Exemplo n.º 1
0
extern "C" magma_int_t
magma_ssygvd(magma_int_t itype, char jobz, char uplo, magma_int_t n,
             float *a, magma_int_t lda, float *b, magma_int_t ldb, 
             float *w, float *work, magma_int_t lwork, 
             magma_int_t *iwork, magma_int_t liwork, magma_int_t *info)
{
/*  -- MAGMA (version 1.3.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       November 2012

    Purpose   
    =======   
    SSYGVD computes all the eigenvalues, and optionally, the eigenvectors   
    of a real generalized symmetric-definite eigenproblem, of the form   
    A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and   
    B are assumed to be symmetric and B is also positive definite.   
    If eigenvectors are desired, it uses a divide and conquer algorithm.   

    The divide and conquer algorithm makes very mild assumptions about   
    floating point arithmetic. It will work on machines with a guard   
    digit in add/subtract, or on those binary machines without guard   
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or   
    Cray-2. It could conceivably fail on hexadecimal or decimal machines   
    without guard digits, but we know of none.   

    Arguments   
    =========   
    ITYPE   (input) INTEGER   
            Specifies the problem type to be solved:   
            = 1:  A*x = (lambda)*B*x   
            = 2:  A*B*x = (lambda)*x   
            = 3:  B*A*x = (lambda)*x   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangles of A and B are stored;   
            = 'L':  Lower triangles of A and B are stored.   

    N       (input) INTEGER   
            The order of the matrices A and B.  N >= 0.   

    A       (input/output) COMPLEX*16 array, dimension (LDA, N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the   
            leading N-by-N upper triangular part of A contains the   
            upper triangular part of the matrix A.  If UPLO = 'L',   
            the leading N-by-N lower triangular part of A contains   
            the lower triangular part of the matrix A.   

            On exit, if JOBZ = 'V', then if INFO = 0, A contains the   
            matrix Z of eigenvectors.  The eigenvectors are normalized   
            as follows:   
            if ITYPE = 1 or 2, Z**T *   B    * Z = I;   
            if ITYPE = 3,      Z**T * inv(B) * Z = I.   
            If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')   
            or the lower triangle (if UPLO='L') of A, including the   
            diagonal, is destroyed.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    B       (input/output) COMPLEX*16 array, dimension (LDB, N)   
            On entry, the symmetric matrix B.  If UPLO = 'U', the   
            leading N-by-N upper triangular part of B contains the   
            upper triangular part of the matrix B.  If UPLO = 'L',   
            the leading N-by-N lower triangular part of B contains   
            the lower triangular part of the matrix B.   

            On exit, if INFO <= N, the part of B containing the matrix is   
            overwritten by the triangular factor U or L from the Cholesky   
            factorization B = U**T * U or B = L * L**T.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    W       (output) DOUBLE PRECISION array, dimension (N)   
            If INFO = 0, the eigenvalues in ascending order.   

    WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The length of the array WORK.   
            If N <= 1,                LWORK >= 1.   
            If JOBZ  = 'N' and N > 1, LWORK >= 2*N*nb + 1.   
            If JOBZ  = 'V' and N > 1, LWORK >= 1 + 6*N*nb + 2*N**2.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal sizes of the WORK and   
            IWORK arrays, returns these values as the first entries of   
            the WORK and IWORK arrays, and no error message   
            related to LWORK or LIWORK is issued by XERBLA.   

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))   
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.   

    LIWORK  (input) INTEGER   
            The dimension of the array IWORK.   
            If N <= 1,                LIWORK >= 1.   
            If JOBZ  = 'N' and N > 1, LIWORK >= 1.   
            If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.   

            If LIWORK = -1, then a workspace query is assumed; the   
            routine only calculates the optimal sizes of the WORK   
            and IWORK arrays, returns these values as the first entries   
            of the WORK and IWORK arrays, and no error message   
            related to LWORK or LIWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  SPOTRF or SSYEVD returned an error code:   
               <= N:  if INFO = i and JOBZ = 'N', then the algorithm   
                      failed to converge; i off-diagonal elements of an   
                      intermediate tridiagonal form did not converge to   
                      zero;   
                      if INFO = i and JOBZ = 'V', then the algorithm   
                      failed to compute an eigenvalue while working on   
                      the submatrix lying in rows and columns INFO/(N+1)   
                      through mod(INFO,N+1);   
               > N:   if INFO = N + i, for 1 <= i <= N, then the leading   
                      minor of order i of B is not positive definite.   
                      The factorization of B could not be completed and   
                      no eigenvalues or eigenvectors were computed.   

    Further Details   
    ===============   

    Based on contributions by   
       Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA   

    Modified so that no backsubstitution is performed if SSYEVD fails to   
    converge (NEIG in old code could be greater than N causing out of   
    bounds reference to A - reported by Ralf Meyer).  Also corrected the   
    description of INFO and the test on ITYPE. Sven, 16 Feb 05.   
    =====================================================================  */

    char uplo_[2] = {uplo, 0};
    char jobz_[2] = {jobz, 0};

    float d_one = MAGMA_S_ONE;
    
    float *da;
    float *db;
    magma_int_t ldda = n;
    magma_int_t lddb = n;

    magma_int_t lower;
    char trans[1];
    magma_int_t wantz, lquery;

    magma_int_t lopt, lwmin, liopt, liwmin;
  
    cudaStream_t stream;
    magma_queue_create( &stream );

    wantz = lapackf77_lsame(jobz_, MagmaVectorsStr);
    lower = lapackf77_lsame(uplo_, MagmaLowerStr);
    lquery = lwork == -1 || liwork == -1;

    *info = 0;
    if (itype < 1 || itype > 3) {
        *info = -1;
    } else if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVectorsStr))) {
        *info = -2;
    } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else if (ldb < max(1,n)) {
        *info = -8;
    }

    magma_int_t nb = magma_get_ssytrd_nb(n); 
  
    if (n < 1) {
      liwmin = 1;
      lwmin = 1;
    } else if (wantz) {
      lwmin = 1 + 6 * n * nb + 2* n * n;
      liwmin = 5 * n + 3;
    } else {
        lwmin = 2 * n * nb + 1;
        liwmin = 1;
    }

    lopt = lwmin;
    liopt = liwmin;

    work[ 0] =  lopt;
    iwork[0] = liopt;

    if (lwork < lwmin && ! lquery) {
        *info = -11;
    } else if (liwork < liwmin && ! lquery) {
         *info = -13;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return MAGMA_ERR_ILLEGAL_VALUE;
    }
    else if (lquery) {
        return MAGMA_SUCCESS;
    }

    /*  Quick return if possible */
    if (n == 0) {
        return 0;
    }

    if (MAGMA_SUCCESS != magma_smalloc( &da, n*ldda ) ||
        MAGMA_SUCCESS != magma_smalloc( &db, n*lddb )) {
      *info = -17;
      return MAGMA_ERR_DEVICE_ALLOC;
    }
  
    /* Form a Cholesky factorization of B. */
    magma_ssetmatrix( n, n, b, ldb, db, lddb );

    magma_ssetmatrix_async( n, n,
                            a,  lda,
                            da, ldda, stream );  
  
    magma_spotrf_gpu(uplo_[0], n, db, lddb, info);
    if (*info != 0) {
        *info = n + *info;
        return 0;
    }

    magma_queue_sync( stream );
  
    magma_sgetmatrix_async( n, n,
                            db, lddb,
                            b,  ldb, stream );

    /*  Transform problem to standard eigenvalue problem and solve. */
    magma_ssygst_gpu(itype, uplo_[0], n, da, ldda, db, lddb, info);
  
    magma_ssyevd_gpu(jobz_[0], uplo_[0], n, da, ldda, w, a, lda, 
                     work, lwork, iwork, liwork, info);

    lopt  = max( lopt, (magma_int_t) work[0]);
    liopt = max(liopt, iwork[0]);

    if (wantz && *info == 0) 
      {
        /* Backtransform eigenvectors to the original problem. */
        if (itype == 1 || itype == 2) 
          {
            /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;   
               backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
            if (lower) {
                *(unsigned char *)trans = MagmaTrans;
            } else {
                *(unsigned char *)trans = MagmaNoTrans;
            }

            magma_strsm(MagmaLeft, uplo_[0], *trans, MagmaNonUnit,
                        n, n, d_one, db, lddb, da, ldda);

        } else if (itype == 3) 
          {
            /*  For B*A*x=(lambda)*x;   
                backtransform eigenvectors: x = L*y or U'*y */
            if (lower) {
                *(unsigned char *)trans = MagmaNoTrans;
            } else {
                *(unsigned char *)trans = MagmaTrans;
            }

            magma_strmm(MagmaLeft, uplo_[0], *trans, MagmaNonUnit, 
                        n, n, d_one, db, lddb, da, ldda);
        }

        magma_sgetmatrix( n, n, da, ldda, a, lda );

    }

    magma_queue_sync( stream );
    magma_queue_destroy( stream );
  
    work[0] = (float) lopt;
    iwork[0] = liopt;

    magma_free( da );
    magma_free( db );
  
    return MAGMA_SUCCESS;
} /* magma_ssygvd */
Exemplo n.º 2
0
extern "C" magma_int_t
magma_ssygvdx_2stage(magma_int_t itype, char jobz, char range, char uplo, magma_int_t n,
                     float *a, magma_int_t lda, float *b, magma_int_t ldb,
                     float vl, float vu, magma_int_t il, magma_int_t iu,
                     magma_int_t *m, float *w, float *work, magma_int_t lwork,
                     magma_int_t *iwork, magma_int_t liwork, magma_int_t *info)
{
/*  -- MAGMA (version 1.4.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       August 2013

    Purpose
    =======
    SSYGVDX_2STAGE computes all the eigenvalues, and optionally, the eigenvectors
    of a complex generalized Hermitian-definite eigenproblem, of the form
    A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
    B are assumed to be Hermitian and B is also positive definite.
    It uses a two-stage algorithm for the tridiagonalization.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    =========
    ITYPE   (input) INTEGER
            Specifies the problem type to be solved:
            = 1:  A*x = (lambda)*B*x
            = 2:  A*B*x = (lambda)*x
            = 3:  B*A*x = (lambda)*x

    RANGE   (input) CHARACTER*1
            = 'A': all eigenvalues will be found.
            = 'V': all eigenvalues in the half-open interval (VL,VU]
                   will be found.
            = 'I': the IL-th through IU-th eigenvalues will be found.

    JOBZ    (input) CHARACTER*1
            = 'N':  Compute eigenvalues only;
            = 'V':  Compute eigenvalues and eigenvectors.

    UPLO    (input) CHARACTER*1
            = 'U':  Upper triangles of A and B are stored;
            = 'L':  Lower triangles of A and B are stored.

    N       (input) INTEGER
            The order of the matrices A and B.  N >= 0.

    A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = 'L',
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.

            On exit, if JOBZ = 'V', then if INFO = 0, A contains the
            matrix Z of eigenvectors.  The eigenvectors are normalized
            as follows:
            if ITYPE = 1 or 2, Z**H*B*Z = I;
            if ITYPE = 3, Z**H*inv(B)*Z = I.
            If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
            or the lower triangle (if UPLO='L') of A, including the
            diagonal, is destroyed.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
            On entry, the Hermitian matrix B.  If UPLO = 'U', the
            leading N-by-N upper triangular part of B contains the
            upper triangular part of the matrix B.  If UPLO = 'L',
            the leading N-by-N lower triangular part of B contains
            the lower triangular part of the matrix B.

            On exit, if INFO <= N, the part of B containing the matrix is
            overwritten by the triangular factor U or L from the Cholesky
            factorization B = U**H*U or B = L*L**H.

    LDB     (input) INTEGER
            The leading dimension of the array B.  LDB >= max(1,N).

    VL      (input) DOUBLE PRECISION
    VU      (input) DOUBLE PRECISION
            If RANGE='V', the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = 'A' or 'I'.

    IL      (input) INTEGER
    IU      (input) INTEGER
            If RANGE='I', the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = 'A' or 'V'.

    M       (output) INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

    W       (output) DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.
            If N <= 1,                LWORK >= 1.
            If JOBZ  = 'N' and N > 1, LWORK >= LQ2 + N * (NB + 2).
            If JOBZ  = 'V' and N > 1, LWORK >= LQ2 + 1 + 6*N + 2*N**2.
                                      where LQ2 is the size needed to store
                                      the Q2 matrix and is returned by
                                      MAGMA_BULGE_GET_LQ2.

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

    LIWORK  (input) INTEGER
            The dimension of the array IWORK.
            If N <= 1,                LIWORK >= 1.
            If JOBZ  = 'N' and N > 1, LIWORK >= 1.
            If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.

            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  ZPOTRF or ZHEEVD returned an error code:
               <= N:  if INFO = i and JOBZ = 'N', then the algorithm
                      failed to converge; i off-diagonal elements of an
                      intermediate tridiagonal form did not converge to
                      zero;
                      if INFO = i and JOBZ = 'V', then the algorithm
                      failed to compute an eigenvalue while working on
                      the submatrix lying in rows and columns INFO/(N+1)
                      through mod(INFO,N+1);
               > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                      minor of order i of B is not positive definite.
                      The factorization of B could not be completed and
                      no eigenvalues or eigenvectors were computed.

    Further Details
    ===============
    Based on contributions by
       Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

    Modified so that no backsubstitution is performed if ZHEEVD fails to
    converge (NEIG in old code could be greater than N causing out of
    bounds reference to A - reported by Ralf Meyer).  Also corrected the
    description of INFO and the test on ITYPE. Sven, 16 Feb 05.
    =====================================================================  */

    char uplo_[2] = {uplo, 0};
    char jobz_[2] = {jobz, 0};
    char range_[2] = {range, 0};

    float d_one = MAGMA_S_ONE;

    float *da;
    float *db;
    magma_int_t ldda = n;
    magma_int_t lddb = n;

    magma_int_t lower;
    char trans[1];
    magma_int_t wantz;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;

    magma_int_t lwmin;
    magma_int_t liwmin;

    magma_queue_t stream;
    magma_queue_create( &stream );

    /* determine the number of threads */
    magma_int_t threads = magma_get_numthreads();
    magma_setlapack_numthreads(threads);

    wantz = lapackf77_lsame(jobz_, MagmaVecStr);
    lower = lapackf77_lsame(uplo_, MagmaLowerStr);
    alleig = lapackf77_lsame(range_, "A");
    valeig = lapackf77_lsame(range_, "V");
    indeig = lapackf77_lsame(range_, "I");
    lquery = lwork == -1 || liwork == -1;

    *info = 0;
    if (itype < 1 || itype > 3) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVecStr))) {
        *info = -3;
    } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) {
        *info = -4;
    } else if (n < 0) {
        *info = -5;
    } else if (lda < max(1,n)) {
        *info = -7;
    } else if (ldb < max(1,n)) {
        *info = -9;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -11;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -12;
            } else if (iu < min(n,il) || iu > n) {
                *info = -13;
            }
        }
    }

    magma_int_t nb = magma_get_sbulge_nb(n, threads);
    magma_int_t lq2 = magma_sbulge_get_lq2(n, threads);

    if (wantz) {
        lwmin = lq2 + 1 + 6*n + 2*n*n;
        liwmin = 3 + 5*n;
    } else {
        lwmin = n * (nb + 2);
        liwmin = 1;
    }

    work[0] = lwmin * (1. + lapackf77_slamch("Epsilon"));
    iwork[0] = liwmin;

    if (lwork < lwmin && ! lquery) {
        *info = -17;
    } else if (liwork < liwmin && ! lquery) {
        *info = -19;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info));
        return *info;
    } else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128){
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_ssygvd(&itype, jobz_, uplo_,
                         &n, a, &lda, b, &ldb,
                         w, work, &lwork,
                         iwork, &liwork, info);
        *m = n;
        return *info;
    }

    if (MAGMA_SUCCESS != magma_smalloc( &da, n*ldda ) ||
        MAGMA_SUCCESS != magma_smalloc( &db, n*lddb )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    /* Form a Cholesky factorization of B. */
    magma_ssetmatrix( n, n, b, ldb, db, lddb );
    magma_ssetmatrix_async( n, n,
                            a,  lda,
                            da, ldda, stream );

#ifdef ENABLE_TIMER
    magma_timestr_t start, end;
    start = get_current_time();
#endif

    magma_spotrf_gpu(uplo_[0], n, db, lddb, info);
    if (*info != 0) {
        *info = n + *info;
        return *info;
    }

#ifdef ENABLE_TIMER
    end = get_current_time();
    printf("time spotrf_gpu = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    magma_queue_sync( stream );
    magma_sgetmatrix_async( n, n,
                            db, lddb,
                            b,  ldb, stream );

#ifdef ENABLE_TIMER
    start = get_current_time();
#endif

    /* Transform problem to standard eigenvalue problem and solve. */
    magma_ssygst_gpu(itype, uplo, n, da, ldda, db, lddb, info);

#ifdef ENABLE_TIMER
    end = get_current_time();
    printf("time ssygst_gpu = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    magma_sgetmatrix( n, n, da, ldda, a, lda );
    magma_queue_sync( stream );
    magma_free( da );
    magma_free( db );

#ifdef ENABLE_TIMER
    start = get_current_time();
#endif

    magma_ssyevdx_2stage(jobz, range, uplo, n, a, lda, vl, vu, il, iu, m, w, work, lwork, iwork, liwork, info);

#ifdef ENABLE_TIMER
    end = get_current_time();
    printf("time ssyevdx_2stage = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    if (wantz && *info == 0) {

        if (MAGMA_SUCCESS != magma_smalloc( &da, n*ldda ) ||
            MAGMA_SUCCESS != magma_smalloc( &db, n*lddb )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

#ifdef ENABLE_TIMER
        start = get_current_time();
#endif

        magma_ssetmatrix( n, *m, a, lda, da, ldda );
        magma_ssetmatrix( n,  n, b, ldb, db, lddb );

        /* Backtransform eigenvectors to the original problem. */
        if (itype == 1 || itype == 2) {
            /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
               backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
            if (lower) {
                *(unsigned char *)trans = MagmaConjTrans;
            } else {
                *(unsigned char *)trans = MagmaNoTrans;
            }

            magma_strsm(MagmaLeft, uplo, *trans, MagmaNonUnit, n, *m, d_one, db, lddb, da, ldda);
        }
        else if (itype == 3) {
            /* For B*A*x=(lambda)*x;
               backtransform eigenvectors: x = L*y or U'*y */
            if (lower) {
                *(unsigned char *)trans = MagmaNoTrans;
            } else {
                *(unsigned char *)trans = MagmaConjTrans;
            }

            magma_strmm(MagmaLeft, uplo, *trans, MagmaNonUnit, n, *m, d_one, db, lddb, da, ldda);
        }

        magma_sgetmatrix( n, *m, da, ldda, a, lda );

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("time strsm/mm + getmatrix = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

        magma_free( da );
        magma_free( db );
    }

    magma_queue_destroy( stream );

    work[0] = lwmin * (1. + lapackf77_slamch("Epsilon"));
    iwork[0] = liwmin;

    return *info;
} /* ssygvdx_2stage */
Exemplo n.º 3
0
/**
    Purpose
    -------
    SSYGVD computes all the eigenvalues, and optionally, the eigenvectors
    of a real generalized symmetric-definite eigenproblem, of the form
    A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
    B are assumed to be symmetric and B is also positive definite.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    itype   INTEGER
            Specifies the problem type to be solved:
            = 1:  A*x = (lambda)*B*x
            = 2:  A*B*x = (lambda)*x
            = 3:  B*A*x = (lambda)*x

    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangles of A and B are stored;
      -     = MagmaLower:  Lower triangles of A and B are stored.

    @param[in]
    n       INTEGER
            The order of the matrices A and B.  N >= 0.

    @param[in,out]
    A       REAL array, dimension (LDA, N)
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
    \n
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            matrix Z of eigenvectors.  The eigenvectors are normalized
            as follows:
            if ITYPE = 1 or 2, Z**T *   B    * Z = I;
            if ITYPE = 3,      Z**T * inv(B) * Z = I.
            If JOBZ = MagmaNoVec, then on exit the upper triangle (if UPLO=MagmaUpper)
            or the lower triangle (if UPLO=MagmaLower) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[in,out]
    B       REAL array, dimension (LDB, N)
            On entry, the symmetric matrix B.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of B contains the
            upper triangular part of the matrix B.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of B contains
            the lower triangular part of the matrix B.
    \n
            On exit, if INFO <= N, the part of B containing the matrix is
            overwritten by the triangular factor U or L from the Cholesky
            factorization B = U**T * U or B = L * L**T.

    @param[in]
    ldb     INTEGER
            The leading dimension of the array B.  LDB >= max(1,N).

    @param[out]
    w       REAL array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param[out]
    work    (workspace) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ).
            NB can be obtained through magma_get_ssytrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK and IWORK
            arrays, returns these values as the first entries of the WORK
            and IWORK arrays, and no error message related to LWORK or
            LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK and
            IWORK arrays, returns these values as the first entries of
            the WORK and IWORK arrays, and no error message related to
            LWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  SPOTRF or SSYEVD returned an error code:
               <= N:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm
                      failed to converge; i off-diagonal elements of an
                      intermediate tridiagonal form did not converge to
                      zero;
                      if INFO = i and JOBZ = MagmaVec, then the algorithm
                      failed to compute an eigenvalue while working on
                      the submatrix lying in rows and columns INFO/(N+1)
                      through mod(INFO,N+1);
               > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                      minor of order i of B is not positive definite.
                      The factorization of B could not be completed and
                      no eigenvalues or eigenvectors were computed.

    Further Details
    ---------------
    Based on contributions by
       Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

    Modified so that no backsubstitution is performed if SSYEVD fails to
    converge (NEIG in old code could be greater than N causing out of
    bounds reference to A - reported by Ralf Meyer).  Also corrected the
    description of INFO and the test on ITYPE. Sven, 16 Feb 05.

    @ingroup magma_ssygv_driver
    ********************************************************************/
extern "C" magma_int_t
magma_ssygvd(
    magma_int_t itype, magma_vec_t jobz, magma_uplo_t uplo, magma_int_t n,
    float *A, magma_int_t lda,
    float *B, magma_int_t ldb,
    float *w,
    float *work, magma_int_t lwork,
    #ifdef COMPLEX
    float *rwork, magma_int_t lrwork,
    #endif
    magma_int_t *iwork, magma_int_t liwork,
    magma_int_t *info)
{
    const char* uplo_ = lapack_uplo_const( uplo );
    const char* jobz_ = lapack_vec_const( jobz );

    float d_one = MAGMA_S_ONE;

    float *dA=NULL, *dB=NULL;
    magma_int_t ldda = magma_roundup( n, 32 );
    magma_int_t lddb = ldda;

    magma_int_t lower;
    magma_trans_t trans;
    magma_int_t wantz, lquery;

    magma_int_t lwmin, liwmin;

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    lquery = (lwork == -1 || liwork == -1);

    *info = 0;
    if (itype < 1 || itype > 3) {
        *info = -1;
    } else if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else if (ldb < max(1,n)) {
        *info = -8;
    }

    magma_int_t nb = magma_get_ssytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( 2*n + n*nb, 1 + 6*n + 2*n*n );
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    
    work[0]  = magma_smake_lwork( lwmin );
    iwork[0] = liwmin;

    if (lwork < lwmin && ! lquery) {
        *info = -11;
    } else if (liwork < liwmin && ! lquery) {
        *info = -13;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }
    
    /* If matrix is very small, then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        lapackf77_ssygvd( &itype, jobz_, uplo_,
                          &n, A, &lda, B, &ldb,
                          w, work, &lwork,
                          iwork, &liwork, info );
        return *info;
    }

    if (MAGMA_SUCCESS != magma_smalloc( &dA, n*ldda ) ||
        MAGMA_SUCCESS != magma_smalloc( &dB, n*lddb )) {
        magma_free( dA );
        magma_free( dB );
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    magma_queue_t queue;
    magma_device_t cdev;
    magma_getdevice( &cdev );
    magma_queue_create( cdev, &queue );

    /* Form a Cholesky factorization of B. */
    magma_ssetmatrix( n, n, B, ldb, dB, lddb, queue );
    magma_ssetmatrix_async( n, n,
                            A,  lda,
                            dA, ldda, queue );

    magma_timer_t time=0;
    timer_start( time );
    magma_spotrf_gpu( uplo, n, dB, lddb, info );
    if (*info != 0) {
        *info = n + *info;
        return *info;
    }
    timer_stop( time );
    timer_printf( "time spotrf_gpu = %6.2f\n", time );

    magma_queue_sync( queue );
    magma_sgetmatrix_async( n, n,
                            dB, lddb,
                            B,  ldb, queue );

    timer_start( time );
    /* Transform problem to standard eigenvalue problem and solve. */
    magma_ssygst_gpu( itype, uplo, n, dA, ldda, dB, lddb, info );
    timer_stop( time );
    timer_printf( "time ssygst_gpu = %6.2f\n", time );

    /* simple fix to be able to run bigger size.
     * set dB=NULL so we know to re-allocate below
     * TODO: have dwork here that will be used as dB and then passed to  ssyevd.
     */
    if (n > 5000) {
        magma_queue_sync( queue );
        magma_free( dB );  dB=NULL;
    }

    timer_start( time );
    magma_ssyevd_gpu( jobz, uplo, n, dA, ldda, w, A, lda,
                      work, lwork, iwork, liwork, info );
    timer_stop( time );
    timer_printf( "time ssyevd_gpu = %6.2f\n", time );

    if (wantz && *info == 0) {
        timer_start( time );
        
        /* allocate and copy dB back */
        if (dB == NULL) {
            if (MAGMA_SUCCESS != magma_smalloc( &dB, n*lddb ) ) {
                magma_free( dA );
                *info = MAGMA_ERR_DEVICE_ALLOC;
                return *info;
            }
            magma_ssetmatrix( n, n, B, ldb, dB, lddb, queue );
        }
        /* Backtransform eigenvectors to the original problem. */
        if (itype == 1 || itype == 2) {
            /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
               backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
            if (lower) {
                trans = MagmaTrans;
            } else {
                trans = MagmaNoTrans;
            }
            magma_strsm( MagmaLeft, uplo, trans, MagmaNonUnit,
                         n, n, d_one, dB, lddb, dA, ldda, queue );
        }
        else if (itype == 3) {
            /* For B*A*x=(lambda)*x;
               backtransform eigenvectors: x = L*y or U'*y */
            if (lower) {
                trans = MagmaNoTrans;
            } else {
                trans = MagmaTrans;
            }
            magma_strmm( MagmaLeft, uplo, trans, MagmaNonUnit,
                         n, n, d_one, dB, lddb, dA, ldda, queue );
        }
        magma_sgetmatrix( n, n, dA, ldda, A, lda, queue );
        
        timer_stop( time );
        timer_printf( "time strsm/mm + getmatrix = %6.2f\n", time );
    }

    magma_queue_sync( queue );
    magma_queue_destroy( queue );

    work[0]  = magma_smake_lwork( lwmin );
    iwork[0] = liwmin;

    magma_free( dA );  dA=NULL;
    magma_free( dB );  dB=NULL;

    return *info;
} /* magma_ssygvd */
Exemplo n.º 4
0
/**
    Purpose
    -------
    SSYGVDX computes selected eigenvalues and, optionally, eigenvectors
    of a real generalized symmetric-definite eigenproblem, of the form
    A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
    B are assumed to be symmetric and B is also positive definite.
    Eigenvalues and eigenvectors can be selected by specifying either a
    range of values or a range of indices for the desired eigenvalues.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    itype   INTEGER
            Specifies the problem type to be solved:
            = 1:  A*x = (lambda)*B*x
            = 2:  A*B*x = (lambda)*x
            = 3:  B*A*x = (lambda)*x

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                   will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangles of A and B are stored;
      -     = MagmaLower:  Lower triangles of A and B are stored.

    @param[in]
    n       INTEGER
            The order of the matrices A and B.  N >= 0.

    @param[in,out]
    A       REAL array, dimension (LDA, N)
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
    \n
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            matrix Z of eigenvectors.  The eigenvectors are normalized
            as follows:
            if ITYPE = 1 or 2, Z**T *   B    * Z = I;
            if ITYPE = 3,      Z**T * inv(B) * Z = I.
            If JOBZ = MagmaNoVec, then on exit the upper triangle (if UPLO=MagmaUpper)
            or the lower triangle (if UPLO=MagmaLower) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[in,out]
    B       REAL array, dimension (LDB, N)
            On entry, the symmetric matrix B.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of B contains the
            upper triangular part of the matrix B.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of B contains
            the lower triangular part of the matrix B.
    \n
            On exit, if INFO <= N, the part of B containing the matrix is
            overwritten by the triangular factor U or L from the Cholesky
            factorization B = U**T * U or B = L * L**T.

    @param[in]
    ldb     INTEGER
            The leading dimension of the array B.  LDB >= max(1,N).

    @param[in]
    vl      REAL
    @param[in]
    vu      REAL
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[out]
    mout    INTEGER
            The total number of eigenvalues found.  0 <= MOUT <= N.
            If RANGE = MagmaRangeAll, MOUT = N, and if RANGE = MagmaRangeI, MOUT = IU-IL+1.
    @param[out]
    w       REAL array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param[out]
    work    (workspace) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[out]
    work    (workspace) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ).
            NB can be obtained through magma_get_ssytrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK and IWORK
            arrays, returns these values as the first entries of the WORK
            and IWORK arrays, and no error message related to LWORK or
            LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK and
            IWORK arrays, returns these values as the first entries of
            the WORK and IWORK arrays, and no error message related to
            LWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  SPOTRF or SSYEVD returned an error code:
               <= N:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm
                      failed to converge; i off-diagonal elements of an
                      intermediate tridiagonal form did not converge to
                      zero;
                      if INFO = i and JOBZ = MagmaVec, then the algorithm
                      failed to compute an eigenvalue while working on
                      the submatrix lying in rows and columns INFO/(N+1)
                      through mod(INFO,N+1);
               > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                      minor of order i of B is not positive definite.
                      The factorization of B could not be completed and
                      no eigenvalues or eigenvectors were computed.

    Further Details
    ---------------
    Based on contributions by
       Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

    Modified so that no backsubstitution is performed if SSYEVD fails to
    converge (NEIG in old code could be greater than N causing out of
    bounds reference to A - reported by Ralf Meyer).  Also corrected the
    description of INFO and the test on ITYPE. Sven, 16 Feb 05.

    @ingroup magma_ssygv_driver
    ********************************************************************/
extern "C" magma_int_t
magma_ssygvdx(
    magma_int_t itype, magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n,
    float *A, magma_int_t lda,
    float *B, magma_int_t ldb,
    float vl, float vu, magma_int_t il, magma_int_t iu,
    magma_int_t *mout, float *w,
    float *work, magma_int_t lwork,
    #ifdef COMPLEX
    float *rwork, magma_int_t lrwork,
    #endif
    magma_int_t *iwork, magma_int_t liwork,
    magma_int_t *info)
{
    const char* uplo_  = lapack_uplo_const( uplo  );
    const char* jobz_  = lapack_vec_const( jobz  );

    float d_one = MAGMA_S_ONE;

    float *dA=NULL, *dB=NULL;
    magma_int_t ldda = roundup( n, 32 );
    magma_int_t lddb = ldda;

    magma_int_t lower;
    magma_trans_t trans;
    magma_int_t wantz, lquery;
    magma_int_t alleig, valeig, indeig;

    magma_int_t lwmin, liwmin;

    magma_queue_t stream;
    magma_queue_create( &stream );

    wantz  = (jobz  == MagmaVec);
    lower  = (uplo  == MagmaLower);
    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);
    lquery = (lwork == -1 || liwork == -1);

    *info = 0;
    if (itype < 1 || itype > 3) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -3;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -4;
    } else if (n < 0) {
        *info = -5;
    } else if (lda < max(1,n)) {
        *info = -7;
    } else if (ldb < max(1,n)) {
        *info = -9;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -11;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -12;
            } else if (iu < min(n,il) || iu > n) {
                *info = -13;
            }
        }
    }

    magma_int_t nb = magma_get_ssytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( 2*n + n*nb, 1 + 6*n + 2*n*n );
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    
    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_slamch("Epsilon");
    work[0]  = lwmin * one_eps;
    iwork[0] = liwmin;

    if (lwork < lwmin && ! lquery) {
        *info = -17;
    } else if (liwork < liwmin && ! lquery) {
        *info = -19;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }
    
    /* If matrix is very small, then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        lapackf77_ssygvd( &itype, jobz_, uplo_,
                          &n, A, &lda, B, &ldb,
                          w, work, &lwork,
                          iwork, &liwork, info );
        *mout = n;
        return *info;
    }

    if (MAGMA_SUCCESS != magma_smalloc( &dA, n*ldda ) ||
        MAGMA_SUCCESS != magma_smalloc( &dB, n*lddb )) {
        magma_free( dA );
        magma_free( dB );
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    /* Form a Cholesky factorization of B. */
    magma_ssetmatrix( n, n, B, ldb, dB, lddb );
    magma_ssetmatrix_async( n, n,
                            A,  lda,
                            dA, ldda, stream );

    magma_timer_t time=0;
    timer_start( time );

    magma_spotrf_gpu( uplo, n, dB, lddb, info );
    if (*info != 0) {
        *info = n + *info;
        return *info;
    }

    timer_stop( time );
    timer_printf( "time spotrf_gpu = %6.2f\n", time );

    magma_queue_sync( stream );
    magma_sgetmatrix_async( n, n,
                            dB, lddb,
                            B,  ldb, stream );

    timer_start( time );

    /* Transform problem to standard eigenvalue problem and solve. */
    magma_ssygst_gpu( itype, uplo, n, dA, ldda, dB, lddb, info );

    timer_stop( time );
    timer_printf( "time ssygst_gpu = %6.2f\n", time );

    /* simple fix to be able to run bigger size.
     * set dB=NULL so we know to re-allocate below
     * TODO: have dwork here that will be used as dB and then passed to  ssyevd.
     */
    if (n > 5000) {
        magma_queue_sync( stream );
        magma_free( dB );  dB=NULL;
    }

    timer_start( time );
    magma_ssyevdx_gpu( jobz, range, uplo, n, dA, ldda, vl, vu, il, iu, mout, w, A, lda,
                       work, lwork, iwork, liwork, info );
    timer_stop( time );
    timer_printf( "time ssyevdx_gpu = %6.2f\n", time );

    if (wantz && *info == 0) {
        timer_start( time );
        
        /* allocate and copy dB back */
        if (dB == NULL) {
            if (MAGMA_SUCCESS != magma_smalloc( &dB, n*lddb ) ) {
                magma_free( dA );  dA=NULL;
                *info = MAGMA_ERR_DEVICE_ALLOC;
                return *info;
            }
            magma_ssetmatrix( n, n, B, ldb, dB, lddb );
        }
        /* Backtransform eigenvectors to the original problem. */
        if (itype == 1 || itype == 2) {
            /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
               backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
            if (lower) {
                trans = MagmaTrans;
            } else {
                trans = MagmaNoTrans;
            }
            magma_strsm( MagmaLeft, uplo, trans, MagmaNonUnit,
                         n, *mout, d_one, dB, lddb, dA, ldda );
        }
        else if (itype == 3) {
            /* For B*A*x=(lambda)*x;
               backtransform eigenvectors: x = L*y or U'*y */
            if (lower) {
                trans = MagmaNoTrans;
            } else {
                trans = MagmaTrans;
            }
            magma_strmm( MagmaLeft, uplo, trans, MagmaNonUnit,
                         n, *mout, d_one, dB, lddb, dA, ldda );
        }
        magma_sgetmatrix( n, *mout, dA, ldda, A, lda );
        
        timer_stop( time );
        timer_printf( "time strsm/mm + getmatrix = %6.2f\n", time );
    }

    magma_queue_sync( stream );
    magma_queue_destroy( stream );

    work[0]  = lwmin * one_eps;  // round up
    iwork[0] = liwmin;

    magma_free( dA );  dA=NULL;
    magma_free( dB );  dB=NULL;

    return *info;
} /* magma_ssygvd */
Exemplo n.º 5
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing ssygst
*/
int main( int argc, char** argv)
{
    TESTING_INIT();
    
    // Constants
    const float c_neg_one = MAGMA_S_NEG_ONE;
    const magma_int_t ione = 1;

    // Local variables
    real_Double_t gpu_time, cpu_time;
    float *h_A, *h_B, *h_R;
    magmaFloat_ptr d_A, d_B;
    float      Anorm, error, work[1];
    magma_int_t N, n2, lda, ldda, info;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t status = 0;
    
    magma_opts opts;
    opts.parse_opts( argc, argv );
    opts.lapack |= opts.check;  // check (-c) implies lapack (-l)
    
    float tol = opts.tolerance * lapackf77_slamch("E");

    printf("%% uplo = %s\n", lapack_uplo_const(opts.uplo) );
    printf("%% itype   N   CPU time (sec)   GPU time (sec)   |R|     \n");
    printf("%%=======================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[itest];
            lda    = N;
            ldda   = magma_roundup( lda, opts.align );
            n2     = N*lda;
            
            TESTING_MALLOC_CPU( h_A,     float, lda*N );
            TESTING_MALLOC_CPU( h_B,     float, lda*N );
            
            TESTING_MALLOC_PIN( h_R,     float, lda*N );
            
            TESTING_MALLOC_DEV( d_A,     float, ldda*N );
            TESTING_MALLOC_DEV( d_B,     float, ldda*N );
            
            /* ====================================================================
               Initialize the matrix
               =================================================================== */
            lapackf77_slarnv( &ione, ISEED, &n2, h_A );
            lapackf77_slarnv( &ione, ISEED, &n2, h_B );
            magma_smake_symmetric( N, h_A, lda );
            magma_smake_hpd(       N, h_B, lda );
            magma_spotrf( opts.uplo, N, h_B, lda, &info );
            if (info != 0) {
                printf("magma_spotrf returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            magma_ssetmatrix( N, N, h_A, lda, d_A, ldda, opts.queue );
            magma_ssetmatrix( N, N, h_B, lda, d_B, ldda, opts.queue );
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            gpu_time = magma_wtime();
            magma_ssygst_gpu( opts.itype, opts.uplo, N, d_A, ldda, d_B, ldda, &info );
            gpu_time = magma_wtime() - gpu_time;
            if (info != 0) {
                printf("magma_ssygst_gpu returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            if ( opts.lapack ) {
                cpu_time = magma_wtime();
                lapackf77_ssygst( &opts.itype, lapack_uplo_const(opts.uplo),
                                  &N, h_A, &lda, h_B, &lda, &info );
                cpu_time = magma_wtime() - cpu_time;
                if (info != 0) {
                    printf("lapackf77_ssygst returned error %d: %s.\n",
                           (int) info, magma_strerror( info ));
                }
                
                magma_sgetmatrix( N, N, d_A, ldda, h_R, lda, opts.queue );
                
                blasf77_saxpy( &n2, &c_neg_one, h_A, &ione, h_R, &ione );
                Anorm = safe_lapackf77_slansy("f", lapack_uplo_const(opts.uplo), &N, h_A, &lda, work );
                error = safe_lapackf77_slansy("f", lapack_uplo_const(opts.uplo), &N, h_R, &lda, work )
                      / Anorm;
                
                bool okay = (error < tol);
                status += ! okay;
                printf("%3d   %5d   %7.2f          %7.2f          %8.2e   %s\n",
                       (int) opts.itype, (int) N, cpu_time, gpu_time,
                       error, (okay ? "ok" : "failed"));
            }
            else {
                printf("%3d   %5d     ---            %7.2f\n",
                       (int) opts.itype, (int) N, gpu_time );
            }
            
            TESTING_FREE_CPU( h_A );
            TESTING_FREE_CPU( h_B );
            
            TESTING_FREE_PIN( h_R );
            
            TESTING_FREE_DEV( d_A );
            TESTING_FREE_DEV( d_B );
            
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }

    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}