Exemplo n.º 1
0
magma_int_t
magma_scsrget_gpu(
    magma_s_matrix A,
    magma_int_t *m,
    magma_int_t *n,
    magmaIndex_ptr *row,
    magmaIndex_ptr *col,
    magmaFloat_ptr *val,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    magma_s_matrix A_DEV={Magma_CSR}, A_CSR={Magma_CSR};
    
    if ( A.memory_location == Magma_DEV && A.storage_type == Magma_CSR ) {
        *m = A.num_rows;
        *n = A.num_cols;
        *val = A.dval;
        *col = A.dcol;
        *row = A.drow;
    } else {
        CHECK( magma_smconvert( A, &A_CSR, A.storage_type, Magma_CSR, queue ));
        CHECK( magma_smtransfer( A_CSR, &A_DEV, A.memory_location, Magma_DEV, queue ));
        magma_scsrget_gpu( A_DEV, m, n, row, col, val, queue );
    }
    
cleanup:
    magma_smfree( &A_CSR, queue );
    magma_smfree( &A_DEV, queue );
    return info;
}
Exemplo n.º 2
0
extern "C" magma_int_t
magma_svtranspose(
    magma_s_matrix x,
    magma_s_matrix *y,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    magma_int_t    m = x.num_rows;
    magma_int_t    n = x.num_cols;
    
    // set queue for old dense routines
    magma_queue_t orig_queue=NULL;
    magmablasGetKernelStream( &orig_queue );

    magma_s_matrix x_d={Magma_CSR}, y_d={Magma_CSR};
            
    if ( x.memory_location == Magma_DEV ) {
        CHECK( magma_svinit( y, Magma_DEV, x.num_rows,x.num_cols, MAGMA_S_ZERO, queue ));
        y->num_rows = x.num_rows;
        y->num_cols = x.num_cols;
        y->storage_type = x.storage_type;
        if ( x.major == MagmaColMajor) {
            y->major = MagmaRowMajor;
            magmablas_stranspose( m, n, x.val, m, y->val, n );
        }
        else {
            y->major = MagmaColMajor;
            magmablas_stranspose( n, m, x.val, n, y->val, m );
        }
    } else {

        CHECK( magma_smtransfer( x, &x_d, Magma_CPU, Magma_DEV, queue ));
        CHECK( magma_svtranspose( x_d, &y_d, queue ));
        CHECK( magma_smtransfer( y_d, y, Magma_DEV, Magma_CPU, queue ));
    }
    
cleanup:
    if( info != 0 ){
        magma_smfree( y, queue );
    }
    magma_smfree( &x_d, queue );
    magma_smfree( &y_d, queue );
    magmablasSetKernelStream( orig_queue );
    return info;
}
Exemplo n.º 3
0
extern "C" magma_int_t
magma_smshrink(
    magma_s_matrix A,
    magma_s_matrix *B,
    magma_queue_t queue )
{
    magma_int_t info = 0;

    magma_s_matrix hA={Magma_CSR}, hACSR={Magma_CSR}, hB={Magma_CSR}, hBCSR={Magma_CSR};
     
    if( A.num_rows<=A.num_cols){
        if( A.memory_location == Magma_CPU && A.storage_type == Magma_CSR ){
            CHECK( magma_smconvert( A, B, Magma_CSR, Magma_CSR, queue ));
            for(magma_int_t i=0; i<A.nnz; i++){
                if( B->col[i] >= A.num_rows ){
                    B->val[i] = MAGMA_S_ZERO;   
                }
            }
            CHECK( magma_smcsrcompressor( B, queue ) );
            B->num_cols = B->num_rows;
        } else {
            CHECK( magma_smtransfer( A, &hA, A.memory_location, Magma_CPU, queue ));
            CHECK( magma_smconvert( hA, &hACSR, A.storage_type, Magma_CSR, queue ));
            CHECK( magma_smshrink( hACSR, &hBCSR, queue ));
            CHECK( magma_smconvert( hBCSR, &hB, Magma_CSR, A.storage_type, queue ));
            CHECK( magma_smtransfer( hB, B, Magma_CPU, A.memory_location, queue ));
        }
    } else {
        printf("%% error: A has too many rows: m > n.\n");
        info = MAGMA_ERR_NOT_SUPPORTED;
        goto cleanup;
    }
    
cleanup:    
    magma_smfree( &hA, queue );
    magma_smfree( &hB, queue );
    magma_smfree( &hACSR, queue );
    magma_smfree( &hBCSR, queue );

    return info;
}
Exemplo n.º 4
0
extern "C" magma_int_t
magma_sjacobisetup_vector(
    magma_s_matrix b, magma_s_matrix d,
    magma_s_matrix *c,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    magma_s_matrix diag={Magma_CSR}, c_t={Magma_CSR}, b_h={Magma_CSR}, tmp={Magma_CSR};
    
    if ( b.memory_location == Magma_CPU ) {
        CHECK( magma_svinit( &c_t, Magma_CPU, b.num_rows, b.num_cols, MAGMA_S_ZERO, queue ));

        CHECK( magma_smtransfer( b, &b_h, b.memory_location, Magma_CPU, queue ));
        CHECK( magma_smtransfer( d, &diag, b.memory_location, Magma_CPU, queue ));

        for( magma_int_t rowindex=0; rowindex<b.num_rows; rowindex++ ) {
            c_t.val[rowindex] = b_h.val[rowindex] / diag.val[rowindex];
        }
        CHECK( magma_smtransfer( c_t, c, Magma_CPU, b.memory_location, queue ));
    }
    else if ( b.memory_location == Magma_DEV ) {
        // fill vector
        CHECK( magma_svinit( &tmp, Magma_DEV, b.num_rows, b.num_cols, MAGMA_S_ZERO, queue ));
        CHECK( magma_sjacobisetup_vector_gpu(
                    b.num_rows, b, d, *c, &tmp, queue ));
        goto cleanup;
    }

cleanup:
    magma_smfree( &tmp, queue );
    magma_smfree( &diag, queue );
    magma_smfree( &c_t, queue );
    magma_smfree( &b_h, queue );
    
    return info;
}
Exemplo n.º 5
0
magma_int_t
magma_svget(
    magma_s_matrix v,
    magma_int_t *m, magma_int_t *n,
    float **val,
    magma_queue_t queue )
{
    magma_s_matrix v_CPU={Magma_CSR};
    magma_int_t info =0;
    
    if ( v.memory_location == Magma_CPU ) {

        *m = v.num_rows;
        *n = v.num_cols;
        *val = v.val;
    } else {
        CHECK( magma_smtransfer( v, &v_CPU, v.memory_location, Magma_CPU, queue ));
        CHECK( magma_svget( v_CPU, m, n, val, queue ));
    }
    
cleanup:
    magma_smfree( &v_CPU, queue );
    return info;
}
Exemplo n.º 6
0
magma_int_t
magma_svget_dev(
    magma_s_matrix v,
    magma_int_t *m, magma_int_t *n,
    magmaFloat_ptr *val,
    magma_queue_t queue )
{
    magma_int_t info =0;
    
    magma_s_matrix v_DEV={Magma_CSR};
    
    if ( v.memory_location == Magma_DEV ) {
        *m = v.num_rows;
        *n = v.num_cols;
        *val = v.dval;
    } else {
        CHECK( magma_smtransfer( v, &v_DEV, v.memory_location, Magma_DEV, queue ));
        CHECK( magma_svget_dev( v_DEV, m, n, val, queue ));
    }
    
cleanup:
    magma_smfree( &v_DEV, queue );
    return info;
}
Exemplo n.º 7
0
/* ////////////////////////////////////////////////////////////////////////////
   -- testing any solver
*/
int main(  int argc, char** argv )
{
    magma_int_t info = 0;
    TESTING_INIT();

    magma_sopts zopts;
    magma_queue_t queue=NULL;
    magma_queue_create( &queue );
    
    float one = MAGMA_S_MAKE(1.0, 0.0);
    float zero = MAGMA_S_MAKE(0.0, 0.0);
    magma_s_matrix A={Magma_CSR}, B={Magma_CSR}, B_d={Magma_CSR};
    magma_s_matrix x={Magma_CSR}, b={Magma_CSR};
    
    int i=1;
    CHECK( magma_sparse_opts( argc, argv, &zopts, &i, queue ));
    B.blocksize = zopts.blocksize;
    B.alignment = zopts.alignment;

    CHECK( magma_ssolverinfo_init( &zopts.solver_par, &zopts.precond_par, queue ));

    while( i < argc ) {
        if ( strcmp("LAPLACE2D", argv[i]) == 0 && i+1 < argc ) {   // Laplace test
            i++;
            magma_int_t laplace_size = atoi( argv[i] );
            CHECK( magma_sm_5stencil(  laplace_size, &A, queue ));
        } else {                        // file-matrix test
            CHECK( magma_s_csr_mtx( &A,  argv[i], queue ));
        }

        // for the eigensolver case
        zopts.solver_par.ev_length = A.num_cols;
        CHECK( magma_seigensolverinfo_init( &zopts.solver_par, queue ));

        // scale matrix
        CHECK( magma_smscale( &A, zopts.scaling, queue ));
        
        // preconditioner
        if ( zopts.solver_par.solver != Magma_ITERREF ) {
            CHECK( magma_s_precondsetup( A, b, &zopts.solver_par, &zopts.precond_par, queue ) );
        }

        CHECK( magma_smconvert( A, &B, Magma_CSR, zopts.output_format, queue ));
        
        printf( "\n%% matrix info: %d-by-%d with %d nonzeros\n\n",
                            int(A.num_rows), int(A.num_cols), int(A.nnz) );
        
        printf("matrixinfo = [ \n");
        printf("%%   size   (m x n)     ||   nonzeros (nnz)   ||   nnz/m   ||   stored nnz\n");
        printf("%%======================================================================"
                            "======%%\n");
        printf("  %8d  %8d      %10d             %4d        %10d\n",
            int(B.num_rows), int(B.num_cols), int(B.true_nnz), int(B.true_nnz/B.num_rows), int(B.nnz) );
        printf("%%======================================================================"
        "======%%\n");
        printf("];\n");

        CHECK( magma_smtransfer( B, &B_d, Magma_CPU, Magma_DEV, queue ));

        // vectors and initial guess
        CHECK( magma_svinit( &b, Magma_DEV, A.num_rows, 1, one, queue ));
        //magma_svinit( &x, Magma_DEV, A.num_cols, 1, one, queue );
        //magma_s_spmv( one, B_d, x, zero, b, queue );                 //  b = A x
        //magma_smfree(&x, queue );
        CHECK( magma_svinit( &x, Magma_DEV, A.num_cols, 1, zero, queue ));
        
        info = magma_s_solver( B_d, b, &x, &zopts, queue );
        if( info != 0 ) {
            printf("%%error: solver returned: %s (%d).\n",
                magma_strerror( info ), int(info) );
        }
        printf("data = [\n");
        magma_ssolverinfo( &zopts.solver_par, &zopts.precond_par, queue );
        printf("];\n\n");
        
        printf("precond_info = [\n");
        printf("%%   setup  runtime\n");        
        printf("  %.6f  %.6f\n",
           zopts.precond_par.setuptime, zopts.precond_par.runtime );
        printf("];\n\n");
        magma_smfree(&B_d, queue );
        magma_smfree(&B, queue );
        magma_smfree(&A, queue );
        magma_smfree(&x, queue );
        magma_smfree(&b, queue );
        i++;
    }

cleanup:
    magma_smfree(&B_d, queue );
    magma_smfree(&B, queue );
    magma_smfree(&A, queue );
    magma_smfree(&x, queue );
    magma_smfree(&b, queue );
    magma_ssolverinfo_free( &zopts.solver_par, &zopts.precond_par, queue );
    magma_queue_destroy( queue );
    TESTING_FINALIZE();
    return info;
}
Exemplo n.º 8
0
/* ////////////////////////////////////////////////////////////////////////////
   -- testing any solver
*/
int main(  int argc, char** argv )
{
    magma_int_t info = 0;
    /* Initialize */
    TESTING_INIT();
    magma_queue_t queue=NULL;
    magma_queue_create( &queue );
    magmablasSetKernelStream( queue );

    magma_int_t j, n=1000000, FLOPS;
    
    float one = MAGMA_S_MAKE( 1.0, 0.0 );
    float two = MAGMA_S_MAKE( 2.0, 0.0 );

    magma_s_matrix a={Magma_CSR}, ad={Magma_CSR}, bd={Magma_CSR}, cd={Magma_CSR};
    CHECK( magma_svinit( &a, Magma_CPU, n, 1, one, queue ));
    CHECK( magma_svinit( &bd, Magma_DEV, n, 1, two, queue ));
    CHECK( magma_svinit( &cd, Magma_DEV, n, 1, one, queue ));
    
    CHECK( magma_smtransfer( a, &ad, Magma_CPU, Magma_DEV, queue ));

    real_Double_t start, end, res;
    
    FLOPS = 2*n;
    start = magma_sync_wtime( queue );
    for (j=0; j<100; j++)
        res = magma_snrm2(n, ad.dval, 1);
    end = magma_sync_wtime( queue );
    printf( " > MAGMA nrm2: %.2e seconds %.2e GFLOP/s\n",
                                    (end-start)/100, FLOPS*100/1e9/(end-start) );
    FLOPS = n;
    start = magma_sync_wtime( queue );
    for (j=0; j<100; j++)
        magma_sscal( n, two, ad.dval, 1 );
    end = magma_sync_wtime( queue );
    printf( " > MAGMA scal: %.2e seconds %.2e GFLOP/s\n",
                                    (end-start)/100, FLOPS*100/1e9/(end-start) );
    FLOPS = 2*n;
    start = magma_sync_wtime( queue );
    for (j=0; j<100; j++)
        magma_saxpy( n, one, ad.dval, 1, bd.dval, 1 );
    end = magma_sync_wtime( queue );
    printf( " > MAGMA axpy: %.2e seconds %.2e GFLOP/s\n",
                                    (end-start)/100, FLOPS*100/1e9/(end-start) );
    FLOPS = n;
    start = magma_sync_wtime( queue );
    for (j=0; j<100; j++)
        magma_scopy( n, bd.dval, 1, ad.dval, 1 );
    end = magma_sync_wtime( queue );
    printf( " > MAGMA copy: %.2e seconds %.2e GFLOP/s\n",
                                    (end-start)/100, FLOPS*100/1e9/(end-start) );
    FLOPS = 2*n;
    start = magma_sync_wtime( queue );
    for (j=0; j<100; j++)
        res = MAGMA_S_REAL( magma_sdot(n, ad.dval, 1, bd.dval, 1) );
    end = magma_sync_wtime( queue );
    printf( " > MAGMA dotc: %.2e seconds %.2e GFLOP/s\n",
                                    (end-start)/100, FLOPS*100/1e9/(end-start) );

    printf("# tester BLAS:  ok\n");


    magma_smfree( &a, queue);
    magma_smfree(&ad, queue);
    magma_smfree(&bd, queue);
    magma_smfree(&cd, queue);

    
cleanup:
    magma_smfree( &a, queue);
    magma_smfree(&ad, queue);
    magma_smfree(&bd, queue);
    magma_smfree(&cd, queue);
    magmablasSetKernelStream( NULL );
    magma_queue_destroy( queue );
    magma_finalize();
    return info;
}
Exemplo n.º 9
0
extern "C" magma_int_t
magma_spidr(
    magma_s_matrix A, magma_s_matrix b, magma_s_matrix *x,
    magma_s_solver_par *solver_par,
    magma_s_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;

    // prepare solver feedback
    solver_par->solver = Magma_PIDR;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    solver_par->init_res = 0.0;
    solver_par->final_res = 0.0;
    solver_par->iter_res = 0.0;
    solver_par->runtime = 0.0;

    // constants
    const float c_zero = MAGMA_S_ZERO;
    const float c_one = MAGMA_S_ONE;
    const float c_n_one = MAGMA_S_NEG_ONE;

    // internal user parameters
    const magma_int_t smoothing = 1;   // 0 = disable, 1 = enable
    const float angle = 0.7;          // [0-1]

    // local variables
    magma_int_t iseed[4] = {0, 0, 0, 1};
    magma_int_t dof;
    magma_int_t s;
    magma_int_t distr;
    magma_int_t k, i, sk;
    magma_int_t innerflag;
    float residual;
    float nrm;
    float nrmb;
    float nrmr;
    float nrmt;
    float rho;
    float om;
    float tt;
    float tr;
    float gamma;
    float alpha;
    float mkk;
    float fk;

    // matrices and vectors
    magma_s_matrix dxs = {Magma_CSR};
    magma_s_matrix dr = {Magma_CSR}, drs = {Magma_CSR};
    magma_s_matrix dP = {Magma_CSR}, dP1 = {Magma_CSR};
    magma_s_matrix dG = {Magma_CSR};
    magma_s_matrix dU = {Magma_CSR};
    magma_s_matrix dM = {Magma_CSR};
    magma_s_matrix df = {Magma_CSR};
    magma_s_matrix dt = {Magma_CSR};
    magma_s_matrix dc = {Magma_CSR};
    magma_s_matrix dv = {Magma_CSR};
    magma_s_matrix dbeta = {Magma_CSR}, hbeta = {Magma_CSR};
    magma_s_matrix dlu = {Magma_CSR};

    // chronometry
    real_Double_t tempo1, tempo2;

    // initial s space
    // TODO: add option for 's' (shadow space number)
    // Hack: uses '--restart' option as the shadow space number.
    //       This is not a good idea because the default value of restart option is used to detect
    //       if the user provided a custom restart. This means that if the default restart value
    //       is changed then the code will think it was the user (unless the default value is
    //       also updated in the 'if' statement below.
    s = 1;
    if ( solver_par->restart != 50 ) {
        if ( solver_par->restart > A.num_cols ) {
            s = A.num_cols;
        } else {
            s = solver_par->restart;
        }
    }
    solver_par->restart = s;

    // set max iterations
    solver_par->maxiter = min( 2 * A.num_cols, solver_par->maxiter );

    // check if matrix A is square
    if ( A.num_rows != A.num_cols ) {
        //printf("Matrix A is not square.\n");
        info = MAGMA_ERR_NOT_SUPPORTED;
        goto cleanup;
    }

    // |b|
    nrmb = magma_snrm2( b.num_rows, b.dval, 1, queue );
    if ( nrmb == 0.0 ) {
        magma_sscal( x->num_rows, MAGMA_S_ZERO, x->dval, 1, queue );
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    // r = b - A x
    CHECK( magma_svinit( &dr, Magma_DEV, b.num_rows, 1, c_zero, queue ));
    CHECK( magma_sresidualvec( A, b, *x, &dr, &nrmr, queue ));
    
    // |r|
    solver_par->init_res = nrmr;
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nrmr;
    }

    // check if initial is guess good enough
    if ( nrmr <= solver_par->atol ||
        nrmr/nrmb <= solver_par->rtol ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    // P = randn(n, s)
    // P = ortho(P)
//---------------------------------------
    // P = 0.0
    CHECK( magma_svinit( &dP, Magma_CPU, A.num_cols, s, c_zero, queue ));

    // P = randn(n, s)
    distr = 3;        // 1 = unif (0,1), 2 = unif (-1,1), 3 = normal (0,1) 
    dof = dP.num_rows * dP.num_cols;
    lapackf77_slarnv( &distr, iseed, &dof, dP.val );

    // transfer P to device
    CHECK( magma_smtransfer( dP, &dP1, Magma_CPU, Magma_DEV, queue ));
    magma_smfree( &dP, queue );

    // P = ortho(P1)
    if ( dP1.num_cols > 1 ) {
        // P = magma_sqr(P1), QR factorization
        CHECK( magma_sqr( dP1.num_rows, dP1.num_cols, dP1, dP1.ld, &dP, NULL, queue ));
    } else {
        // P = P1 / |P1|
        nrm = magma_snrm2( dof, dP1.dval, 1, queue );
        nrm = 1.0 / nrm;
        magma_sscal( dof, nrm, dP1.dval, 1, queue );
        CHECK( magma_smtransfer( dP1, &dP, Magma_DEV, Magma_DEV, queue ));
    }
    magma_smfree( &dP1, queue );
//---------------------------------------

    // allocate memory for the scalar products
    CHECK( magma_svinit( &hbeta, Magma_CPU, s, 1, c_zero, queue ));
    CHECK( magma_svinit( &dbeta, Magma_DEV, s, 1, c_zero, queue ));

    // smoothing enabled
    if ( smoothing > 0 ) {
        // set smoothing solution vector
        CHECK( magma_smtransfer( *x, &dxs, Magma_DEV, Magma_DEV, queue ));

        // set smoothing residual vector
        CHECK( magma_smtransfer( dr, &drs, Magma_DEV, Magma_DEV, queue ));
    }

    // G(n,s) = 0
    CHECK( magma_svinit( &dG, Magma_DEV, A.num_cols, s, c_zero, queue ));

    // U(n,s) = 0
    CHECK( magma_svinit( &dU, Magma_DEV, A.num_cols, s, c_zero, queue ));

    // M(s,s) = I
    CHECK( magma_svinit( &dM, Magma_DEV, s, s, c_zero, queue ));
    magmablas_slaset( MagmaFull, s, s, c_zero, c_one, dM.dval, s, queue );

    // f = 0
    CHECK( magma_svinit( &df, Magma_DEV, dP.num_cols, 1, c_zero, queue ));

    // t = 0
    CHECK( magma_svinit( &dt, Magma_DEV, dr.num_rows, 1, c_zero, queue ));

    // c = 0
    CHECK( magma_svinit( &dc, Magma_DEV, dM.num_cols, 1, c_zero, queue ));

    // v = 0
    CHECK( magma_svinit( &dv, Magma_DEV, dr.num_rows, 1, c_zero, queue ));

    // lu = 0
    CHECK( magma_svinit( &dlu, Magma_DEV, A.num_rows, 1, c_zero, queue ));

    //--------------START TIME---------------
    // chronometry
    tempo1 = magma_sync_wtime( queue );
    if ( solver_par->verbose > 0 ) {
        solver_par->timing[0] = 0.0;
    }

    om = MAGMA_S_ONE;
    innerflag = 0;

    // start iteration
    do
    {
        solver_par->numiter++;
    
        // new RHS for small systems
        // f = P' r
        magmablas_sgemv( MagmaConjTrans, dP.num_rows, dP.num_cols, c_one, dP.dval, dP.ld, dr.dval, 1, c_zero, df.dval, 1, queue );

        // shadow space loop
        for ( k = 0; k < s; ++k ) {
            sk = s - k;
    
            // f(k:s) = M(k:s,k:s) c(k:s)
            magma_scopyvector( sk, &df.dval[k], 1, &dc.dval[k], 1, queue );
            magma_strsv( MagmaLower, MagmaNoTrans, MagmaNonUnit, sk, &dM.dval[k*dM.ld+k], dM.ld, &dc.dval[k], 1, queue );

            // v = r - G(:,k:s) c(k:s)
            magma_scopyvector( dr.num_rows, dr.dval, 1, dv.dval, 1, queue );
            magmablas_sgemv( MagmaNoTrans, dG.num_rows, sk, c_n_one, &dG.dval[k*dG.ld], dG.ld, &dc.dval[k], 1, c_one, dv.dval, 1, queue );

            // preconditioning operation 
            // v = L \ v;
            // v = U \ v;
            CHECK( magma_s_applyprecond_left( MagmaNoTrans, A, dv, &dlu, precond_par, queue )); 
            CHECK( magma_s_applyprecond_right( MagmaNoTrans, A, dlu, &dv, precond_par, queue )); 

            // U(:,k) = om * v + U(:,k:s) c(k:s)
            magmablas_sgemv( MagmaNoTrans, dU.num_rows, sk, c_one, &dU.dval[k*dU.ld], dU.ld, &dc.dval[k], 1, om, dv.dval, 1, queue );
            magma_scopyvector( dU.num_rows, dv.dval, 1, &dU.dval[k*dU.ld], 1, queue );

            // G(:,k) = A U(:,k)
            CHECK( magma_s_spmv( c_one, A, dv, c_zero, dv, queue ));
            solver_par->spmv_count++;
            magma_scopyvector( dG.num_rows, dv.dval, 1, &dG.dval[k*dG.ld], 1, queue );

            // bi-orthogonalize the new basis vectors
            for ( i = 0; i < k; ++i ) {
                // alpha = P(:,i)' G(:,k)
                alpha = magma_sdot( dP.num_rows, &dP.dval[i*dP.ld], 1, &dG.dval[k*dG.ld], 1, queue );

                // alpha = alpha / M(i,i)
                magma_sgetvector( 1, &dM.dval[i*dM.ld+i], 1, &mkk, 1, queue );
                alpha = alpha / mkk;

                // G(:,k) = G(:,k) - alpha * G(:,i)
                magma_saxpy( dG.num_rows, -alpha, &dG.dval[i*dG.ld], 1, &dG.dval[k*dG.ld], 1, queue );

                // U(:,k) = U(:,k) - alpha * U(:,i)
                magma_saxpy( dU.num_rows, -alpha, &dU.dval[i*dU.ld], 1, &dU.dval[k*dU.ld], 1, queue );
            }

            // new column of M = P'G, first k-1 entries are zero
            // M(k:s,k) = P(:,k:s)' G(:,k)
            magmablas_sgemv( MagmaConjTrans, dP.num_rows, sk, c_one, &dP.dval[k*dP.ld], dP.ld, &dG.dval[k*dG.ld], 1, c_zero, &dM.dval[k*dM.ld+k], 1, queue );

            // check M(k,k) == 0
            magma_sgetvector( 1, &dM.dval[k*dM.ld+k], 1, &mkk, 1, queue );
            if ( MAGMA_S_EQUAL(mkk, MAGMA_S_ZERO) ) {
                innerflag = 1;
                info = MAGMA_DIVERGENCE;
                break;
            }

            // beta = f(k) / M(k,k)
            magma_sgetvector( 1, &df.dval[k], 1, &fk, 1, queue );
            hbeta.val[k] = fk / mkk;

            // check for nan
            if ( magma_s_isnan( hbeta.val[k] ) || magma_s_isinf( hbeta.val[k] )) {
                innerflag = 1;
                info = MAGMA_DIVERGENCE;
                break;
            }

            // r = r - beta * G(:,k)
            magma_saxpy( dr.num_rows, -hbeta.val[k], &dG.dval[k*dG.ld], 1, dr.dval, 1, queue );

            // smoothing disabled
            if ( smoothing <= 0 ) {
                // |r|
                nrmr = magma_snrm2( dr.num_rows, dr.dval, 1, queue );

            // smoothing enabled
            } else {
                // x = x + beta * U(:,k)
                magma_saxpy( x->num_rows, hbeta.val[k], &dU.dval[k*dU.ld], 1, x->dval, 1, queue );

                // smoothing operation
//---------------------------------------
                // t = rs - r
                magma_scopyvector( drs.num_rows, drs.dval, 1, dt.dval, 1, queue );
                magma_saxpy( dt.num_rows, c_n_one, dr.dval, 1, dt.dval, 1, queue );

                // t't
                // t'rs 
                tt = magma_sdot( dt.num_rows, dt.dval, 1, dt.dval, 1, queue );
                tr = magma_sdot( dt.num_rows, dt.dval, 1, drs.dval, 1, queue );

                // gamma = (t' * rs) / (t' * t)
                gamma = tr / tt;

                // rs = rs - gamma * (rs - r) 
                magma_saxpy( drs.num_rows, -gamma, dt.dval, 1, drs.dval, 1, queue );

                // xs = xs - gamma * (xs - x) 
                magma_scopyvector( dxs.num_rows, dxs.dval, 1, dt.dval, 1, queue );
                magma_saxpy( dt.num_rows, c_n_one, x->dval, 1, dt.dval, 1, queue );
                magma_saxpy( dxs.num_rows, -gamma, dt.dval, 1, dxs.dval, 1, queue );

                // |rs|
                nrmr = magma_snrm2( drs.num_rows, drs.dval, 1, queue );           
//---------------------------------------
            }

            // store current timing and residual
            if ( solver_par->verbose > 0 ) {
                tempo2 = magma_sync_wtime( queue );
                if ( (solver_par->numiter) % solver_par->verbose == 0 ) {
                    solver_par->res_vec[(solver_par->numiter) / solver_par->verbose]
                            = (real_Double_t)nrmr;
                    solver_par->timing[(solver_par->numiter) / solver_par->verbose]
                            = (real_Double_t)tempo2 - tempo1;
                }
            }

            // check convergence
            if ( nrmr <= solver_par->atol ||
                nrmr/nrmb <= solver_par->rtol ) {
                s = k + 1; // for the x-update outside the loop
                innerflag = 2;
                info = MAGMA_SUCCESS;
                break;
            }

            // non-last s iteration
            if ( (k + 1) < s ) {
                // f(k+1:s) = f(k+1:s) - beta * M(k+1:s,k)
                magma_saxpy( sk-1, -hbeta.val[k], &dM.dval[k*dM.ld+(k+1)], 1, &df.dval[k+1], 1, queue );
            }

        }

        // smoothing disabled
        if ( smoothing <= 0 && innerflag != 1 ) {
            // update solution approximation x
            // x = x + U(:,1:s) * beta(1:s)
            magma_ssetvector( s, hbeta.val, 1, dbeta.dval, 1, queue );
            magmablas_sgemv( MagmaNoTrans, dU.num_rows, s, c_one, dU.dval, dU.ld, dbeta.dval, 1, c_one, x->dval, 1, queue );
        }

        // check convergence or iteration limit or invalid result of inner loop
        if ( innerflag > 0 ) {
            break;
        }

        // v = r
        magma_scopyvector( dr.num_rows, dr.dval, 1, dv.dval, 1, queue );

        // preconditioning operation 
        // v = L \ v;
        // v = U \ v;
        CHECK( magma_s_applyprecond_left( MagmaNoTrans, A, dv, &dlu, precond_par, queue )); 
        CHECK( magma_s_applyprecond_right( MagmaNoTrans, A, dlu, &dv, precond_par, queue )); 

        // t = A v
        CHECK( magma_s_spmv( c_one, A, dv, c_zero, dt, queue ));
        solver_par->spmv_count++;

        // computation of a new omega
//---------------------------------------
        // |t|
        nrmt = magma_snrm2( dt.num_rows, dt.dval, 1, queue );

        // t'r 
        tr = magma_sdot( dt.num_rows, dt.dval, 1, dr.dval, 1, queue );

        // rho = abs(t' * r) / (|t| * |r|))
        rho = MAGMA_D_ABS( MAGMA_S_REAL(tr) / (nrmt * nrmr) );

        // om = (t' * r) / (|t| * |t|)
        om = tr / (nrmt * nrmt);
        if ( rho < angle ) {
            om = (om * angle) / rho;
        }
//---------------------------------------
        if ( MAGMA_S_EQUAL(om, MAGMA_S_ZERO) ) {
            info = MAGMA_DIVERGENCE;
            break;
        }

        // update approximation vector
        // x = x + om * v
        magma_saxpy( x->num_rows, om, dv.dval, 1, x->dval, 1, queue );

        // update residual vector
        // r = r - om * t
        magma_saxpy( dr.num_rows, -om, dt.dval, 1, dr.dval, 1, queue );

        // smoothing disabled
        if ( smoothing <= 0 ) {
            // residual norm
            nrmr = magma_snrm2( b.num_rows, dr.dval, 1, queue );

        // smoothing enabled
        } else {
            // smoothing operation
//---------------------------------------
            // t = rs - r
            magma_scopyvector( drs.num_rows, drs.dval, 1, dt.dval, 1, queue );
            magma_saxpy( dt.num_rows, c_n_one, dr.dval, 1, dt.dval, 1, queue );

            // t't
            // t'rs
            tt = magma_sdot( dt.num_rows, dt.dval, 1, dt.dval, 1, queue );
            tr = magma_sdot( dt.num_rows, dt.dval, 1, drs.dval, 1, queue );

            // gamma = (t' * rs) / (|t| * |t|)
            gamma = tr / tt;

            // rs = rs - gamma * (rs - r) 
            magma_saxpy( drs.num_rows, -gamma, dt.dval, 1, drs.dval, 1, queue );

            // xs = xs - gamma * (xs - x) 
            magma_scopyvector( dxs.num_rows, dxs.dval, 1, dt.dval, 1, queue );
            magma_saxpy( dt.num_rows, c_n_one, x->dval, 1, dt.dval, 1, queue );
            magma_saxpy( dxs.num_rows, -gamma, dt.dval, 1, dxs.dval, 1, queue );

            // |rs|
            nrmr = magma_snrm2( b.num_rows, drs.dval, 1, queue );           
//---------------------------------------
        }

        // store current timing and residual
        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter) % solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter) / solver_par->verbose]
                        = (real_Double_t)nrmr;
                solver_par->timing[(solver_par->numiter) / solver_par->verbose]
                        = (real_Double_t)tempo2 - tempo1;
            }
        }

        // check convergence
        if ( nrmr <= solver_par->atol ||
            nrmr/nrmb <= solver_par->rtol ) { 
            info = MAGMA_SUCCESS;
            break;
        }
    }
    while ( solver_par->numiter + 1 <= solver_par->maxiter );

    // smoothing enabled
    if ( smoothing > 0 ) {
        // x = xs
        magma_scopyvector( x->num_rows, dxs.dval, 1, x->dval, 1, queue );

        // r = rs
        magma_scopyvector( dr.num_rows, drs.dval, 1, dr.dval, 1, queue );
    }

    // get last iteration timing
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t)tempo2 - tempo1;
//--------------STOP TIME----------------

    // get final stats
    solver_par->iter_res = nrmr;
    CHECK( magma_sresidualvec( A, b, *x, &dr, &residual, queue ));
    solver_par->final_res = residual;

    // set solver conclusion
    if ( info != MAGMA_SUCCESS && info != MAGMA_DIVERGENCE ) {
        if ( solver_par->init_res > solver_par->final_res ) {
            info = MAGMA_SLOW_CONVERGENCE;
        }
    }


cleanup:
    // free resources
    // smoothing enabled
    if ( smoothing > 0 ) {
        magma_smfree( &dxs, queue );
        magma_smfree( &drs, queue );
    }
    magma_smfree( &dr, queue );
    magma_smfree( &dP, queue );
    magma_smfree( &dP1, queue );
    magma_smfree( &dG, queue );
    magma_smfree( &dU, queue );
    magma_smfree( &dM, queue );
    magma_smfree( &df, queue );
    magma_smfree( &dt, queue );
    magma_smfree( &dc, queue );
    magma_smfree( &dv, queue );
    magma_smfree(&dlu, queue);
    magma_smfree( &dbeta, queue );
    magma_smfree( &hbeta, queue );

    solver_par->info = info;
    return info;
    /* magma_spidr */
}
Exemplo n.º 10
0
/* ////////////////////////////////////////////////////////////////////////////
   -- testing sparse matrix vector product
*/
int main(  int argc, char** argv )
{
    magma_int_t info = 0;
    TESTING_CHECK( magma_init() );
    magma_print_environment();
    magma_queue_t queue=NULL;
    magma_queue_create( 0, &queue );
    
    magma_s_matrix hA={Magma_CSR}, hA_SELLP={Magma_CSR}, 
    dA={Magma_CSR}, dA_SELLP={Magma_CSR};
    
    magma_s_matrix hx={Magma_CSR}, hy={Magma_CSR}, dx={Magma_CSR}, 
    dy={Magma_CSR}, hrefvec={Magma_CSR}, hcheck={Magma_CSR};
        
    hA_SELLP.blocksize = 8;
    hA_SELLP.alignment = 8;
    real_Double_t start, end, res;
    #ifdef MAGMA_WITH_MKL
        magma_int_t *pntre=NULL;
    #endif
    cusparseHandle_t cusparseHandle = NULL;
    cusparseMatDescr_t descr = NULL;

    float c_one  = MAGMA_S_MAKE(1.0, 0.0);
    float c_zero = MAGMA_S_MAKE(0.0, 0.0);
    
    float accuracy = 1e-10;
    
    #define PRECISION_s
    #if defined(PRECISION_c)
        accuracy = 1e-4;
    #endif
    #if defined(PRECISION_s)
        accuracy = 1e-4;
    #endif
    
    magma_int_t i, j;
    for( i = 1; i < argc; ++i ) {
        if ( strcmp("--blocksize", argv[i]) == 0 ) {
            hA_SELLP.blocksize = atoi( argv[++i] );
        } else if ( strcmp("--alignment", argv[i]) == 0 ) {
            hA_SELLP.alignment = atoi( argv[++i] );
        } else
            break;
    }
    printf("\n#    usage: ./run_sspmm"
           " [ --blocksize %lld --alignment %lld (for SELLP) ] matrices\n\n",
           (long long) hA_SELLP.blocksize, (long long) hA_SELLP.alignment );

    while( i < argc ) {
        if ( strcmp("LAPLACE2D", argv[i]) == 0 && i+1 < argc ) {   // Laplace test
            i++;
            magma_int_t laplace_size = atoi( argv[i] );
            TESTING_CHECK( magma_sm_5stencil(  laplace_size, &hA, queue ));
        } else {                        // file-matrix test
            TESTING_CHECK( magma_s_csr_mtx( &hA,  argv[i], queue ));
        }

        printf("%% matrix info: %lld-by-%lld with %lld nonzeros\n",
                (long long) hA.num_rows, (long long) hA.num_cols, (long long) hA.nnz );

        real_Double_t FLOPS = 2.0*hA.nnz/1e9;



        // m - number of rows for the sparse matrix
        // n - number of vectors to be multiplied in the SpMM product
        magma_int_t m, n;

        m = hA.num_rows;
        n = 48;

        // init CPU vectors
        TESTING_CHECK( magma_svinit( &hx, Magma_CPU, m, n, c_one, queue ));
        TESTING_CHECK( magma_svinit( &hy, Magma_CPU, m, n, c_zero, queue ));

        // init DEV vectors
        TESTING_CHECK( magma_svinit( &dx, Magma_DEV, m, n, c_one, queue ));
        TESTING_CHECK( magma_svinit( &dy, Magma_DEV, m, n, c_zero, queue ));


        // calling MKL with CSR
        #ifdef MAGMA_WITH_MKL
            TESTING_CHECK( magma_imalloc_cpu( &pntre, m + 1 ) );
            pntre[0] = 0;
            for (j=0; j < m; j++ ) {
                pntre[j] = hA.row[j+1];
            }

            MKL_INT num_rows = hA.num_rows;
            MKL_INT num_cols = hA.num_cols;
            MKL_INT nnz = hA.nnz;
            MKL_INT num_vecs = n;

            MKL_INT *col;
            TESTING_CHECK( magma_malloc_cpu( (void**) &col, nnz * sizeof(MKL_INT) ));
            for( magma_int_t t=0; t < hA.nnz; ++t ) {
                col[ t ] = hA.col[ t ];
            }
            MKL_INT *row;
            TESTING_CHECK( magma_malloc_cpu( (void**) &row, num_rows * sizeof(MKL_INT) ));
            for( magma_int_t t=0; t < hA.num_rows; ++t ) {
                row[ t ] = hA.col[ t ];
            }

            // === Call MKL with consecutive SpMVs, using mkl_scsrmv ===
            // warmp up
            mkl_scsrmv( "N", &num_rows, &num_cols,
                        MKL_ADDR(&c_one), "GFNC", MKL_ADDR(hA.val), col, row, pntre,
                                                  MKL_ADDR(hx.val),
                        MKL_ADDR(&c_zero),        MKL_ADDR(hy.val) );
    
            start = magma_wtime();
            for (j=0; j < 10; j++ ) {
                mkl_scsrmv( "N", &num_rows, &num_cols,
                            MKL_ADDR(&c_one), "GFNC", MKL_ADDR(hA.val), col, row, pntre,
                                                      MKL_ADDR(hx.val),
                            MKL_ADDR(&c_zero),        MKL_ADDR(hy.val) );
            }
            end = magma_wtime();
            printf( "\n > MKL SpMVs : %.2e seconds %.2e GFLOP/s    (CSR).\n",
                                            (end-start)/10, FLOPS*10/(end-start) );
    
            // === Call MKL with blocked SpMVs, using mkl_scsrmm ===
            char transa = 'n';
            MKL_INT ldb = n, ldc=n;
            char matdescra[6] = {'g', 'l', 'n', 'c', 'x', 'x'};
    
            // warm up
            mkl_scsrmm( &transa, &num_rows, &num_vecs, &num_cols, MKL_ADDR(&c_one), matdescra,
                        MKL_ADDR(hA.val), col, row, pntre,
                        MKL_ADDR(hx.val), &ldb,
                        MKL_ADDR(&c_zero),
                        MKL_ADDR(hy.val), &ldc );
    
            start = magma_wtime();
            for (j=0; j < 10; j++ ) {
                mkl_scsrmm( &transa, &num_rows, &num_vecs, &num_cols, MKL_ADDR(&c_one), matdescra,
                            MKL_ADDR(hA.val), col, row, pntre,
                            MKL_ADDR(hx.val), &ldb,
                            MKL_ADDR(&c_zero),
                            MKL_ADDR(hy.val), &ldc );
            }
            end = magma_wtime();
            printf( "\n > MKL SpMM  : %.2e seconds %.2e GFLOP/s    (CSR).\n",
                    (end-start)/10, FLOPS*10.*n/(end-start) );

            magma_free_cpu( row );
            magma_free_cpu( col );
            row = NULL;
            col = NULL;

        #endif // MAGMA_WITH_MKL

        // copy matrix to GPU
        TESTING_CHECK( magma_smtransfer( hA, &dA, Magma_CPU, Magma_DEV, queue ));
        // SpMV on GPU (CSR)
        start = magma_sync_wtime( queue );
        for (j=0; j < 10; j++) {
            TESTING_CHECK( magma_s_spmv( c_one, dA, dx, c_zero, dy, queue ));
        }
        end = magma_sync_wtime( queue );
        printf( " > MAGMA: %.2e seconds %.2e GFLOP/s    (standard CSR).\n",
                                        (end-start)/10, FLOPS*10.*n/(end-start) );

        TESTING_CHECK( magma_smtransfer( dy, &hrefvec , Magma_DEV, Magma_CPU, queue ));
        magma_smfree(&dA, queue );


        // convert to SELLP and copy to GPU
        TESTING_CHECK( magma_smconvert(  hA, &hA_SELLP, Magma_CSR, Magma_SELLP, queue ));
        TESTING_CHECK( magma_smtransfer( hA_SELLP, &dA_SELLP, Magma_CPU, Magma_DEV, queue ));
        magma_smfree(&hA_SELLP, queue );
        magma_smfree( &dy, queue );
        TESTING_CHECK( magma_svinit( &dy, Magma_DEV, dx.num_rows, dx.num_cols, c_zero, queue ));
        // SpMV on GPU (SELLP)
        start = magma_sync_wtime( queue );
        for (j=0; j < 10; j++) {
            TESTING_CHECK( magma_s_spmv( c_one, dA_SELLP, dx, c_zero, dy, queue ));
        }
        end = magma_sync_wtime( queue );
        printf( " > MAGMA: %.2e seconds %.2e GFLOP/s    (SELLP).\n",
                                        (end-start)/10, FLOPS*10.*n/(end-start) );

        TESTING_CHECK( magma_smtransfer( dy, &hcheck , Magma_DEV, Magma_CPU, queue ));
        res = 0.0;
        for(magma_int_t k=0; k < hA.num_rows; k++ ) {
            res=res + MAGMA_S_REAL(hcheck.val[k]) - MAGMA_S_REAL(hrefvec.val[k]);
        }
        printf("%% |x-y|_F = %8.2e\n", res);
        if ( res < accuracy )
            printf("%% tester spmm SELL-P:  ok\n");
        else
            printf("%% tester spmm SELL-P:  failed\n");
        magma_smfree( &hcheck, queue );
        magma_smfree(&dA_SELLP, queue );



        // SpMV on GPU (CUSPARSE - CSR)
        // CUSPARSE context //
        magma_smfree( &dy, queue );
        TESTING_CHECK( magma_svinit( &dy, Magma_DEV, dx.num_rows, dx.num_cols, c_zero, queue ));
        //#ifdef PRECISION_d
        start = magma_sync_wtime( queue );
        TESTING_CHECK( cusparseCreate( &cusparseHandle ));
        TESTING_CHECK( cusparseSetStream( cusparseHandle, magma_queue_get_cuda_stream(queue) ));
        TESTING_CHECK( cusparseCreateMatDescr( &descr ));
        TESTING_CHECK( cusparseSetMatType( descr, CUSPARSE_MATRIX_TYPE_GENERAL ));
        TESTING_CHECK( cusparseSetMatIndexBase( descr, CUSPARSE_INDEX_BASE_ZERO ));
        float alpha = c_one;
        float beta = c_zero;

        // copy matrix to GPU
        TESTING_CHECK( magma_smtransfer( hA, &dA, Magma_CPU, Magma_DEV, queue) );

        for (j=0; j < 10; j++) {
            cusparseScsrmm(cusparseHandle,
                    CUSPARSE_OPERATION_NON_TRANSPOSE,
                    dA.num_rows,   n, dA.num_cols, dA.nnz,
                    &alpha, descr, dA.dval, dA.drow, dA.dcol,
                    dx.dval, dA.num_cols, &beta, dy.dval, dA.num_cols);
        }
        end = magma_sync_wtime( queue );
        printf( " > CUSPARSE: %.2e seconds %.2e GFLOP/s    (CSR).\n",
                                        (end-start)/10, FLOPS*10*n/(end-start) );

        TESTING_CHECK( magma_smtransfer( dy, &hcheck , Magma_DEV, Magma_CPU, queue ));
        res = 0.0;
        for(magma_int_t k=0; k < hA.num_rows; k++ ) {
            res = res + MAGMA_S_REAL(hcheck.val[k]) - MAGMA_S_REAL(hrefvec.val[k]);
        }
        printf("%% |x-y|_F = %8.2e\n", res);
        if ( res < accuracy )
            printf("%% tester spmm cuSPARSE:  ok\n");
        else
            printf("%% tester spmm cuSPARSE:  failed\n");
        magma_smfree( &hcheck, queue );

        cusparseDestroyMatDescr( descr ); 
        cusparseDestroy( cusparseHandle );
        descr = NULL;
        cusparseHandle = NULL;
        //#endif

        printf("\n\n");

        // free CPU memory
        magma_smfree( &hA, queue );
        magma_smfree( &hx, queue );
        magma_smfree( &hy, queue );
        magma_smfree( &hrefvec, queue );
        // free GPU memory
        magma_smfree( &dx, queue );
        magma_smfree( &dy, queue );
        magma_smfree( &dA, queue);

        #ifdef MAGMA_WITH_MKL
            magma_free_cpu( pntre );
        #endif
        
        i++;
    }

    magma_queue_destroy( queue );
    TESTING_CHECK( magma_finalize() );
    return info;
}
Exemplo n.º 11
0
/* ////////////////////////////////////////////////////////////////////////////
   -- testing any solver
*/
int main(  int argc, char** argv )
{
    magma_int_t info = 0;
    TESTING_INIT();

    magma_sopts zopts;
    magma_queue_t queue=NULL;
    magma_queue_create( /*devices[ opts->device ],*/ &queue );
    
    float one = MAGMA_S_MAKE(1.0, 0.0);
    float zero = MAGMA_S_MAKE(0.0, 0.0);
    magma_s_matrix A={Magma_CSR}, B={Magma_CSR}, B_d={Magma_CSR};
    magma_s_matrix x={Magma_CSR}, b={Magma_CSR};
    
    int i=1;
    CHECK( magma_sparse_opts( argc, argv, &zopts, &i, queue ));

    B.blocksize = zopts.blocksize;
    B.alignment = zopts.alignment;

    if ( zopts.solver_par.solver != Magma_PCG &&
         zopts.solver_par.solver != Magma_PGMRES &&
         zopts.solver_par.solver != Magma_PBICGSTAB &&
         zopts.solver_par.solver != Magma_ITERREF  &&
         zopts.solver_par.solver != Magma_LOBPCG )
        zopts.precond_par.solver = Magma_NONE;

    CHECK( magma_ssolverinfo_init( &zopts.solver_par, &zopts.precond_par, queue ));

    while(  i < argc ) {

        if ( strcmp("LAPLACE2D", argv[i]) == 0 && i+1 < argc ) {   // Laplace test
            i++;
            magma_int_t laplace_size = atoi( argv[i] );
            CHECK( magma_sm_5stencil(  laplace_size, &A, queue ));
        } else {                        // file-matrix test
            CHECK( magma_s_csr_mtx( &A,  argv[i], queue ));
        }

        printf( "\n# matrix info: %d-by-%d with %d nonzeros\n\n",
                            (int) A.num_rows,(int) A.num_cols,(int) A.nnz );


        // for the eigensolver case
        zopts.solver_par.ev_length = A.num_rows;
        CHECK( magma_seigensolverinfo_init( &zopts.solver_par, queue ));

        // scale matrix
        CHECK( magma_smscale( &A, zopts.scaling, queue ));

        CHECK( magma_smconvert( A, &B, Magma_CSR, zopts.output_format, queue ));
        CHECK( magma_smtransfer( B, &B_d, Magma_CPU, Magma_DEV, queue ));

        // vectors and initial guess
        CHECK( magma_svinit( &b, Magma_DEV, A.num_cols, 1, one, queue ));
        //magma_svinit( &x, Magma_DEV, A.num_cols, 1, one, queue );
        //magma_s_spmv( one, B_d, x, zero, b, queue );                 //  b = A x
        //magma_smfree(&x, queue );
        CHECK( magma_svinit( &x, Magma_DEV, A.num_cols, 1, zero, queue ));
        
        info = magma_s_solver( B_d, b, &x, &zopts, queue );
        if( info != 0 ){
            printf("error: solver returned: %s (%d).\n",
                magma_strerror( info ), info );
        }
        magma_ssolverinfo( &zopts.solver_par, &zopts.precond_par, queue );

        magma_smfree(&B_d, queue );
        magma_smfree(&B, queue );
        magma_smfree(&A, queue );
        magma_smfree(&x, queue );
        magma_smfree(&b, queue );

        i++;
    }


    


cleanup:
    magma_smfree(&B_d, queue );
    magma_smfree(&B, queue );
    magma_smfree(&A, queue );
    magma_smfree(&x, queue );
    magma_smfree(&b, queue );
    magma_ssolverinfo_free( &zopts.solver_par, &zopts.precond_par, queue );
    magma_queue_destroy( queue );
    TESTING_FINALIZE();
    return info;
}
Exemplo n.º 12
0
extern "C" magma_int_t
magma_sbicg(
    magma_s_matrix A, magma_s_matrix b, magma_s_matrix *x,
    magma_s_solver_par *solver_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // prepare solver feedback
    solver_par->solver = Magma_BICG;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;

    // some useful variables
    float c_zero = MAGMA_S_ZERO;
    float c_one  = MAGMA_S_ONE;
    float c_neg_one = MAGMA_S_NEG_ONE;
    
    magma_int_t dofs = A.num_rows * b.num_cols;

    // workspace
    magma_s_matrix r={Magma_CSR}, rt={Magma_CSR}, p={Magma_CSR}, pt={Magma_CSR}, 
                z={Magma_CSR}, zt={Magma_CSR}, q={Magma_CSR}, y={Magma_CSR}, 
                yt={Magma_CSR},  qt={Magma_CSR};
                
    // need to transpose the matrix
    magma_s_matrix AT={Magma_CSR}, Ah1={Magma_CSR}, Ah2={Magma_CSR};
    
    CHECK( magma_svinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &rt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &p, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &pt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &q, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &qt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &y, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &yt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &z, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &zt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));

    
    // solver variables
    float alpha, rho, beta, rho_new, ptq;
    float res, nomb, nom0, r0;

        // transpose the matrix
    magma_smtransfer( A, &Ah1, Magma_DEV, Magma_CPU, queue );
    magma_smconvert( Ah1, &Ah2, A.storage_type, Magma_CSR, queue );
    magma_smfree(&Ah1, queue );
    magma_smtransposeconjugate( Ah2, &Ah1, queue );
    magma_smfree(&Ah2, queue );
    Ah2.blocksize = A.blocksize;
    Ah2.alignment = A.alignment;
    magma_smconvert( Ah1, &Ah2, Magma_CSR, A.storage_type, queue );
    magma_smfree(&Ah1, queue );
    magma_smtransfer( Ah2, &AT, Magma_CPU, Magma_DEV, queue );
    magma_smfree(&Ah2, queue );
    
    // solver setup
    CHECK(  magma_sresidualvec( A, b, *x, &r, &nom0, queue));
    res = nom0;
    solver_par->init_res = nom0;
    magma_scopy( dofs, r.dval, 1, rt.dval, 1, queue );                  // rr = r
    rho_new = magma_sdot( dofs, rt.dval, 1, r.dval, 1, queue );             // rho=<rr,r>
    rho = alpha = MAGMA_S_MAKE( 1.0, 0. );

    nomb = magma_snrm2( dofs, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    if ( (r0 = nomb * solver_par->rtol) < ATOLERANCE ){
        r0 = ATOLERANCE;
    }
    
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = nom0;
        solver_par->timing[0] = 0.0;
    }
    if ( nom0 < r0 ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );


    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    // start iteration
    do
    {
        solver_par->numiter++;

        magma_scopy( dofs, r.dval, 1 , y.dval, 1, queue );             // y=r
        magma_scopy( dofs, y.dval, 1 , z.dval, 1, queue );             // z=y
        magma_scopy( dofs, rt.dval, 1 , yt.dval, 1, queue );           // yt=rt
        magma_scopy( dofs, yt.dval, 1 , zt.dval, 1, queue );           // zt=yt
        
        rho= rho_new;
        rho_new = magma_sdot( dofs, rt.dval, 1, z.dval, 1, queue );  // rho=<rt,z>
        if( magma_s_isnan_inf( rho_new ) ){
            info = MAGMA_DIVERGENCE;
            break;
        }
        
        if( solver_par->numiter==1 ){
            magma_scopy( dofs, z.dval, 1 , p.dval, 1, queue );           // yt=rt
            magma_scopy( dofs, zt.dval, 1 , pt.dval, 1, queue );           // zt=yt
        } else {
            beta = rho_new/rho;
            magma_sscal( dofs, beta, p.dval, 1, queue );                 // p = beta*p
            magma_saxpy( dofs, c_one , z.dval, 1 , p.dval, 1, queue );   // p = z+beta*p
            magma_sscal( dofs, MAGMA_S_CONJ(beta), pt.dval, 1, queue );   // pt = beta*pt
            magma_saxpy( dofs, c_one , zt.dval, 1 , pt.dval, 1, queue );  // pt = zt+beta*pt
        }
        CHECK( magma_s_spmv( c_one, A, p, c_zero, q, queue ));      // v = Ap
        CHECK( magma_s_spmv( c_one, AT, pt, c_zero, qt, queue ));   // v = Ap
        solver_par->spmv_count++;
        solver_par->spmv_count++;
        ptq = magma_sdot( dofs, pt.dval, 1, q.dval, 1, queue );
        alpha = rho_new /ptq;
        
        
        magma_saxpy( dofs, alpha, p.dval, 1 , x->dval, 1, queue );                // x=x+alpha*p
        magma_saxpy( dofs, c_neg_one * alpha, q.dval, 1 , r.dval, 1, queue );     // r=r+alpha*q
        magma_saxpy( dofs, c_neg_one * MAGMA_S_CONJ(alpha), qt.dval, 1 , rt.dval, 1, queue );     // r=r+alpha*q

        res = magma_snrm2( dofs, r.dval, 1, queue );

        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if ( res/nomb <= solver_par->rtol || res <= solver_par->atol ){
            break;
        }
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    float residual;
    CHECK(  magma_sresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->iter_res = res;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->rtol*solver_par->init_res ||
            solver_par->iter_res < solver_par->atol ) {
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_smfree(&r, queue );
    magma_smfree(&rt, queue );
    magma_smfree(&p, queue );
    magma_smfree(&pt, queue );
    magma_smfree(&q, queue );
    magma_smfree(&qt, queue );
    magma_smfree(&y, queue );
    magma_smfree(&yt, queue );
    magma_smfree(&z, queue );
    magma_smfree(&zt, queue );
    magma_smfree(&AT, queue );
    magma_smfree(&Ah1, queue );
    magma_smfree(&Ah2, queue );

    solver_par->info = info;
    return info;
}   /* magma_sbicg */
Exemplo n.º 13
0
extern "C" magma_int_t
magma_smtransposeconjugate(
    magma_s_matrix A,
    magma_s_matrix *B,
    magma_queue_t queue )
{
    // for symmetric matrices: convert to csc using cusparse
    
    magma_int_t info = 0;
    cusparseHandle_t handle=NULL;
    cusparseMatDescr_t descrA=NULL;
    cusparseMatDescr_t descrB=NULL;
    
    magma_s_matrix ACSR={Magma_CSR}, BCSR={Magma_CSR};
    magma_s_matrix A_d={Magma_CSR}, B_d={Magma_CSR};

    if( A.storage_type == Magma_CSR && A.memory_location == Magma_DEV ) {
        // fill in information for B
        B->storage_type    = A.storage_type;
        B->diagorder_type  = A.diagorder_type;
        B->memory_location = Magma_DEV;
        B->num_rows        = A.num_cols;  // transposed
        B->num_cols        = A.num_rows;  // transposed
        B->nnz             = A.nnz;
        B->true_nnz = A.true_nnz;
        if ( A.fill_mode == MagmaFull ) {
            B->fill_mode = MagmaFull;
        }
        else if ( A.fill_mode == MagmaLower ) {
            B->fill_mode = MagmaUpper;
        }
        else if ( A.fill_mode == MagmaUpper ) {
            B->fill_mode = MagmaLower;
        }
        B->dval = NULL;
        B->drow = NULL;
        B->dcol = NULL;
        
        // memory allocation
        CHECK( magma_smalloc( &B->dval, B->nnz ));
        CHECK( magma_index_malloc( &B->drow, B->num_rows + 1 ));
        CHECK( magma_index_malloc( &B->dcol, B->nnz ));
        // CUSPARSE context //
        CHECK_CUSPARSE( cusparseCreate( &handle ));
        CHECK_CUSPARSE( cusparseSetStream( handle, queue->cuda_stream() ));
        CHECK_CUSPARSE( cusparseCreateMatDescr( &descrA ));
        CHECK_CUSPARSE( cusparseCreateMatDescr( &descrB ));
        CHECK_CUSPARSE( cusparseSetMatType( descrA, CUSPARSE_MATRIX_TYPE_GENERAL ));
        CHECK_CUSPARSE( cusparseSetMatType( descrB, CUSPARSE_MATRIX_TYPE_GENERAL ));
        CHECK_CUSPARSE( cusparseSetMatIndexBase( descrA, CUSPARSE_INDEX_BASE_ZERO ));
        CHECK_CUSPARSE( cusparseSetMatIndexBase( descrB, CUSPARSE_INDEX_BASE_ZERO ));
        CHECK_CUSPARSE(
        cusparseScsr2csc( handle, A.num_rows, A.num_cols, A.nnz,
                          A.dval, A.drow, A.dcol, B->dval, B->dcol, B->drow,
                          CUSPARSE_ACTION_NUMERIC,
                          CUSPARSE_INDEX_BASE_ZERO) );
        CHECK( magma_smconjugate( B, queue ));
    } else if ( A.memory_location == Magma_CPU ){
        CHECK( magma_smtransfer( A, &A_d, A.memory_location, Magma_DEV, queue ));
        CHECK( magma_smtransposeconjugate( A_d, &B_d, queue ));
        CHECK( magma_smtransfer( B_d, B, Magma_DEV, A.memory_location, queue ));
    } else {
        CHECK( magma_smconvert( A, &ACSR, A.storage_type, Magma_CSR, queue ));
        CHECK( magma_smtransposeconjugate( ACSR, &BCSR, queue ));
        CHECK( magma_smconvert( BCSR, B, Magma_CSR, A.storage_type, queue ));
    }
cleanup:
    cusparseDestroyMatDescr( descrA );
    cusparseDestroyMatDescr( descrB );
    cusparseDestroy( handle );
    magma_smfree( &A_d, queue );
    magma_smfree( &B_d, queue );
    magma_smfree( &ACSR, queue );
    magma_smfree( &BCSR, queue );
    if( info != 0 ){
        magma_smfree( B, queue );
    }
    return info;
}
Exemplo n.º 14
0
extern "C" magma_int_t
magma_scsrsplit(
    magma_int_t offset,
    magma_int_t bsize,
    magma_s_matrix A,
    magma_s_matrix *D,
    magma_s_matrix *R,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    magma_int_t i, k, j, nnz_diag, nnz_offd;
    
    D->val = NULL;
    D->col = NULL;
    D->row = NULL;
    D->rowidx = NULL;
    D->blockinfo = NULL;
    D->diag = NULL;
    D->dval = NULL;
    D->dcol = NULL;
    D->drow = NULL;
    D->drowidx = NULL;
    D->ddiag = NULL;
    R->val = NULL;
    R->col = NULL;
    R->row = NULL;
    R->rowidx = NULL;
    R->blockinfo = NULL;
    R->diag = NULL;
    R->dval = NULL;
    R->dcol = NULL;
    R->drow = NULL;
    R->drowidx = NULL;
    R->ddiag = NULL;
    
    if (  A.memory_location == Magma_CPU &&
            (   A.storage_type == Magma_CSR ||
                A.storage_type == Magma_CSRCOO ) )
    {
        nnz_diag = nnz_offd = 0;
        // Count the new number of nonzeroes in the two matrices
        for( i=0; i<offset; i+=offset ){
            for( k=i; k<min(A.num_rows,i+offset); k++ ){
                int check = 0;
                for( j=A.row[k]; j<A.row[k+1]; j++ ){
                    if ( A.col[j] < i )
                        nnz_offd++;
                    else if ( A.col[j] < i+offset ){
                        if( A.col[j] == k ){
                            check = 1;
                        }
                        nnz_diag++;
                    }
                    else
                        nnz_offd++;
                }
                if( check == 0 ){
                    printf("error: matrix contains zero on diagonal at (%d,%d).\n", int(i), int(i));
                    info = -1;
                    goto cleanup;
                }
            }
        }
        magma_int_t ii = i;
        for( i=ii; i<A.num_rows; i+=bsize ){
            for( k=i; k<min(A.num_rows,i+bsize); k++ ){
                int check = 0;
                for( j=A.row[k]; j<A.row[k+1]; j++ ){
                    if ( A.col[j] < i )
                        nnz_offd++;
                    else if ( A.col[j] < i+bsize ){
                        if( A.col[j] == k ){
                            check = 1;
                        }
                        nnz_diag++;
                    }
                    else
                        nnz_offd++;
                }
                if( check == 0 ){
                    printf("error: matrix contains zero on diagonal at (%d,%d).\n", int(i), int(i));
                    info = -1;
                    goto cleanup;
                }
            }
        }

        // Allocate memory for the new matrices
        D->storage_type = Magma_CSRD;
        D->memory_location = A.memory_location;
        D->num_rows = A.num_rows;
        D->num_cols = A.num_cols;
        D->nnz = nnz_diag;

        R->storage_type = Magma_CSR;
        R->memory_location = A.memory_location;
        R->num_rows = A.num_rows;
        R->num_cols = A.num_cols;
        R->nnz = nnz_offd;

        CHECK( magma_smalloc_cpu( &D->val, nnz_diag ));
        CHECK( magma_index_malloc_cpu( &D->row, A.num_rows+1 ));
        CHECK( magma_index_malloc_cpu( &D->col, nnz_diag ));

        CHECK( magma_smalloc_cpu( &R->val, nnz_offd ));
        CHECK( magma_index_malloc_cpu( &R->row, A.num_rows+1 ));
        CHECK( magma_index_malloc_cpu( &R->col, nnz_offd ));
        
        // Fill up the new sparse matrices
        D->row[0] = 0;
        R->row[0] = 0;

        nnz_offd = nnz_diag = 0;
        for( i=0; i<offset; i+=offset) {
            for( k=i; k<min(A.num_rows,i+offset); k++ ) {
                D->row[k+1] = D->row[k];
                R->row[k+1] = R->row[k];
     
                for( j=A.row[k]; j<A.row[k+1]; j++ ) {
                    if ( A.col[j] < i ) {
                        R->val[nnz_offd] = A.val[j];
                        R->col[nnz_offd] = A.col[j];
                        R->row[k+1]++;
                        nnz_offd++;
                    }
                    else if ( A.col[j] < i+offset ) {
                        // larger than diagonal remain as before
                        if ( A.col[j]>k ) {
                            D->val[nnz_diag] = A.val[ j ];
                            D->col[nnz_diag] = A.col[ j ];
                            D->row[k+1]++;
                        }
                        // diagonal is written first
                        else if ( A.col[j]==k ) {
                            D->val[D->row[k]] = A.val[ j ];
                            D->col[D->row[k]] = A.col[ j ];
                            D->row[k+1]++;
                        }
                        // smaller than diagonal are shifted one to the right
                        // to have room for the diagonal
                        else {
                            D->val[nnz_diag+1] = A.val[ j ];
                            D->col[nnz_diag+1] = A.col[ j ];
                            D->row[k+1]++;
                        }
                        nnz_diag++;
                    }
                    else {
                        R->val[nnz_offd] = A.val[j];
                        R->col[nnz_offd] = A.col[j];
                        R->row[k+1]++;
                        nnz_offd++;
                    }
                }
            }
        }
        ii = i;
        for( i=ii; i<A.num_rows; i+=bsize) {
            for( k=i; k<min(A.num_rows,i+bsize); k++ ) {
                D->row[k+1] = D->row[k];
                R->row[k+1] = R->row[k];
     
                for( j=A.row[k]; j<A.row[k+1]; j++ ) {
                    if ( A.col[j] < i ) {
                        R->val[nnz_offd] = A.val[j];
                        R->col[nnz_offd] = A.col[j];
                        R->row[k+1]++;
                        nnz_offd++;
                    }
                    else if ( A.col[j] < i+bsize ) {
                        // larger than diagonal remain as before
                        if ( A.col[j]>k ) {
                            D->val[nnz_diag] = A.val[ j ];
                            D->col[nnz_diag] = A.col[ j ];
                            D->row[k+1]++;
                        }
                        // diagonal is written first
                        else if ( A.col[j]==k ) {
                            D->val[D->row[k]] = A.val[ j ];
                            D->col[D->row[k]] = A.col[ j ];
                            D->row[k+1]++;
                        }
                        // smaller than diagonal are shifted one to the right
                        // to have room for the diagonal
                        else {
                            D->val[nnz_diag+1] = A.val[ j ];
                            D->col[nnz_diag+1] = A.col[ j ];
                            D->row[k+1]++;
                        }
                        nnz_diag++;
                    }
                    else {
                        R->val[nnz_offd] = A.val[j];
                        R->col[nnz_offd] = A.col[j];
                        R->row[k+1]++;
                        nnz_offd++;
                    }
                }
            }
        }
    }
    else {
        magma_s_matrix Ah={Magma_CSR}, ACSR={Magma_CSR}, DCSR={Magma_CSR}, RCSR={Magma_CSR}, Dh={Magma_CSR}, Rh={Magma_CSR};
        CHECK( magma_smtransfer( A, &Ah, A.memory_location, Magma_CPU, queue ));
        CHECK( magma_smconvert( Ah, &ACSR, A.storage_type, Magma_CSR, queue ));

        CHECK( magma_scsrsplit( offset, bsize, ACSR, &DCSR, &RCSR, queue ));

        CHECK( magma_smconvert( DCSR, &Dh, Magma_CSR, A.storage_type, queue ));
        CHECK( magma_smconvert( RCSR, &Rh, Magma_CSR, A.storage_type, queue ));

        CHECK( magma_smtransfer( Dh, D, Magma_CPU, A.memory_location, queue ));
        CHECK( magma_smtransfer( Rh, R, Magma_CPU, A.memory_location, queue ));

        magma_smfree( &Ah, queue );
        magma_smfree( &ACSR, queue );
        magma_smfree( &Dh, queue );
        magma_smfree( &DCSR, queue );
        magma_smfree( &Rh, queue );
        magma_smfree( &RCSR, queue );
    }
cleanup:
    if( info != 0 ){
        magma_smfree( D, queue );
        magma_smfree( R, queue );
    }
    return info;
}
Exemplo n.º 15
0
/* ////////////////////////////////////////////////////////////////////////////
   -- testing any solver
*/
int main(  int argc, char** argv )
{
    magma_int_t info = 0;
    TESTING_INIT();
    magma_queue_t queue=NULL;
    magma_queue_create( 0, &queue );
    
    float one = MAGMA_S_MAKE(1.0, 0.0);
    float zero = MAGMA_S_MAKE(0.0, 0.0);
    magma_s_matrix A={Magma_CSR}, B_d={Magma_CSR};
    magma_s_matrix x={Magma_CSR}, b={Magma_CSR};

    int i=1;
    while( i < argc ) {
        if ( strcmp("LAPLACE2D", argv[i]) == 0 && i+1 < argc ) {   // Laplace test
            i++;
            magma_int_t laplace_size = atoi( argv[i] );
            CHECK( magma_sm_5stencil(  laplace_size, &A, queue ));
        } else {                        // file-matrix test
            CHECK( magma_s_csr_mtx( &A,  argv[i], queue ));
        }

        printf( "\n# matrix info: %d-by-%d with %d nonzeros\n\n",
                            int(A.num_rows), int(A.num_cols), int(A.nnz) );

        magma_int_t n = A.num_rows;
        CHECK( magma_smtransfer( A, &B_d, Magma_CPU, Magma_DEV, queue ));

        // vectors and initial guess
        CHECK( magma_svinit( &b, Magma_DEV, A.num_cols, 1, zero, queue ));
        CHECK( magma_svinit( &x, Magma_DEV, A.num_cols, 1, one, queue ));
        
        CHECK( magma_sprint_vector( b, 90, 10, queue ));
        
            CHECK( magma_sprint_matrix( A, queue ));
            printf("\n\n\n");
            CHECK( magma_sprint_matrix( B_d, queue ));
        
        float res;
        res = magma_snrm2(n, b.dval, 1, queue );
        printf("norm0: %f\n", res);
        
        CHECK( magma_s_spmv( one, B_d, x, zero, b, queue ));         //  b = A x

        CHECK( magma_sprint_vector( b, 0, 100, queue ));
        CHECK( magma_sprint_vector( b, b.num_rows-10, 10, queue ));

        res = magma_snrm2( n, b.dval, 1, queue );
        printf("norm: %f\n", res);

        
        CHECK( magma_sresidual( B_d, x, b, &res, queue));
        printf("res: %f\n", res);


        magma_smfree(&B_d, queue );

        magma_smfree(&A, queue );
        
        magma_smfree(&x, queue );
        magma_smfree(&b, queue );

        i++;
    }

cleanup:
    magma_smfree(&A, queue );
    magma_smfree(&B_d, queue );
    magma_smfree(&x, queue );
    magma_smfree(&b, queue );
    
    magma_queue_destroy( queue );
    magma_finalize();
    return info;
}
Exemplo n.º 16
0
/* ////////////////////////////////////////////////////////////////////////////
   -- testing csr matrix add
*/
int main(  int argc, char** argv )
{
    magma_int_t info = 0;
    TESTING_INIT();
    
    magma_queue_t queue=NULL;
    magma_queue_create( &queue );

    real_Double_t res;
    magma_s_matrix A={Magma_CSR}, B={Magma_CSR}, B2={Magma_CSR}, 
    A_d={Magma_CSR}, B_d={Magma_CSR}, C_d={Magma_CSR};

    float one = MAGMA_S_MAKE(1.0, 0.0);
    float mone = MAGMA_S_MAKE(-1.0, 0.0);

    magma_int_t i=1;

    if ( strcmp("LAPLACE2D", argv[i]) == 0 && i+1 < argc ) {   // Laplace test
        i++;
        magma_int_t laplace_size = atoi( argv[i] );
        CHECK( magma_sm_5stencil(  laplace_size, &A, queue ));
    } else {                        // file-matrix test
        CHECK( magma_s_csr_mtx( &A,  argv[i], queue ));
    }
    printf("%% matrix info: %d-by-%d with %d nonzeros\n",
                        int(A.num_rows), int(A.num_cols), int(A.nnz) );
    i++;

    if ( strcmp("LAPLACE2D", argv[i]) == 0 && i+1 < argc ) {   // Laplace test
        i++;
        magma_int_t laplace_size = atoi( argv[i] );
        CHECK( magma_sm_5stencil(  laplace_size, &B, queue ));
    } else {                        // file-matrix test
        CHECK( magma_s_csr_mtx( &B,  argv[i], queue ));
    }
    printf("%% matrix info: %d-by-%d with %d nonzeros\n",
                        int(B.num_rows), int(B.num_cols), int(B.nnz) );


    CHECK( magma_smtransfer( A, &A_d, Magma_CPU, Magma_DEV, queue ));
    CHECK( magma_smtransfer( B, &B_d, Magma_CPU, Magma_DEV, queue ));

    CHECK( magma_scuspaxpy( &one, A_d, &one, B_d, &C_d, queue ));

    magma_smfree(&B_d, queue );

    CHECK( magma_scuspaxpy( &mone, A_d, &one, C_d, &B_d, queue ));
    
    CHECK( magma_smtransfer( B_d, &B2, Magma_DEV, Magma_CPU, queue ));

    magma_smfree(&A_d, queue );
    magma_smfree(&B_d, queue );
    magma_smfree(&C_d, queue );

    // check difference
    CHECK( magma_smdiff( B, B2, &res, queue ));
    printf("%% ||A-B||_F = %8.2e\n", res);
    if ( res < .000001 )
        printf("%% tester matrix add:  ok\n");
    else
        printf("%% tester matrix add:  failed\n");

    magma_smfree(&A, queue );
    magma_smfree(&B, queue );
    magma_smfree(&B2, queue );

cleanup:
    magma_smfree(&A_d, queue );
    magma_smfree(&B_d, queue );
    magma_smfree(&C_d, queue );
    magma_smfree(&A, queue );
    magma_smfree(&B, queue );
    magma_smfree(&B2, queue );
    magma_queue_destroy( queue );
    TESTING_FINALIZE();
    return info;
}
Exemplo n.º 17
0
extern "C" magma_int_t
magma_sjacobisetup_diagscal(
    magma_s_matrix A, magma_s_matrix *d,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    magma_int_t i;

    magma_s_matrix A_h1={Magma_CSR}, B={Magma_CSR};
    magma_s_matrix diag={Magma_CSR};
    CHECK( magma_svinit( &diag, Magma_CPU, A.num_rows, 1, MAGMA_S_ZERO, queue ));

    if ( A.storage_type != Magma_CSR || A.memory_location != Magma_CPU ) {
        CHECK( magma_smtransfer( A, &A_h1, A.memory_location, Magma_CPU, queue ));
        CHECK( magma_smconvert( A_h1, &B, A_h1.storage_type, Magma_CSR, queue ));
        
        for( magma_int_t rowindex=0; rowindex<B.num_rows; rowindex++ ) {
            magma_int_t start = (B.drow[rowindex]);
            magma_int_t end = (B.drow[rowindex+1]);
            for( i=start; i<end; i++ ) {
                if ( B.dcol[i]==rowindex ) {
                    diag.val[rowindex] = 1.0/B.val[i];
                    break;
                }
            }
            if ( diag.val[rowindex] == MAGMA_S_ZERO ){
                printf(" error: zero diagonal element in row %d!\n",
                                                            int(rowindex));
                
                if ( A.storage_type != Magma_CSR) {
                    magma_smfree( &A_h1, queue );
                }
                magma_smfree( &B, queue );
                magma_smfree( &diag, queue );
                info = MAGMA_ERR_BADPRECOND;
                goto cleanup;
            }
        }
    }
    else{
        for( magma_int_t rowindex=0; rowindex<A.num_rows; rowindex++ ) {
            magma_int_t start = (A.drow[rowindex]);
            magma_int_t end = (A.drow[rowindex+1]);
            for( i=start; i<end; i++ ) {
                if ( A.dcol[i]==rowindex ) {
                    diag.val[rowindex] = 1.0/A.val[i];
                    break;
                }
            }
            if ( diag.val[rowindex] == MAGMA_S_ZERO ){
                printf(" error: zero diagonal element in row %d!\n",
                                                            int(rowindex));
                
                if ( A.storage_type != Magma_CSR) {
                    magma_smfree( &A_h1, queue );
                }
                magma_smfree( &B, queue );
                magma_smfree( &diag, queue );
                info = MAGMA_ERR_BADPRECOND;
                goto cleanup;
            }
        }
    }
    CHECK( magma_smtransfer( diag, d, Magma_CPU, Magma_DEV, queue ));
    
cleanup:
    magma_smfree( &A_h1, queue );
    magma_smfree( &B, queue );
    magma_smfree( &diag, queue );
 
    return info;
}
Exemplo n.º 18
0
magma_int_t
magma_scustomicsetup(
    magma_s_matrix A,
    magma_s_matrix b,
    magma_s_preconditioner *precond,
    magma_queue_t queue )
{
    magma_int_t info = 0;

    cusparseHandle_t cusparseHandle=NULL;
    cusparseMatDescr_t descrL=NULL;
    cusparseMatDescr_t descrU=NULL;
    
    magma_s_matrix hA={Magma_CSR};
    char preconditionermatrix[255];
    
    snprintf( preconditionermatrix, sizeof(preconditionermatrix),
                "precondL.mtx" );
    
    CHECK( magma_s_csr_mtx( &hA, preconditionermatrix , queue) );
    
    
    // for CUSPARSE
    CHECK( magma_smtransfer( hA, &precond->M, Magma_CPU, Magma_DEV , queue ));

        // copy the matrix to precond->L and (transposed) to precond->U
    CHECK( magma_smtransfer(precond->M, &(precond->L), Magma_DEV, Magma_DEV, queue ));
    CHECK( magma_smtranspose( precond->L, &(precond->U), queue ));

    // extract the diagonal of L into precond->d
    CHECK( magma_sjacobisetup_diagscal( precond->L, &precond->d, queue ));
    CHECK( magma_svinit( &precond->work1, Magma_DEV, hA.num_rows, 1, MAGMA_S_ZERO, queue ));

    // extract the diagonal of U into precond->d2
    CHECK( magma_sjacobisetup_diagscal( precond->U, &precond->d2, queue ));
    CHECK( magma_svinit( &precond->work2, Magma_DEV, hA.num_rows, 1, MAGMA_S_ZERO, queue ));


    // CUSPARSE context //
    CHECK_CUSPARSE( cusparseCreate( &cusparseHandle ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrL ));
    CHECK_CUSPARSE( cusparseSetMatType( descrL, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrL, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrL, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrL, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoL ));
    CHECK_CUSPARSE( cusparseScsrsv_analysis( cusparseHandle,
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->M.num_rows,
        precond->M.nnz, descrL,
        precond->M.val, precond->M.row, precond->M.col, precond->cuinfoL ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrU ));
    CHECK_CUSPARSE( cusparseSetMatType( descrU, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrU, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrU, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrU, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoU ));
    CHECK_CUSPARSE( cusparseScsrsv_analysis( cusparseHandle,
        CUSPARSE_OPERATION_TRANSPOSE, precond->M.num_rows,
        precond->M.nnz, descrU,
        precond->M.val, precond->M.row, precond->M.col, precond->cuinfoU ));

    
    cleanup:
        
    cusparseDestroy( cusparseHandle );
    cusparseDestroyMatDescr( descrL );
    cusparseDestroyMatDescr( descrU );
    cusparseHandle=NULL;
    descrL=NULL;
    descrU=NULL;    
    magma_smfree( &hA, queue );
    
    return info;
}
Exemplo n.º 19
0
extern "C" magma_int_t
magma_sidr_strms(
    magma_s_matrix A, magma_s_matrix b, magma_s_matrix *x,
    magma_s_solver_par *solver_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;

    // prepare solver feedback
    solver_par->solver = Magma_IDRMERGE;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    solver_par->init_res = 0.0;
    solver_par->final_res = 0.0;
    solver_par->iter_res = 0.0;
    solver_par->runtime = 0.0;

    // constants
    const float c_zero = MAGMA_S_ZERO;
    const float c_one = MAGMA_S_ONE;
    const float c_n_one = MAGMA_S_NEG_ONE;

    // internal user options
    const magma_int_t smoothing = 1;   // 0 = disable, 1 = enable
    const float angle = 0.7;          // [0-1]

    // local variables
    magma_int_t iseed[4] = {0, 0, 0, 1};
    magma_int_t dof;
    magma_int_t s;
    magma_int_t distr;
    magma_int_t k, i, sk;
    magma_int_t innerflag;
    magma_int_t ldd;
    magma_int_t q;
    float residual;
    float nrm;
    float nrmb;
    float nrmr;
    float nrmt;
    float rho;
    float om;
    float gamma;

    // matrices and vectors
    magma_s_matrix dxs = {Magma_CSR};
    magma_s_matrix dr = {Magma_CSR}, drs = {Magma_CSR};
    magma_s_matrix dP = {Magma_CSR}, dP1 = {Magma_CSR};
    magma_s_matrix dG = {Magma_CSR}, dGcol = {Magma_CSR};
    magma_s_matrix dU = {Magma_CSR};
    magma_s_matrix dM = {Magma_CSR};
    magma_s_matrix df = {Magma_CSR};
    magma_s_matrix dt = {Magma_CSR}, dtt = {Magma_CSR};
    magma_s_matrix dc = {Magma_CSR};
    magma_s_matrix dv = {Magma_CSR};
    magma_s_matrix dskp = {Magma_CSR};
    magma_s_matrix dalpha = {Magma_CSR};
    magma_s_matrix dbeta = {Magma_CSR};
    float *hMdiag = NULL;
    float *hskp = NULL;
    float *halpha = NULL;
    float *hbeta = NULL;
    float *d1 = NULL, *d2 = NULL;
    
    // queue variables
    const magma_int_t nqueues = 3;     // number of queues
    magma_queue_t queues[nqueues];    

    // chronometry
    real_Double_t tempo1, tempo2;

    // create additional queues
    queues[0] = queue;
    for ( q = 1; q < nqueues; q++ ) {
        magma_queue_create( queue->device(), &(queues[q]) );
    }

    // initial s space
    // TODO: add option for 's' (shadow space number)
    // Hack: uses '--restart' option as the shadow space number.
    //       This is not a good idea because the default value of restart option is used to detect
    //       if the user provided a custom restart. This means that if the default restart value
    //       is changed then the code will think it was the user (unless the default value is
    //       also updated in the 'if' statement below.
    s = 1;
    if ( solver_par->restart != 50 ) {
        if ( solver_par->restart > A.num_cols ) {
            s = A.num_cols;
        } else {
            s = solver_par->restart;
        }
    }
    solver_par->restart = s;

    // set max iterations
    solver_par->maxiter = min( 2 * A.num_cols, solver_par->maxiter );

    // check if matrix A is square
    if ( A.num_rows != A.num_cols ) {
        //printf("Matrix A is not square.\n");
        info = MAGMA_ERR_NOT_SUPPORTED;
        goto cleanup;
    }

    // |b|
    nrmb = magma_snrm2( b.num_rows, b.dval, 1, queue );
    if ( nrmb == 0.0 ) {
        magma_sscal( x->num_rows, MAGMA_S_ZERO, x->dval, 1, queue );
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    // t = 0
    // make t twice as large to contain both, dt and dr
    ldd = magma_roundup( b.num_rows, 32 );
    CHECK( magma_svinit( &dt, Magma_DEV, ldd, 2, c_zero, queue ));
    dt.num_rows = b.num_rows;
    dt.num_cols = 1;
    dt.nnz = dt.num_rows;

    // redirect the dr.dval to the second part of dt
    CHECK( magma_svinit( &dr, Magma_DEV, b.num_rows, 1, c_zero, queue ));
    magma_free( dr.dval );
    dr.dval = dt.dval + ldd;

    // r = b - A x
    CHECK( magma_sresidualvec( A, b, *x, &dr, &nrmr, queue ));
    
    // |r|
    solver_par->init_res = nrmr;
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nrmr;
    }

    // check if initial is guess good enough
    if ( nrmr <= solver_par->atol ||
        nrmr/nrmb <= solver_par->rtol ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    // P = randn(n, s)
    // P = ortho(P)
//---------------------------------------
    // P = 0.0
    CHECK( magma_svinit( &dP, Magma_CPU, A.num_cols, s, c_zero, queue ));

    // P = randn(n, s)
    distr = 3;        // 1 = unif (0,1), 2 = unif (-1,1), 3 = normal (0,1) 
    dof = dP.num_rows * dP.num_cols;
    lapackf77_slarnv( &distr, iseed, &dof, dP.val );

    // transfer P to device
    CHECK( magma_smtransfer( dP, &dP1, Magma_CPU, Magma_DEV, queue ));
    magma_smfree( &dP, queue );

    // P = ortho(P1)
    if ( dP1.num_cols > 1 ) {
        // P = magma_sqr(P1), QR factorization
        CHECK( magma_sqr( dP1.num_rows, dP1.num_cols, dP1, dP1.ld, &dP, NULL, queue ));
    } else {
        // P = P1 / |P1|
        nrm = magma_snrm2( dof, dP1.dval, 1, queue );
        nrm = 1.0 / nrm;
        magma_sscal( dof, nrm, dP1.dval, 1, queue );
        CHECK( magma_smtransfer( dP1, &dP, Magma_DEV, Magma_DEV, queue ));
    }
    magma_smfree( &dP1, queue );
//---------------------------------------

    // allocate memory for the scalar products
    CHECK( magma_smalloc_pinned( &hskp, 5 ));
    CHECK( magma_svinit( &dskp, Magma_DEV, 4, 1, c_zero, queue ));

    CHECK( magma_smalloc_pinned( &halpha, s ));
    CHECK( magma_svinit( &dalpha, Magma_DEV, s, 1, c_zero, queue ));

    CHECK( magma_smalloc_pinned( &hbeta, s ));
    CHECK( magma_svinit( &dbeta, Magma_DEV, s, 1, c_zero, queue ));
    
    // workspace for merged dot product
    CHECK( magma_smalloc( &d1, max(2, s) * b.num_rows ));
    CHECK( magma_smalloc( &d2, max(2, s) * b.num_rows ));

    // smoothing enabled
    if ( smoothing > 0 ) {
        // set smoothing solution vector
        CHECK( magma_smtransfer( *x, &dxs, Magma_DEV, Magma_DEV, queue ));

        // tt = 0
        // make tt twice as large to contain both, dtt and drs
        ldd = magma_roundup( b.num_rows, 32 );
        CHECK( magma_svinit( &dtt, Magma_DEV, ldd, 2, c_zero, queue ));
        dtt.num_rows = dr.num_rows;
        dtt.num_cols = 1;
        dtt.nnz = dtt.num_rows;

        // redirect the drs.dval to the second part of dtt
        CHECK( magma_svinit( &drs, Magma_DEV, dr.num_rows, 1, c_zero, queue ));
        magma_free( drs.dval );
        drs.dval = dtt.dval + ldd;

        // set smoothing residual vector
        magma_scopyvector( dr.num_rows, dr.dval, 1, drs.dval, 1, queue );
    }

    // G(n,s) = 0
    if ( s > 1 ) {
        ldd = magma_roundup( A.num_rows, 32 );
        CHECK( magma_svinit( &dG, Magma_DEV, ldd, s, c_zero, queue ));
        dG.num_rows = A.num_rows;
    } else {
        CHECK( magma_svinit( &dG, Magma_DEV, A.num_rows, s, c_zero, queue ));
    }

    // dGcol represents a single column of dG, array pointer is set inside loop
    CHECK( magma_svinit( &dGcol, Magma_DEV, dG.num_rows, 1, c_zero, queue ));
    magma_free( dGcol.dval );

    // U(n,s) = 0
    if ( s > 1 ) {
        ldd = magma_roundup( A.num_cols, 32 );
        CHECK( magma_svinit( &dU, Magma_DEV, ldd, s, c_zero, queue ));
        dU.num_rows = A.num_cols;
    } else {
        CHECK( magma_svinit( &dU, Magma_DEV, A.num_cols, s, c_zero, queue ));
    }

    // M(s,s) = I
    CHECK( magma_svinit( &dM, Magma_DEV, s, s, c_zero, queue ));
    CHECK( magma_smalloc_pinned( &hMdiag, s ));
    magmablas_slaset( MagmaFull, dM.num_rows, dM.num_cols, c_zero, c_one, dM.dval, dM.ld, queue );

    // f = 0
    CHECK( magma_svinit( &df, Magma_DEV, dP.num_cols, 1, c_zero, queue ));

    // c = 0
    CHECK( magma_svinit( &dc, Magma_DEV, dM.num_cols, 1, c_zero, queue ));

    // v = r
    CHECK( magma_smtransfer( dr, &dv, Magma_DEV, Magma_DEV, queue ));

    //--------------START TIME---------------
    // chronometry
    tempo1 = magma_sync_wtime( queue );
    if ( solver_par->verbose > 0 ) {
        solver_par->timing[0] = 0.0;
    }

cudaProfilerStart();

    om = MAGMA_S_ONE;
    gamma = MAGMA_S_ZERO;
    innerflag = 0;

    // new RHS for small systems
    // f = P' r
    // Q1
    magma_sgemvmdot_shfl( dP.num_rows, dP.num_cols, dP.dval, dr.dval, d1, d2, df.dval, queues[1] );

    // skp[4] = f(k)
    // Q1
    magma_sgetvector_async( 1, df.dval, 1, &hskp[4], 1, queues[1] );

    // c(k:s) = f(k:s)
    // Q1
    magma_scopyvector_async( s, df.dval, 1, dc.dval, 1, queues[1] );

    // c(k:s) = M(k:s,k:s) \ f(k:s)
    // Q1
    magma_strsv( MagmaLower, MagmaNoTrans, MagmaNonUnit, s, dM.dval, dM.ld, dc.dval, 1, queues[1] );

    // start iteration
    do
    {
        solver_par->numiter++;

        // shadow space loop
        for ( k = 0; k < s; ++k ) {
            sk = s - k;
            dGcol.dval = dG.dval + k * dG.ld;

            // v = r - G(:,k:s) c(k:s)
            // Q1
            magmablas_sgemv( MagmaNoTrans, dG.num_rows, sk, c_n_one, dGcol.dval, dG.ld, &dc.dval[k], 1, c_one, dv.dval, 1, queues[1] );

            // U(:,k) = om * v + U(:,k:s) c(k:s)
            // Q1
            magmablas_sgemv( MagmaNoTrans, dU.num_rows, sk, c_one, &dU.dval[k*dU.ld], dU.ld, &dc.dval[k], 1, om, dv.dval, 1, queues[1] );

            // G(:,k) = A U(:,k)
            // Q1
            CHECK( magma_s_spmv( c_one, A, dv, c_zero, dGcol, queues[1] ));
            solver_par->spmv_count++;

            // bi-orthogonalize the new basis vectors
            for ( i = 0; i < k; ++i ) {
                // alpha = P(:,i)' G(:,k)
                // Q1
                halpha[i] = magma_sdot( dP.num_rows, &dP.dval[i*dP.ld], 1, dGcol.dval, 1, queues[1] );
                // implicit sync Q1 --> alpha = P(:,i)' G(:,k) 

                // alpha = alpha / M(i,i)
                halpha[i] = halpha[i] / hMdiag[i];
                    
                // G(:,k) = G(:,k) - alpha * G(:,i)
                // Q1
                magma_saxpy( dG.num_rows, -halpha[i], &dG.dval[i*dG.ld], 1, dGcol.dval, 1, queues[1] );
            }

            // sync Q1 --> G(:,k) = G(:,k) - alpha * G(:,i), skp[4] = f(k)
            magma_queue_sync( queues[1] );

            // new column of M = P'G, first k-1 entries are zero
            // M(k:s,k) = P(:,k:s)' G(:,k)
            // Q2
            magma_sgemvmdot_shfl( dP.num_rows, sk, &dP.dval[k*dP.ld], dGcol.dval, d1, d2, &dM.dval[k*dM.ld+k], queues[2] );

            // non-first s iteration
            if ( k > 0 ) {
                // alpha = dalpha
                // Q0
                magma_ssetvector_async( k, halpha, 1, dalpha.dval, 1, queues[0] );

                // U update outside of loop using GEMV
                // U(:,k) = U(:,k) - U(:,1:k) * alpha(1:k)
                // Q0
                magmablas_sgemv( MagmaNoTrans, dU.num_rows, k, c_n_one, dU.dval, dU.ld, dalpha.dval, 1, c_one, dv.dval, 1, queues[0] );
            }

            // Mdiag(k) = M(k,k)
            // Q2
            magma_sgetvector( 1, &dM.dval[k*dM.ld+k], 1, &hMdiag[k], 1, queues[2] );
            // implicit sync Q2 --> Mdiag(k) = M(k,k)

            // U(:,k) = v
            // Q0
            magma_scopyvector_async( dU.num_rows, dv.dval, 1, &dU.dval[k*dU.ld], 1, queues[0] );

            // check M(k,k) == 0
            if ( MAGMA_S_EQUAL(hMdiag[k], MAGMA_S_ZERO) ) {
                innerflag = 1;
                info = MAGMA_DIVERGENCE;
                break;
            }

            // beta = f(k) / M(k,k)
            hbeta[k] = hskp[4] / hMdiag[k];

            // check for nan
            if ( magma_s_isnan( hbeta[k] ) || magma_s_isinf( hbeta[k] )) {
                innerflag = 1;
                info = MAGMA_DIVERGENCE;
                break;
            }

            // r = r - beta * G(:,k)
            // Q2
            magma_saxpy( dr.num_rows, -hbeta[k], dGcol.dval, 1, dr.dval, 1, queues[2] );

            // non-last s iteration 
            if ( (k + 1) < s ) {
                // f(k+1:s) = f(k+1:s) - beta * M(k+1:s,k)
                // Q1
                magma_saxpy( sk-1, -hbeta[k], &dM.dval[k*dM.ld+(k+1)], 1, &df.dval[k+1], 1, queues[1] );

                // c(k+1:s) = f(k+1:s)
                // Q1
                magma_scopyvector_async( sk-1, &df.dval[k+1], 1, &dc.dval[k+1], 1, queues[1] );

                // c(k+1:s) = M(k+1:s,k+1:s) \ f(k+1:s)
                // Q1
                magma_strsv( MagmaLower, MagmaNoTrans, MagmaNonUnit, sk-1, &dM.dval[(k+1)*dM.ld+(k+1)], dM.ld, &dc.dval[k+1], 1, queues[1] );

                // skp[4] = f(k+1)
                // Q1
                magma_sgetvector_async( 1, &df.dval[k+1], 1, &hskp[4], 1, queues[1] ); 
            }

            // smoothing disabled
            if ( smoothing <= 0 ) {
                // |r|
                // Q2
                nrmr = magma_snrm2( dr.num_rows, dr.dval, 1, queues[2] );           
                // implicit sync Q2 --> |r|

            // smoothing enabled
            } else {
                // smoothing operation
//---------------------------------------
                // t = rs - r
                // Q2
                magma_sidr_smoothing_1( drs.num_rows, drs.num_cols, drs.dval, dr.dval, dtt.dval, queues[2] );

                // x = x + beta * U(:,k)
                // Q0
                magma_saxpy( x->num_rows, hbeta[k], &dU.dval[k*dU.ld], 1, x->dval, 1, queues[0] );

                // t't
                // t'rs
                // Q2
                CHECK( magma_sgemvmdot_shfl( dt.ld, 2, dtt.dval, dtt.dval, d1, d2, &dskp.dval[2], queues[2] ));

                // skp[2-3] = dskp[2-3]
                // Q2
                magma_sgetvector( 2, &dskp.dval[2], 1, &hskp[2], 1, queues[2] );
                // implicit sync Q2 --> skp = dskp

                // gamma = (t' * rs) / (t' * t)
                gamma = hskp[3] / hskp[2];
                
                // rs = rs - gamma * t 
                // Q1
                magma_saxpy( drs.num_rows, -gamma, dtt.dval, 1, drs.dval, 1, queues[1] );

                // xs = xs - gamma * (xs - x) 
                // Q0
                magma_sidr_smoothing_2( dxs.num_rows, dxs.num_cols, -gamma, x->dval, dxs.dval, queues[0] );

                // |rs|
                // Q1
                nrmr = magma_snrm2( drs.num_rows, drs.dval, 1, queues[1] );       
                // implicit sync Q0 --> |r|
//---------------------------------------
            }

            // v = r
            // Q1
            magma_scopyvector_async( dr.num_rows, dr.dval, 1, dv.dval, 1, queues[1] );

            // last s iteration
            if ( (k + 1) == s ) {
               // t = A r
               // Q2
               CHECK( magma_s_spmv( c_one, A, dr, c_zero, dt, queues[2] ));
               solver_par->spmv_count++;

               // t't
               // t'r
               // Q2
               CHECK( magma_sgemvmdot_shfl( dt.ld, 2, dt.dval, dt.dval, d1, d2, dskp.dval, queues[2] ));
            }

            // store current timing and residual
            if ( solver_par->verbose > 0 ) {
                tempo2 = magma_sync_wtime( queue );
                if ( (solver_par->numiter) % solver_par->verbose == 0 ) {
                    solver_par->res_vec[(solver_par->numiter) / solver_par->verbose]
                            = (real_Double_t)nrmr;
                    solver_par->timing[(solver_par->numiter) / solver_par->verbose]
                            = (real_Double_t)tempo2 - tempo1;
                }
            }

            // check convergence or iteration limit
            if ( nrmr <= solver_par->atol ||
                nrmr/nrmb <= solver_par->rtol ) { 
                s = k + 1; // for the x-update outside the loop
                innerflag = 2;
                info = MAGMA_SUCCESS;
                break;
            }
        }

        // smoothing disabled
        if ( smoothing <= 0 && innerflag != 1 ) {
            // dbeta(1:s) = beta(1:s)
            // Q0
            magma_ssetvector_async( s, hbeta, 1, dbeta.dval, 1, queues[0] );

            // x = x + U(:,1:s) * beta(1:s)
            // Q0
            magmablas_sgemv( MagmaNoTrans, dU.num_rows, s, c_one, dU.dval, dU.ld, dbeta.dval, 1, c_one, x->dval, 1, queues[0] );
        }

        // check convergence or iteration limit or invalid result of inner loop
        if ( innerflag > 0 ) {
            break;
        }

        // computation of a new omega
//---------------------------------------
        // skp[0-2] = dskp[0-2]
        // Q2
        magma_sgetvector( 2, dskp.dval, 1, hskp, 1, queues[2] );
        // implicit sync Q2 --> skp = dskp

        // |t|
        nrmt = magma_ssqrt( MAGMA_S_REAL(hskp[0]) );
        
        // rho = abs((t' * r) / (|t| * |r|))
        rho = MAGMA_D_ABS( MAGMA_S_REAL(hskp[1]) / (nrmt * nrmr) );

        // om = (t' * r) / (|t| * |t|)
        om = hskp[1] / hskp[0]; 
        if ( rho < angle ) {
            om = (om * angle) / rho;
        }
//---------------------------------------
        if ( MAGMA_S_EQUAL(om, MAGMA_S_ZERO) ) {
            info = MAGMA_DIVERGENCE;
            break;
        }

        // sync Q1 --> v = r
        magma_queue_sync( queues[1] );

        // r = r - om * t
        // Q2
        magma_saxpy( dr.num_rows, -om, dt.dval, 1, dr.dval, 1, queues[2] );

        // x = x + om * v
        // Q0
        magma_saxpy( x->num_rows, om, dv.dval, 1, x->dval, 1, queues[0] );

        // smoothing disabled
        if ( smoothing <= 0 ) {
            // |r|
            // Q2
            nrmr = magma_snrm2( dr.num_rows, dr.dval, 1, queues[2] );           
            // implicit sync Q2 --> |r|

            // v = r
            // Q0
            magma_scopyvector_async( dr.num_rows, dr.dval, 1, dv.dval, 1, queues[0] );

            // new RHS for small systems
            // f = P' r
            // Q1
            magma_sgemvmdot_shfl( dP.num_rows, dP.num_cols, dP.dval, dr.dval, d1, d2, df.dval, queues[1] );

            // skp[4] = f(k)
            // Q1
            magma_sgetvector_async( 1, df.dval, 1, &hskp[4], 1, queues[1] );

            // c(k:s) = f(k:s)
            // Q1
            magma_scopyvector_async( s, df.dval, 1, dc.dval, 1, queues[1] );

            // c(k:s) = M(k:s,k:s) \ f(k:s)
            // Q1
            magma_strsv( MagmaLower, MagmaNoTrans, MagmaNonUnit, s, dM.dval, dM.ld, dc.dval, 1, queues[1] );

        // smoothing enabled
        } else {
            // smoothing operation
//---------------------------------------
            // t = rs - r
            // Q2
            magma_sidr_smoothing_1( drs.num_rows, drs.num_cols, drs.dval, dr.dval, dtt.dval, queues[2] );

            // t't
            // t'rs
            // Q2
            CHECK( magma_sgemvmdot_shfl( dt.ld, 2, dtt.dval, dtt.dval, d1, d2, &dskp.dval[2], queues[2] ));

            // skp[2-3] = dskp[2-3]
            // Q2
            magma_sgetvector( 2, &dskp.dval[2], 1, &hskp[2], 1, queues[2] );
            // implicit sync Q2 --> skp = dskp

            // gamma = (t' * rs) / (t' * t)
            gamma = hskp[3] / hskp[2];

            // rs = rs - gamma * (rs - r) 
            // Q2
            magma_saxpy( drs.num_rows, -gamma, dtt.dval, 1, drs.dval, 1, queues[2] );

            // xs = xs - gamma * (xs - x) 
            // Q0
            magma_sidr_smoothing_2( dxs.num_rows, dxs.num_cols, -gamma, x->dval, dxs.dval, queues[0] );

            // v = r
            // Q0
            magma_scopyvector_async( dr.num_rows, dr.dval, 1, dv.dval, 1, queues[0] );

            // new RHS for small systems
            // f = P' r
            // Q1
            magma_sgemvmdot_shfl( dP.num_rows, dP.num_cols, dP.dval, dr.dval, d1, d2, df.dval, queues[1] );

            // skp[4] = f(k)
            // Q1
            magma_sgetvector_async( 1, df.dval, 1, &hskp[4], 1, queues[1] );

            // c(k:s) = f(k:s)
            // Q1
            magma_scopyvector_async( s, df.dval, 1, dc.dval, 1, queues[1] );

            // |rs|
            // Q2
            nrmr = magma_snrm2( drs.num_rows, drs.dval, 1, queues[2] );           
            // implicit sync Q2 --> |r|

            // c(k:s) = M(k:s,k:s) \ f(k:s)
            // Q1
            magma_strsv( MagmaLower, MagmaNoTrans, MagmaNonUnit, s, dM.dval, dM.ld, dc.dval, 1, queues[1] );
//---------------------------------------
        }

        // store current timing and residual
        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            magma_queue_sync( queue );
            if ( (solver_par->numiter) % solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter) / solver_par->verbose]
                        = (real_Double_t)nrmr;
                solver_par->timing[(solver_par->numiter) / solver_par->verbose]
                        = (real_Double_t)tempo2 - tempo1;
            }
        }

        // check convergence or iteration limit
        if ( nrmr <= solver_par->atol ||
            nrmr/nrmb <= solver_par->rtol ) { 
            info = MAGMA_SUCCESS;
            break;
        }

        // sync Q0 --> v = r
        magma_queue_sync( queues[0] );
    }
    while ( solver_par->numiter + 1 <= solver_par->maxiter );

    // sync all queues
    for ( q = 0; q < nqueues; q++ ) {
        magma_queue_sync( queues[q] );
    }

    // smoothing enabled
    if ( smoothing > 0 ) {
        // x = xs
        magma_scopyvector_async( x->num_rows, dxs.dval, 1, x->dval, 1, queue );

        // r = rs
        magma_scopyvector_async( dr.num_rows, drs.dval, 1, dr.dval, 1, queue );
    }

cudaProfilerStop();

    // get last iteration timing
    tempo2 = magma_sync_wtime( queue );
    magma_queue_sync( queue );
    solver_par->runtime = (real_Double_t)tempo2 - tempo1;
//--------------STOP TIME----------------

    // get final stats
    solver_par->iter_res = nrmr;
    CHECK( magma_sresidualvec( A, b, *x, &dr, &residual, queue ));
    solver_par->final_res = residual;

    // set solver conclusion
    if ( info != MAGMA_SUCCESS && info != MAGMA_DIVERGENCE ) {
        if ( solver_par->init_res > solver_par->final_res ) {
            info = MAGMA_SLOW_CONVERGENCE;
        }
    }


cleanup:
    // free resources
    // sync all queues, destory additional queues
    magma_queue_sync( queues[0] );
    for ( q = 1; q < nqueues; q++ ) {
        magma_queue_sync( queues[q] );
        magma_queue_destroy( queues[q] );
    }

    // smoothing enabled
    if ( smoothing > 0 ) {
        drs.dval = NULL;  // needed because its pointer is redirected to dtt
        magma_smfree( &dxs, queue );
        magma_smfree( &drs, queue ); 
        magma_smfree( &dtt, queue );
    }
    dr.dval = NULL;       // needed because its pointer is redirected to dt
    dGcol.dval = NULL;    // needed because its pointer is redirected to dG
    magma_smfree( &dr, queue );
    magma_smfree( &dP, queue );
    magma_smfree( &dP1, queue );
    magma_smfree( &dG, queue );
    magma_smfree( &dGcol, queue );
    magma_smfree( &dU, queue );
    magma_smfree( &dM, queue );
    magma_smfree( &df, queue );
    magma_smfree( &dt, queue );
    magma_smfree( &dc, queue );
    magma_smfree( &dv, queue );
    magma_smfree( &dskp, queue );
    magma_smfree( &dalpha, queue );
    magma_smfree( &dbeta, queue );
    magma_free_pinned( hMdiag );
    magma_free_pinned( hskp );
    magma_free_pinned( halpha );
    magma_free_pinned( hbeta );
    magma_free( d1 );
    magma_free( d2 );

    solver_par->info = info;
    return info;
    /* magma_sidr_strms */
}
Exemplo n.º 20
0
extern "C" magma_int_t
magma_slsqr(
    magma_s_matrix A, magma_s_matrix b, magma_s_matrix *x,
    magma_s_solver_par *solver_par,
    magma_s_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // prepare solver feedback
    solver_par->solver = Magma_LSQR;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    
    magma_int_t m = A.num_rows * b.num_cols;
    magma_int_t n = A.num_cols * b.num_cols;
    
    // local variables
    float c_zero = MAGMA_S_ZERO, c_one = MAGMA_S_ONE;
    // solver variables
    float s, nom0, r0, res=0, nomb, phibar, beta, alpha, c, rho, rhot, phi, thet, normr, normar, norma, sumnormd2, normd;

    // need to transpose the matrix
    magma_s_matrix AT={Magma_CSR}, Ah1={Magma_CSR}, Ah2={Magma_CSR};
    
    // GPU workspace
    magma_s_matrix r={Magma_CSR},
                    v={Magma_CSR}, z={Magma_CSR}, zt={Magma_CSR},
                    d={Magma_CSR}, vt={Magma_CSR}, q={Magma_CSR}, 
                    w={Magma_CSR}, u={Magma_CSR};
    CHECK( magma_svinit( &r, Magma_DEV, A.num_cols, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &v, Magma_DEV, A.num_cols, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &z, Magma_DEV, A.num_cols, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &d, Magma_DEV, A.num_cols, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &vt,Magma_DEV, A.num_cols, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &q, Magma_DEV, A.num_cols, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &w, Magma_DEV, A.num_cols, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &u, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_svinit( &zt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));

    
    // transpose the matrix
    magma_smtransfer( A, &Ah1, Magma_DEV, Magma_CPU, queue );
    magma_smconvert( Ah1, &Ah2, A.storage_type, Magma_CSR, queue );
    magma_smfree(&Ah1, queue );
    magma_smtransposeconjugate( Ah2, &Ah1, queue );
    magma_smfree(&Ah2, queue );
    Ah2.blocksize = A.blocksize;
    Ah2.alignment = A.alignment;
    magma_smconvert( Ah1, &Ah2, Magma_CSR, A.storage_type, queue );
    magma_smfree(&Ah1, queue );
    magma_smtransfer( Ah2, &AT, Magma_CPU, Magma_DEV, queue );
    magma_smfree(&Ah2, queue );
    

    
    // solver setup
    CHECK(  magma_sresidualvec( A, b, *x, &r, &nom0, queue));
    solver_par->init_res = nom0;
    nomb = magma_snrm2( m, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    if ( (r0 = nomb * solver_par->rtol) < ATOLERANCE ){
        r0 = ATOLERANCE;
    }
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nom0;
        solver_par->timing[0] = 0.0;
    }
    if ( nom0 < r0 ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }
    magma_scopy( m, b.dval, 1, u.dval, 1, queue );  
    beta = magma_snrm2( m, u.dval, 1, queue );
    magma_sscal( m, MAGMA_S_MAKE(1./beta, 0.0 ), u.dval, 1, queue );
    normr = beta;
    c = 1.0;
    s = 0.0;
    phibar = beta;
    CHECK( magma_s_spmv( c_one, AT, u, c_zero, v, queue ));
    
    if( precond_par->solver == Magma_NONE ){
        ;
    } else {
      CHECK( magma_s_applyprecond_right( MagmaTrans, A, v, &zt, precond_par, queue ));
      CHECK( magma_s_applyprecond_left( MagmaTrans, A, zt, &v, precond_par, queue ));
    }
    alpha = magma_snrm2( n, v.dval, 1, queue );
    magma_sscal( n, MAGMA_S_MAKE(1./alpha, 0.0 ), v.dval, 1, queue );
    normar = alpha * beta;
    norma = 0;
    sumnormd2 = 0;
        
    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );
    solver_par->numiter = 0;
    // start iteration
    do
    {
        solver_par->numiter++;
        if( precond_par->solver == Magma_NONE || A.num_rows != A.num_cols ) {
            magma_scopy( n, v.dval, 1 , z.dval, 1, queue );    
        } else {
            CHECK( magma_s_applyprecond_left( MagmaNoTrans, A, v, &zt, precond_par, queue ));
            CHECK( magma_s_applyprecond_right( MagmaNoTrans, A, zt, &z, precond_par, queue ));
        }
        //CHECK( magma_s_spmv( c_one, A, z, MAGMA_S_MAKE(-alpha,0.0), u, queue ));
        CHECK( magma_s_spmv( c_one, A, z, c_zero, zt, queue ));
        magma_sscal( m, MAGMA_S_MAKE(-alpha, 0.0 ), u.dval, 1, queue ); 
        magma_saxpy( m, c_one, zt.dval, 1, u.dval, 1, queue );
        
        solver_par->spmv_count++;
        beta = magma_snrm2( m, u.dval, 1, queue );
        magma_sscal( m, MAGMA_S_MAKE(1./beta, 0.0 ), u.dval, 1, queue ); 
        // norma = norm([norma alpha beta]);
        norma = sqrt(norma*norma + alpha*alpha + beta*beta );
        
        //lsvec( solver_par->numiter-1 ) = normar / norma;
        
        thet = -s * alpha;
        rhot = c * alpha;
        rho = sqrt( rhot * rhot + beta * beta );
        c = rhot / rho;
        s = - beta / rho;
        phi = c * phibar;
        phibar = s * phibar;
        
        // d = (z - thet * d) / rho;
        magma_sscal( n, MAGMA_S_MAKE(-thet, 0.0 ), d.dval, 1, queue ); 
        magma_saxpy( n, c_one, z.dval, 1, d.dval, 1, queue );
        magma_sscal( n, MAGMA_S_MAKE(1./rho, 0.0 ), d.dval, 1, queue );
        normd = magma_snrm2( n, d.dval, 1, queue );
        sumnormd2 = sumnormd2 + normd*normd;
        
        // convergence check
        res = normr;        
        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose == c_zero ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        // check for convergence in A*x=b
        if ( res/nomb <= solver_par->rtol || res <= solver_par->atol ){
            info = MAGMA_SUCCESS;
            break;
        }
        // check for convergence in min{|b-A*x|}
        if ( A.num_rows != A.num_cols &&
               ( normar/(norma*normr) <= solver_par->rtol || normar <= solver_par->atol ) ){
            printf("%% warning: quit from minimization convergence check.\n");
            info = MAGMA_SUCCESS;
            break;
        }
        
        magma_saxpy( n, MAGMA_S_MAKE( phi, 0.0 ), d.dval, 1, x->dval, 1, queue );
        normr = fabs(s) * normr;
        CHECK( magma_s_spmv( c_one, AT, u, c_zero, vt, queue ));
        solver_par->spmv_count++;
        if( precond_par->solver == Magma_NONE ){
            ;    
        } else {
            CHECK( magma_s_applyprecond_right( MagmaTrans, A, vt, &zt, precond_par, queue ));
            CHECK( magma_s_applyprecond_left( MagmaTrans, A, zt, &vt, precond_par, queue ));
        }

        magma_sscal( n, MAGMA_S_MAKE(-beta, 0.0 ), v.dval, 1, queue ); 
        magma_saxpy( n, c_one, vt.dval, 1, v.dval, 1, queue );
        alpha = magma_snrm2( n, v.dval, 1, queue );
        magma_sscal( n, MAGMA_S_MAKE(1./alpha, 0.0 ), v.dval, 1, queue ); 
        normar = alpha * fabs(s*phi);
         
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    float residual;
    CHECK(  magma_sresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->iter_res = res;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter && info == MAGMA_SUCCESS ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == c_zero ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->rtol*solver_par->init_res ||
            solver_par->iter_res < solver_par->atol ) {
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == c_zero ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_smfree(&r, queue );
    magma_smfree(&v,  queue );
    magma_smfree(&z,  queue );
    magma_smfree(&zt, queue );
    magma_smfree(&d,  queue );
    magma_smfree(&vt,  queue );
    magma_smfree(&q,  queue );
    magma_smfree(&u,  queue );
    magma_smfree(&w,  queue );
    magma_smfree(&AT, queue );
    magma_smfree(&Ah1, queue );
    magma_smfree(&Ah2, queue );

    
    solver_par->info = info;
    return info;
}   /* magma_sqmr */
Exemplo n.º 21
0
/* ////////////////////////////////////////////////////////////////////////////
   -- testing any solver
*/
int main(  int argc, char** argv )
{
    magma_int_t info = 0;
    TESTING_INIT();

    magma_sopts zopts;
    magma_queue_t queue=NULL;
    magma_queue_create( /*devices[ opts->device ],*/ &queue );

    real_Double_t res;
    magma_s_matrix A={Magma_CSR}, AT={Magma_CSR}, A2={Magma_CSR}, 
    B={Magma_CSR}, B_d={Magma_CSR};
    
    int i=1;
    real_Double_t start, end;
    CHECK( magma_sparse_opts( argc, argv, &zopts, &i, queue ));

    B.blocksize = zopts.blocksize;
    B.alignment = zopts.alignment;

    while(  i < argc ) {

        if ( strcmp("LAPLACE2D", argv[i]) == 0 && i+1 < argc ) {   // Laplace test
            i++;
            magma_int_t laplace_size = atoi( argv[i] );
            CHECK( magma_sm_5stencil(  laplace_size, &A, queue ));
        } else {                        // file-matrix test
            CHECK( magma_s_csr_mtx( &A,  argv[i], queue ));
        }

        printf( "\n# matrix info: %d-by-%d with %d nonzeros\n\n",
                            (int) A.num_rows,(int) A.num_cols,(int) A.nnz );

        // scale matrix
        CHECK( magma_smscale( &A, zopts.scaling, queue ));

        // remove nonzeros in matrix
        start = magma_sync_wtime( queue );
        for (int j=0; j<10; j++)
            CHECK( magma_smcsrcompressor( &A, queue ));
        end = magma_sync_wtime( queue );
        printf( " > MAGMA CPU: %.2e seconds.\n", (end-start)/10 );
        // transpose
        CHECK( magma_smtranspose( A, &AT, queue ));

        // convert, copy back and forth to check everything works
        CHECK( magma_smconvert( AT, &B, Magma_CSR, Magma_CSR, queue ));
        magma_smfree(&AT, queue );
        CHECK( magma_smtransfer( B, &B_d, Magma_CPU, Magma_DEV, queue ));
        magma_smfree(&B, queue );

        start = magma_sync_wtime( queue );
        for (int j=0; j<10; j++)
            CHECK( magma_smcsrcompressor_gpu( &B_d, queue ));
        end = magma_sync_wtime( queue );
        printf( " > MAGMA GPU: %.2e seconds.\n", (end-start)/10 );


        CHECK( magma_smtransfer( B_d, &B, Magma_DEV, Magma_CPU, queue ));
        magma_smfree(&B_d, queue );
        CHECK( magma_smconvert( B, &AT, Magma_CSR, Magma_CSR, queue ));
        magma_smfree(&B, queue );

        // transpose back
        CHECK( magma_smtranspose( AT, &A2, queue ));
        magma_smfree(&AT, queue );
        CHECK( magma_smdiff( A, A2, &res, queue ));
        printf("# ||A-B||_F = %8.2e\n", res);
        if ( res < .000001 )
            printf("# tester matrix compressor:  ok\n");
        else
            printf("# tester matrix compressor:  failed\n");

        magma_smfree(&A, queue );
        magma_smfree(&A2, queue );

        i++;
    }
    
cleanup:
    magma_smfree(&AT, queue );
    magma_smfree(&B, queue );
    magma_smfree(&A, queue );
    magma_smfree(&A2, queue );
    magma_queue_destroy( queue );
    TESTING_FINALIZE();
    return info;
}
Exemplo n.º 22
0
extern "C" magma_int_t
magma_smlumerge(
    magma_s_matrix L,
    magma_s_matrix U,
    magma_s_matrix *A,
    magma_queue_t queue )
{
    magma_int_t info = 0;    

    if( L.storage_type == Magma_CSR && U.storage_type == Magma_CSR ){
        if( L.memory_location == Magma_CPU && U.memory_location == Magma_CPU ){
            
            CHECK( magma_smtransfer( L, A, Magma_CPU, Magma_CPU, queue ));
            magma_free_cpu( A->col );
            magma_free_cpu( A->val );
            // make sure it is strictly lower triangular
            magma_int_t z = 0;
            for(magma_int_t i=0; i<A->num_rows; i++){
                for(magma_int_t j=L.row[i]; j<L.row[i+1]; j++){
                    if( L.col[j] < i ){// make sure it is strictly lower triangular
                        z++;
                    }
                }
                for(magma_int_t j=U.row[i]; j<U.row[i+1]; j++){
                    z++;
                }
            }
            A->nnz = z;
            // fill A with the new structure;
            CHECK( magma_index_malloc_cpu( &A->col, A->nnz ));
            CHECK( magma_smalloc_cpu( &A->val, A->nnz ));
            z = 0;
            for(magma_int_t i=0; i<A->num_rows; i++){
                A->row[i] = z;
                for(magma_int_t j=L.row[i]; j<L.row[i+1]; j++){
                    if( L.col[j] < i ){// make sure it is strictly lower triangular
                        A->col[z] = L.col[j];
                        A->val[z] = L.val[j];
                        z++;
                    }
                }
                for(magma_int_t j=U.row[i]; j<U.row[i+1]; j++){
                    A->col[z] = U.col[j];
                    A->val[z] = U.val[j];
                    z++;
                }
            }
            A->row[A->num_rows] = z;
            A->nnz = z;
        }
        else{
            printf("error: matrix not on CPU.\n"); 
            info = MAGMA_ERR_NOT_SUPPORTED;
        }
    }
    else{
            printf("error: matrix in wrong format.\n"); 
            info = MAGMA_ERR_NOT_SUPPORTED;
    }
cleanup:
    if( info != 0 ){
        magma_smfree( A, queue );
    }
    return info;
}
Exemplo n.º 23
0
extern "C" magma_int_t
magma_sjacobisetup(
    magma_s_matrix A, magma_s_matrix b,
    magma_s_matrix *M, magma_s_matrix *c,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    magma_int_t i;

    magma_s_matrix A_h1={Magma_CSR}, A_h2={Magma_CSR}, B={Magma_CSR}, C={Magma_CSR};
    magma_s_matrix diag={Magma_CSR}, c_t={Magma_CSR}, b_h={Magma_CSR};
    CHECK( magma_svinit( &c_t, Magma_CPU, A.num_rows, b.num_cols, MAGMA_S_ZERO, queue ));
    CHECK( magma_svinit( &diag, Magma_CPU, A.num_rows, b.num_cols, MAGMA_S_ZERO, queue ));
    CHECK( magma_smtransfer( b, &b_h, A.memory_location, Magma_CPU, queue ));

    if ( A.storage_type != Magma_CSR ) {
        CHECK( magma_smtransfer( A, &A_h1, A.memory_location, Magma_CPU, queue ));
        CHECK( magma_smconvert( A_h1, &B, A_h1.storage_type, Magma_CSR, queue ));
    }
    else {
        CHECK( magma_smtransfer( A, &B, A.memory_location, Magma_CPU, queue ));
    }
    for( magma_int_t rowindex=0; rowindex<B.num_rows; rowindex++ ) {
        magma_int_t start = (B.drow[rowindex]);
        magma_int_t end = (B.drow[rowindex+1]);
        for( i=start; i<end; i++ ) {
            if ( B.dcol[i]==rowindex ) {
                diag.val[rowindex] = B.val[i];
                if ( MAGMA_S_REAL( diag.val[rowindex]) == 0 )
                    printf(" error: zero diagonal element in row %d!\n",
                                                               int(rowindex));
            }
        }
        for( i=start; i<end; i++ ) {
            B.val[i] = B.val[i] / diag.val[rowindex];
            if ( B.dcol[i]==rowindex ) {
                B.val[i] = MAGMA_S_MAKE( 0., 0. );
            }
        }
        c_t.val[rowindex] = b_h.val[rowindex] / diag.val[rowindex];
    }

    CHECK( magma_s_csr_compressor(&B.val, &B.drow, &B.dcol,
                           &C.val, &C.drow, &C.dcol, &B.num_rows, queue ));

    C.num_rows = B.num_rows;
    C.num_cols = B.num_cols;
    C.memory_location = B.memory_location;
    C.nnz = C.drow[B.num_rows];
    C.storage_type = B.storage_type;
    C.memory_location = B.memory_location;
    if ( A.storage_type != Magma_CSR) {
        A_h2.alignment = A.alignment;
        A_h2.blocksize = A.blocksize;
        CHECK( magma_smconvert( C, &A_h2, Magma_CSR, A_h1.storage_type, queue ));
        CHECK( magma_smtransfer( A_h2, M, Magma_CPU, A.memory_location, queue ));
    }
    else {
        CHECK( magma_smtransfer( C, M, Magma_CPU, A.memory_location, queue ));
    }
    CHECK( magma_smtransfer( c_t, c, Magma_CPU, A.memory_location, queue ));

    if ( A.storage_type != Magma_CSR) {
        magma_smfree( &A_h1, queue );
        magma_smfree( &A_h2, queue );
    }
    
cleanup:
    magma_smfree( &B, queue );
    magma_smfree( &C, queue );
    magma_smfree( &diag, queue );
    magma_smfree( &c_t, queue );
    magma_smfree( &b_h, queue );

    return info;
}