsiz;
    dT0    = dV0 + Vchunksiz*Vblksiz*lddv;
    dV1    = dT0 + Vchunksiz*Vblksiz*lddt;
    dT1    = dV1 + Vchunksiz*Vblksiz*lddv;


    // make overlapped copy
    magma_int_t ncpy = 0;
    magma_int_t copyed=0, copyst=0;
    magma_int_t blkcnt,nothing, mysiz, flip, vld,tld, locpos;
    findVTsiz(N, NB, Vblksiz, &blkcnt, &nothing);

    flip = 0;

    // performance loss if the reflector are applied to a big number of eigenvectors (~10000)
    // => apply the reflectors to blocks of eigenvectors.
    //magma_int_t nr_bl = magma_ceildiv(NE,10000);        //nr of blocks
    magma_int_t sz_bl = NE; //magma_ceildiv(NE,nr_bl*64)*64; //maximum size of blocks (to have blocks of around the same size and multiple of 64)
    magma_int_t ib;                                      //size of current block


    /* SIDE LEFT  meaning apply E = Q*E = (q_1*q_2*.....*q_n) * E ==> so traverse Vs in reverse order (forward) from q_n to q_1
     *            Also E is splitten by row meaning each apply consist in a block of row (horizontal block) */
    /* SIDE RIGHT meaning apply E = E*Q = E * (q_1*q_2*.....*q_n) ==> so tarverse Vs in normal  order (forward) from q_1 to q_n
     *            Also E is splitten by col meaning each apply consist in a block of col (vertical block) */

    #ifdef ENABLE_DEBUG
    printf("  APPLY Q_v22 GPU with  N %d, NE %d,  NB %d, Vblksiz %d, versionL %d versionR %d  SIDE %c \n",
           N, NE, NB, Vblksiz, versionL, versionR, side);
    #endif

    /*
     * MagmamaLeft
     */
    if (side == MagmaLeft) {
        /*
         * Version 113:
         * loop over the block_col (nt) and for each find the
         * number of tiles (mt) in this block_col. then loop over mt, find
         * the size of the V's(Vm,Vn) and apply it to the corresponding
         * portion of E.
         */
        if ( versionL == 113 ) {
            nt  = magma_ceildiv((N-1),Vblksiz);
            for (blkj=nt-1; blkj >= 0; blkj--) {
                /* the index of the first row on the top of block (blkj) */
                firstrow = blkj * Vblksiz + 1;
                /*find the number of tile for this block */
                if ( blkj == nt-1 )
                    mt = magma_ceildiv( N -  firstrow,    NB);
                else
                    mt = magma_ceildiv( N - (firstrow+1), NB);
                /*loop over the tiles find the size of the Vs and apply it */
                for (blki=mt; blki > 0; blki--) {
                    /*calculate the size of each losange of Vs= (Vm,Vn)*/
                    myrow     = firstrow + (mt-blki)*NB;
                    mycol     = blkj*Vblksiz;
                    Vm = min( NB+Vblksiz-1, N-myrow);
                    if ( ( blkj == nt-1 ) && ( blki == mt ) ) {
                        Vn = min (Vblksiz, Vm);
                    } else {
                        Vn = min (Vblksiz, Vm-1);
                    }
                    /*calculate the pointer to the Vs and the Ts.
                     * Note that Vs and Ts have special storage done
                     * by the bulgechasing function*/
                    //printf("voici blkj %d blki %d  Vm %d  Vn %d mycol %d vpos %d \n",blkj,blki,Vm, Vn,mycol,vpos);
                    magma_bulge_findpos113(N, NB, Vblksiz, mycol, myrow, &blkid);
               
                    // COPY Vchunksiz Vs and Vchunksiz Ts to GPU and store it in dV0/dV1 and dT0/dT1
                    if (ncpy == 0) {
                        // flip = 1 for this.
                        copyst = 0;                             // meaning that copy will start copying from blkid =copyst
                        copyed = min(copyst+Vchunksiz, blkcnt); // meaning that copy will end copying at blkid =copyed-1==> next copy had to start at copyed
                        mysiz  = copyed-copyst;                 // the size of the chunk to be copied
                        if (mysiz > 0) {
                            ncpy = 1;
                            flip = 1;
                            vpos = copyst*Vblksiz*ldv;
                            tpos = copyst*Vblksiz*ldt;
                            vld  = mysiz * ldv;
                            tld  = mysiz * ldt;
                            magmablasSetKernelStream(stream[1]);
                            magma_ssetmatrix_async(vld, Vblksiz, V(vpos), vld, dV1, vld, stream[1]);
                            magma_ssetmatrix_async(tld, Vblksiz, T(tpos), tld, dT1, tld, stream[1]);
                            //printf("doing the first copy   of mysiz %2d copyst %2d copyed %2d vpos %8d tpos %8d into dV1 dT1\n",mysiz,copyst,copyed,vpos,tpos);
                        }
                    }
                   
                    if (blkid == copyst) {
                        flip   = ncpy % 2;
                        copyst = copyed;                             // meaning that copy will start copying from blkid =copyst
                        copyed = min(copyst+Vchunksiz, blkcnt); // meaning that copy will end copying at blkid =copyed-1==> next copy had to start at copyed
                        mysiz  = copyed-copyst;                 // the size of the chunk to be copied
                        //printf(" get to copy blkid %d blkid+(2*Vchunksiz) %d copyst %d copyed %d\n",blkid,blkid+(Vchunksiz),copyst,copyed);
                        if (mysiz > 0) {
                            ncpy = ncpy + 1;
                            vpos = copyst*Vblksiz*ldv;
                            tpos = copyst*Vblksiz*ldt;
                            vld  = mysiz * ldv;
                            tld  = mysiz * ldt;
                            if (flip == 0) { // now I am working on dV0 so copy the next and put it on dV1
                                //printf("doing overlapping copy of mysiz %2d copyst %2d copyed %2d vpos %8d tpos %8d into dV1 dT1\n",mysiz,copyst,copyed,vpos,tpos);
                                magmablasSetKernelStream(stream[1]);
                                magma_ssetmatrix_async(vld, Vblksiz, V(vpos), vld, dV1, vld, stream[1]);
                                magma_ssetmatrix_async(tld, Vblksiz, T(tpos), tld, dT1, tld, stream[1]);
                            } else { // now I am working on dV1 so copy the next and put it on dV0
                                //printf("doing overlapping copy of mysiz %2d copyst %2d copyed %2d vpos %8d tpos %8d into dV0 dT0\n",mysiz,copyst,copyed,vpos,tpos);
                                magmablasSetKernelStream(stream[0]);
                                magma_ssetmatrix_async(vld, Vblksiz, V(vpos), vld, dV0, vld, stream[0]);
                                magma_ssetmatrix_async(tld, Vblksiz, T(tpos), tld, dT0, tld, stream[0]);
                            }
                        }
                    }

                    if ((Vm > 0) && (Vn > 0)) {
                        locpos = blkid%Vchunksiz;
                        magma_int_t lcvpos   = locpos*Vblksiz*lddv;
                        magma_int_t lctpos   = locpos*Vblksiz*lddt;
                        //printf("voici blkj %d blki %d  Vm %d  Vn %d mycol %d locvpos %5d loctpos %5d  blkid %2d  using data in dV%1d dT%1d \n",blkj,blki,Vm, Vn,mycol,lcvpos,lctpos, blkid,flip,flip);
                        if (flip == 0) {
                            magmablasSetKernelStream(stream[0]);
                            magma_queue_wait_event( stream[0], myevent[1] );
                            for (magma_int_t i=0; i < NE; i += sz_bl) {
                                ib = min(sz_bl, NE-i);
                                lddw = min(lddwork,sz_bl);
                                //magma_slarfb_gpu( MagmaLeft, MagmaNoTrans, MagmaForward, MagmaColumnwise, Vm, ib, Vn, dV0+lcvpos, lddv, dT0+lctpos, lddt, dE(myrow,i), ldde, dwork0, lddw);
                                magma_slarfb_gpu_gemm( MagmaLeft, MagmaNoTrans, MagmaForward, MagmaColumnwise, Vm, ib, Vn, dV0+lcvpos, lddv, dT0+lctpos, lddt, dE(myrow,i), ldde, dwork0, lddw, dwvt0, lddv);
                            }
                            magma_event_record( myevent[0], stream[0] );
                        } else {
                            magmablasSetKernelStream(stream[1]);
                            magma_queue_wait_event( stream[1], myevent[0] );
                            for (magma_int_t i=0; i < NE; i += sz_bl) {
                                ib = min(sz_bl, NE-i);
                                lddw = min(lddwork,sz_bl);
                                //magma_slarfb_gpu( MagmaLeft, MagmaNoTrans, MagmaForward, MagmaColumnwise, Vm, ib, Vn, dV1+lcvpos, lddv, dT1+lctpos, lddt, dE(myrow,i), ldde, dwork1, lddw);
                                magma_slarfb_gpu_gemm( MagmaLeft, MagmaNoTrans, MagmaForward, MagmaColumnwise, Vm, ib, Vn, dV1+lcvpos, lddv, dT1+lctpos, lddt, dE(myrow,i), ldde, dwork1, lddw, dwvt1, lddv);
                            }
                            magma_event_record( myevent[1], stream[1] );
                        }
                    }  // end for (Vm &Vn) > 0
                } // end for blki
            } // end for blkj
        } // end if version=113
        /*
         * Version 114:
         * loop over the block_row (mt) and for each find diagonally the
         * number of tiles (nt) in this block_row. then loop over nt, find
         * the size of the V's(Vm,Vn) and apply it to the corresponding
         * portion of E.
         */
        else {
            mt    = magma_ceildiv((N-1),NB);
            for (blki = mt; blki > 0; blki--) {
                /* nbcolinvolvd = number of column corresponding to this block_row (blki) */
                nbcolinvolvd = min(N-1, blki*NB);
                /*find the number of tile for this block (diagonal row of tiles) */
                nt = magma_ceildiv(nbcolinvolvd,Vblksiz);
                /*loop over the tiles find the size of the Vs and apply it */
                for (blkj = nt-1; blkj >= 0; blkj--) {
                    /* the index of the first row of the first col meaning
                     * the block on the top left (blki) */
                    firstrow = (mt-blki)*NB+1;
                    /*calculate the size of each losange of Vs= (Vm,Vn)*/
                    myrow    = firstrow + blkj*Vblksiz;
                    mycol    = blkj*Vblksiz;
                    Vm = min( NB+Vblksiz-1, N-myrow);
                    if ( ( blkj == nt-1 ) && ( blki == mt ) ) {
                        Vn = min (Vblksiz, Vm);
                    } else {
                        Vn = min (Vblksiz, Vm-1);
                    }

                    if ((Vm > 0) && (Vn > 0)) {
                    /*calculate the pointer to the Vs and the Ts.
                     * Note that Vs and Ts have special storage done
                     * by the bulgechasing function*/
                        magma_bulge_findVTpos(N, NB, Vblksiz, mycol, myrow, ldv, ldt, &vpos, &tpos);
                        magma_ssetmatrix_async(Vm, Vn, V(vpos), ldv, dV0, lddv, NULL);
                        magma_ssetmatrix_async(Vn,  Vn, T(tpos), ldt, dT0, lddt, NULL);
                        //printf("voici blki %d  rownbm %d mycol %d  coled %d  blkid %d vpos %d  tpos %d\n", blki, rownbm, mycol, coled, blkid, vpos, tpos);
                        for (magma_int_t i=0; i < NE; i += sz_bl) {
                            ib = min(sz_bl, NE-i);
                            magma_slarfb_gpu( MagmaLeft, MagmaNoTrans, MagmaForward, MagmaColumnwise, Vm, ib, Vn, dV0, lddv, dT0, lddt, dE(myrow,i), ldde, dwork, NE);
                        }
                    } // end for (Vm &Vn) > 0
                } // end for blkj
            } // end for blki
        } // end version 114
    } // end LEFT
    /*
     * MagmaRight
     */
    else {
        /*
         * Version 91:
         */
        if ( versionR == 91 ) {
            nt  = magma_ceildiv((N-1),Vblksiz);
            for (blkj=0; blkj < nt; blkj++) {
                /* the index of the first myrow on the top of block (blkj) */
                firstrow = blkj * Vblksiz + 1;
                /*find the number of tile for this block */
                if ( blkj == nt-1 )
                    mt = magma_ceildiv( N -  firstrow,    NB);
                else
                    mt = magma_ceildiv( N - (firstrow+1), NB);
                /*loop over the tiles find the size of the Vs and apply it */
                for (blki=1; blki <= mt; blki++) {
                    /*calculate the size of each losange of Vs= (Vm,Vn)*/
                    myrow  = firstrow + (mt-blki)*NB;
                    Vm = min( NB+Vblksiz-1, N-myrow);
                    if ( (blkj == nt-1) && (blki == mt) ) {
                        Vn = min( Vblksiz, Vm );
                    } else {
                        Vn = min( Vblksiz, Vm-1 );
                    }
                    mycol     = blkj*Vblksiz;
                    if ((Vm > 0) && (Vn > 0)) {
                        /*calculate the pointer to the Vs and the Ts.
                         * Note that Vs and Ts have special storage done
                         * by the bulgechasing function*/
                        magma_bulge_findVTpos(N, NB, Vblksiz, mycol, myrow, ldv, ldt, &vpos, &tpos);
                        magma_ssetmatrix_async(Vm, Vn, V(vpos), ldv, dV0, lddv, NULL);
                        magma_ssetmatrix_async(Vn,  Vn, T(tpos), ldt, dT0, lddt, NULL);
                        magma_slarfb_gpu( MagmaRight, MagmaNoTrans, MagmaForward, MagmaColumnwise, NE, Vm, Vn, dV0, lddv, dT0, lddt, dE(0, myrow), ldde, dwork, NE);
                    } // end for (Vm &Vn) > 0
                } // end for blki
            } // end fo blkj
        } // end of version 91
        /*
         * Version 92:
         */
        else {
            mt    = magma_ceildiv((N-1),NB);
            for (blki = 1; blki <= mt; blki++) {
                /* nbcolinvolvd = number of column corresponding to this block_row (blki) */
                nbcolinvolvd = min(N-1, blki*NB);
                /*find the number of tile for this block (diagonal row of tiles) */
                nt = magma_ceildiv(nbcolinvolvd,Vblksiz);
                /*loop over the tiles find the size of the Vs and apply it */
                for (blkj = 0; blkj < nt; blkj++) {
                    /* the index of the first row of the first col meaning
                     * the block on the top left (blki) */
                    firstrow = (mt-blki)*NB+1;
                    /*calculate the size of each losange of Vs= (Vm,Vn)*/
                    myrow    = firstrow + blkj*Vblksiz;
                    mycol    = blkj*Vblksiz;
                    Vm = min( NB+Vblksiz-1, N-myrow);
                    if ( ( blkj == nt-1 ) && ( blki == mt ) ) {
                        Vn = min (Vblksiz, Vm);
                    } else {
                        Vn = min (Vblksiz, Vm-1);
                    }
                    if ((Vm > 0) && (Vn > 0)) {
                        /*calculate the pointer to the Vs and the Ts.
                         * Note that Vs and Ts have special storage done
                         * by the bulgechasing function*/
                        magma_bulge_findVTpos(N, NB, Vblksiz, mycol, myrow, ldv, ldt, &vpos, &tpos);
                        magma_ssetmatrix_async(Vm, Vn, V(vpos), ldv, dV0, lddv, NULL);
                        magma_ssetmatrix_async(Vn,  Vn, T(tpos), ldt, dT0, lddt, NULL);
                        magma_slarfb_gpu( MagmaRight, MagmaNoTrans, MagmaForward, MagmaColumnwise, NE, Vm, Vn, dV0, lddv, dT0, lddt, dE(0, myrow), ldde, dwork, NE);
                    } // end for (Vm &Vn) > 0
                } //end for blkj
            } // end for blki
        } //end of version 92
    } // end RIGHT


    magma_device_sync();
    magmablasSetKernelStream( orig_stream );
    magma_event_destroy( myevent[0] );
    magma_event_destroy( myevent[1] );
    magma_queue_destroy( stream[0] );
    magma_queue_destroy( stream[1] );
    magma_free(dwork);


    return *info;
}
Exemplo n.º 3
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing slarfb_gpu
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    // constants
    const float c_zero    = MAGMA_S_ZERO;
    const float c_one     = MAGMA_S_ONE;
    const float c_neg_one = MAGMA_S_NEG_ONE;
    const magma_int_t ione = 1;
    
    // local variables
    magma_int_t M, N, K, size, ldc, ldv, ldt, ldw, ldw2, nv;
    magma_int_t ISEED[4] = {0,0,0,1};
    float Cnorm, error, work[1];
    magma_int_t status = 0;
    
    // test all combinations of input parameters
    magma_side_t   side  [] = { MagmaLeft,       MagmaRight    };
    magma_trans_t  trans [] = { MagmaTrans, MagmaNoTrans  };
    magma_direct_t direct[] = { MagmaForward,    MagmaBackward };
    magma_storev_t storev[] = { MagmaColumnwise, MagmaRowwise  };

    magma_opts opts;
    opts.parse_opts( argc, argv );
    
    float tol = opts.tolerance * lapackf77_slamch("E");
    
    printf("%%   M     N     K   storev   side   direct   trans    ||R||_F / ||HC||_F\n");
    printf("%%=======================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      M = opts.msize[itest];
      N = opts.nsize[itest];
      K = opts.ksize[itest];
      if ( M < K || N < K || K <= 0 ) {
          printf( "%5d %5d %5d   skipping because slarfb requires M >= K, N >= K, K >= 0\n",
                  (int) M, (int) N, (int) K );
          continue;
      }
      for( int istor = 0; istor < 2; ++istor ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int idir  = 0; idir  < 2; ++idir  ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            ldc = magma_roundup( M, opts.align );  // multiple of 32 by default
            ldt = magma_roundup( K, opts.align );  // multiple of 32 by default
            ldw = (side[iside] == MagmaLeft ? N : M);
            ldw2 = min( M, N );
            // (ldv, nv) get swapped later if rowwise
            ldv = (side[iside] == MagmaLeft ? M : N);
            nv  = K;
            
            // Allocate memory for matrices
            float *C, *R, *V, *T, *W;
            TESTING_MALLOC_CPU( C, float, ldc*N );
            TESTING_MALLOC_CPU( R, float, ldc*N );
            TESTING_MALLOC_CPU( V, float, ldv*K );
            TESTING_MALLOC_CPU( T, float, ldt*K );
            TESTING_MALLOC_CPU( W, float, ldw*K );
            
            magmaFloat_ptr dC, dV, dT, dW, dW2;
            TESTING_MALLOC_DEV( dC,  float, ldc*N );
            TESTING_MALLOC_DEV( dV,  float, ldv*K );
            TESTING_MALLOC_DEV( dT,  float, ldt*K );
            TESTING_MALLOC_DEV( dW,  float, ldw*K );
            TESTING_MALLOC_DEV( dW2, float, ldw2*K );
            
            // C is M x N.
            size = ldc*N;
            lapackf77_slarnv( &ione, ISEED, &size, C );
            //printf( "C=" );  magma_sprint( M, N, C, ldc );
            
            // V is ldv x nv. See larfb docs for description.
            // if column-wise and left,  M x K
            // if column-wise and right, N x K
            // if row-wise and left,     K x M
            // if row-wise and right,    K x N
            size = ldv*nv;
            lapackf77_slarnv( &ione, ISEED, &size, V );
            if ( storev[istor] == MagmaColumnwise ) {
                if ( direct[idir] == MagmaForward ) {
                    lapackf77_slaset( MagmaUpperStr, &K, &K, &c_zero, &c_one, V, &ldv );
                }
                else {
                    lapackf77_slaset( MagmaLowerStr, &K, &K, &c_zero, &c_one, &V[(ldv-K)], &ldv );
                }
            }
            else {
                // rowwise, swap V's dimensions
                std::swap( ldv, nv );
                if ( direct[idir] == MagmaForward ) {
                    lapackf77_slaset( MagmaLowerStr, &K, &K, &c_zero, &c_one, V, &ldv );
                }
                else {
                    lapackf77_slaset( MagmaUpperStr, &K, &K, &c_zero, &c_one, &V[(nv-K)*ldv], &ldv );
                }
            }
            //printf( "# ldv %d, nv %d\n", ldv, nv );
            //printf( "V=" );  magma_sprint( ldv, nv, V, ldv );
            
            // T is K x K, upper triangular for forward, and lower triangular for backward
            magma_int_t k1 = K-1;
            size = ldt*K;
            lapackf77_slarnv( &ione, ISEED, &size, T );
            if ( direct[idir] == MagmaForward ) {
                lapackf77_slaset( MagmaLowerStr, &k1, &k1, &c_zero, &c_zero, &T[1], &ldt );
            }
            else {
                lapackf77_slaset( MagmaUpperStr, &k1, &k1, &c_zero, &c_zero, &T[1*ldt], &ldt );
            }
            //printf( "T=" );  magma_sprint( K, K, T, ldt );
            
            magma_ssetmatrix( M,   N,  C, ldc, dC, ldc, opts.queue );
            magma_ssetmatrix( ldv, nv, V, ldv, dV, ldv, opts.queue );
            magma_ssetmatrix( K,   K,  T, ldt, dT, ldt, opts.queue );
            
            lapackf77_slarfb( lapack_side_const( side[iside] ), lapack_trans_const( trans[itran] ),
                              lapack_direct_const( direct[idir] ), lapack_storev_const( storev[istor] ),
                              &M, &N, &K,
                              V, &ldv, T, &ldt, C, &ldc, W, &ldw );
            //printf( "HC=" );  magma_sprint( M, N, C, ldc );
            
            if ( opts.version == 1 ) {
                magma_slarfb_gpu( side[iside], trans[itran], direct[idir], storev[istor],
                                  M, N, K,
                                  dV, ldv, dT, ldt, dC, ldc, dW, ldw, opts.queue );
            }
            else {
                magma_slarfb_gpu_gemm( side[iside], trans[itran], direct[idir], storev[istor],
                                       M, N, K,
                                       dV, ldv, dT, ldt, dC, ldc, dW, ldw, dW2, ldw2, opts.queue );
            }
            magma_sgetmatrix( M, N, dC, ldc, R, ldc, opts.queue );
            //printf( "dHC=" );  magma_sprint( M, N, R, ldc );
            
            // compute relative error |HC_magma - HC_lapack| / |HC_lapack|
            size = ldc*N;
            blasf77_saxpy( &size, &c_neg_one, C, &ione, R, &ione );
            Cnorm = lapackf77_slange( "Fro", &M, &N, C, &ldc, work );
            error = lapackf77_slange( "Fro", &M, &N, R, &ldc, work ) / Cnorm;
            
            printf( "%5d %5d %5d      %c       %c       %c       %c      %8.2e   %s\n",
                    (int) M, (int) N, (int) K,
                    lapacke_storev_const(storev[istor]), lapacke_side_const(side[iside]),
                    lapacke_direct_const(direct[idir]), lapacke_trans_const(trans[itran]),
                   error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( V );
            TESTING_FREE_CPU( T );
            TESTING_FREE_CPU( W );
            
            TESTING_FREE_DEV( dC  );
            TESTING_FREE_DEV( dV  );
            TESTING_FREE_DEV( dT  );
            TESTING_FREE_DEV( dW  );
            TESTING_FREE_DEV( dW2 );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}}}
      printf( "\n" );
    }
    
    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}