Exemplo n.º 1
0
void
MulticopterPositionControl::update_ref()
{
	if (_local_pos.ref_timestamp != _ref_timestamp) {
		double lat_sp, lon_sp;
		float alt_sp;

		if (_ref_timestamp != 0) {
			/* calculate current position setpoint in global frame */
			map_projection_reproject(&_ref_pos, _pos_sp(0), _pos_sp(1), &lat_sp, &lon_sp);
			alt_sp = _ref_alt - _pos_sp(2);
		}

		/* update local projection reference */
		map_projection_init(&_ref_pos, _local_pos.ref_lat, _local_pos.ref_lon);
		_ref_alt = _local_pos.ref_alt;

		if (_ref_timestamp != 0) {
			/* reproject position setpoint to new reference */
			map_projection_project(&_ref_pos, lat_sp, lon_sp, &_pos_sp.data[0], &_pos_sp.data[1]);
			_pos_sp(2) = -(alt_sp - _ref_alt);
		}

		_ref_timestamp = _local_pos.ref_timestamp;
	}
}
Exemplo n.º 2
0
float OutputBase::_calculate_pitch(double lon, double lat, float altitude,
				   const vehicle_global_position_s &global_position)
{
	if (!map_projection_initialized(&_projection_reference)) {
		map_projection_init(&_projection_reference, global_position.lat, global_position.lon);
	}

	float x1, y1, x2, y2;
	map_projection_project(&_projection_reference, lat, lon, &x1, &y1);
	map_projection_project(&_projection_reference, global_position.lat, global_position.lon, &x2, &y2);
	float dx = x1 - x2, dy = y1 - y2;
	float target_distance = sqrtf(dx * dx + dy * dy);
	float z = altitude - global_position.alt;

	return atan2f(z, target_distance);
}
Exemplo n.º 3
0
void EstimatorInterface::setGpsData(uint64_t time_usec, struct gps_message *gps)
{
	if (!_initialised) {
		return;
	}

	// limit data rate to prevent data being lost
	bool need_gps = (_params.fusion_mode & MASK_USE_GPS) || (_params.vdist_sensor_type == VDIST_SENSOR_GPS);
	if (((time_usec - _time_last_gps) > _min_obs_interval_us) && need_gps) {
		gpsSample gps_sample_new = {};
		gps_sample_new.time_us = gps->time_usec - _params.gps_delay_ms * 1000;

		gps_sample_new.time_us -= FILTER_UPDATE_PERIOD_MS * 1000 / 2;
		_time_last_gps = time_usec;

		gps_sample_new.time_us = math::max(gps_sample_new.time_us, _imu_sample_delayed.time_us);

		memcpy(gps_sample_new.vel._data[0], gps->vel_ned, sizeof(gps_sample_new.vel._data));

		_gps_speed_valid = gps->vel_ned_valid;
		gps_sample_new.sacc = gps->sacc;
		gps_sample_new.hacc = gps->eph;
		gps_sample_new.vacc = gps->epv;

		gps_sample_new.hgt = (float)gps->alt * 1e-3f;

		// Only calculate the relative position if the WGS-84 location of the origin is set
		if (collect_gps(time_usec, gps)) {
			float lpos_x = 0.0f;
			float lpos_y = 0.0f;
			map_projection_project(&_pos_ref, (gps->lat / 1.0e7), (gps->lon / 1.0e7), &lpos_x, &lpos_y);
			gps_sample_new.pos(0) = lpos_x;
			gps_sample_new.pos(1) = lpos_y;

		} else {
			gps_sample_new.pos(0) = 0.0f;
			gps_sample_new.pos(1) = 0.0f;
		}

		_gps_buffer.push(gps_sample_new);
	}
}
Exemplo n.º 4
0
void EstimatorBase::setGpsData(uint64_t time_usec, struct gps_message *gps)
{

	if (!_gps_initialised) {
		initialiseGPS(gps);
		return;
	}

	if (time_usec - _time_last_gps > 70000 && gps_is_good(gps)) {
		gpsSample gps_sample_new = {};
		gps_sample_new.time_us = gps->time_usec - _params.gps_delay_ms * 1000;


		gps_sample_new.time_us -= FILTER_UPDATE_PERRIOD_MS * 1000 / 2;
		_time_last_gps = time_usec;

		_last_valid_gps_time_us = hrt_absolute_time();

		gps_sample_new.time_us = math::max(gps_sample_new.time_us, _imu_sample_delayed.time_us);


		memcpy(gps_sample_new.vel._data[0], gps->vel_ned, sizeof(gps_sample_new.vel._data));

		_gps_speed_valid = gps->vel_ned_valid;


		float lpos_x = 0.0f;
		float lpos_y = 0.0f;
		map_projection_project(&_posRef, (gps->lat / 1.0e7), (gps->lon / 1.0e7), &lpos_x, &lpos_y);
		gps_sample_new.pos(0) = lpos_x;
		gps_sample_new.pos(1) = lpos_y;
		gps_sample_new.hgt = gps->alt / 1e3f;

		_gps_buffer.push(gps_sample_new);
	}
}
/****************************************************************************
 * main
 ****************************************************************************/
int position_estimator_inav_thread_main(int argc, char *argv[])
{
	int mavlink_fd;
	mavlink_fd = px4_open(MAVLINK_LOG_DEVICE, 0);

	float x_est[2] = { 0.0f, 0.0f };	// pos, vel
	float y_est[2] = { 0.0f, 0.0f };	// pos, vel
	float z_est[2] = { 0.0f, 0.0f };	// pos, vel

	float est_buf[EST_BUF_SIZE][3][2];	// estimated position buffer
	float R_buf[EST_BUF_SIZE][3][3];	// rotation matrix buffer
	float R_gps[3][3];					// rotation matrix for GPS correction moment
	memset(est_buf, 0, sizeof(est_buf));
	memset(R_buf, 0, sizeof(R_buf));
	memset(R_gps, 0, sizeof(R_gps));
	int buf_ptr = 0;

	static const float min_eph_epv = 2.0f;	// min EPH/EPV, used for weight calculation
	static const float max_eph_epv = 20.0f;	// max EPH/EPV acceptable for estimation

	float eph = max_eph_epv;
	float epv = 1.0f;

	float eph_flow = 1.0f;

	float eph_vision = 0.2f;
	float epv_vision = 0.2f;

	float eph_mocap = 0.05f;
	float epv_mocap = 0.05f;

	float x_est_prev[2], y_est_prev[2], z_est_prev[2];
	memset(x_est_prev, 0, sizeof(x_est_prev));
	memset(y_est_prev, 0, sizeof(y_est_prev));
	memset(z_est_prev, 0, sizeof(z_est_prev));

	int baro_init_cnt = 0;
	int baro_init_num = 200;
	float baro_offset = 0.0f;		// baro offset for reference altitude, initialized on start, then adjusted
	float surface_offset = 0.0f;	// ground level offset from reference altitude
	float surface_offset_rate = 0.0f;	// surface offset change rate

	hrt_abstime accel_timestamp = 0;
	hrt_abstime baro_timestamp = 0;

	bool ref_inited = false;
	hrt_abstime ref_init_start = 0;
	const hrt_abstime ref_init_delay = 1000000;	// wait for 1s after 3D fix
	struct map_projection_reference_s ref;
	memset(&ref, 0, sizeof(ref));
	hrt_abstime home_timestamp = 0;

	uint16_t accel_updates = 0;
	uint16_t baro_updates = 0;
	uint16_t gps_updates = 0;
	uint16_t attitude_updates = 0;
	uint16_t flow_updates = 0;
	uint16_t vision_updates = 0;
	uint16_t mocap_updates = 0;

	hrt_abstime updates_counter_start = hrt_absolute_time();
	hrt_abstime pub_last = hrt_absolute_time();

	hrt_abstime t_prev = 0;

	/* store error when sensor updates, but correct on each time step to avoid jumps in estimated value */
	float acc[] = { 0.0f, 0.0f, 0.0f };	// N E D
	float acc_bias[] = { 0.0f, 0.0f, 0.0f };	// body frame
	float corr_baro = 0.0f;		// D
	float corr_gps[3][2] = {
		{ 0.0f, 0.0f },		// N (pos, vel)
		{ 0.0f, 0.0f },		// E (pos, vel)
		{ 0.0f, 0.0f },		// D (pos, vel)
	};
	float w_gps_xy = 1.0f;
	float w_gps_z = 1.0f;

	float corr_vision[3][2] = {
		{ 0.0f, 0.0f },		// N (pos, vel)
		{ 0.0f, 0.0f },		// E (pos, vel)
		{ 0.0f, 0.0f },		// D (pos, vel)
	};

	float corr_mocap[3][1] = {
		{ 0.0f },		// N (pos)
		{ 0.0f },		// E (pos)
		{ 0.0f },		// D (pos)
	};

	float corr_sonar = 0.0f;
	float corr_sonar_filtered = 0.0f;

	float corr_flow[] = { 0.0f, 0.0f };	// N E
	float w_flow = 0.0f;

	float sonar_prev = 0.0f;
	//hrt_abstime flow_prev = 0;			// time of last flow measurement
	hrt_abstime sonar_time = 0;			// time of last sonar measurement (not filtered)
	hrt_abstime sonar_valid_time = 0;	// time of last sonar measurement used for correction (filtered)

	bool gps_valid = false;			// GPS is valid
	bool sonar_valid = false;		// sonar is valid
	bool flow_valid = false;		// flow is valid
	bool flow_accurate = false;		// flow should be accurate (this flag not updated if flow_valid == false)
	bool vision_valid = false;		// vision is valid
	bool mocap_valid = false;		// mocap is valid

	/* declare and safely initialize all structs */
	struct actuator_controls_s actuator;
	memset(&actuator, 0, sizeof(actuator));
	struct actuator_armed_s armed;
	memset(&armed, 0, sizeof(armed));
	struct sensor_combined_s sensor;
	memset(&sensor, 0, sizeof(sensor));
	struct vehicle_gps_position_s gps;
	memset(&gps, 0, sizeof(gps));
	struct home_position_s home;
	memset(&home, 0, sizeof(home));
	struct vehicle_attitude_s att;
	memset(&att, 0, sizeof(att));
	struct vehicle_local_position_s local_pos;
	memset(&local_pos, 0, sizeof(local_pos));
	struct optical_flow_s flow;
	memset(&flow, 0, sizeof(flow));
	struct vision_position_estimate_s vision;
	memset(&vision, 0, sizeof(vision));
	struct att_pos_mocap_s mocap;
	memset(&mocap, 0, sizeof(mocap));
	struct vehicle_global_position_s global_pos;
	memset(&global_pos, 0, sizeof(global_pos));

	/* subscribe */
	int parameter_update_sub = orb_subscribe(ORB_ID(parameter_update));
	int actuator_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS);
	int armed_sub = orb_subscribe(ORB_ID(actuator_armed));
	int sensor_combined_sub = orb_subscribe(ORB_ID(sensor_combined));
	int vehicle_attitude_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	int optical_flow_sub = orb_subscribe(ORB_ID(optical_flow));
	int vehicle_gps_position_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
	int vision_position_estimate_sub = orb_subscribe(ORB_ID(vision_position_estimate));
	int att_pos_mocap_sub = orb_subscribe(ORB_ID(att_pos_mocap));
	int home_position_sub = orb_subscribe(ORB_ID(home_position));

	/* advertise */
	orb_advert_t vehicle_local_position_pub = orb_advertise(ORB_ID(vehicle_local_position), &local_pos);
	orb_advert_t vehicle_global_position_pub = NULL;

	struct position_estimator_inav_params params;
	struct position_estimator_inav_param_handles pos_inav_param_handles;
	/* initialize parameter handles */
	inav_parameters_init(&pos_inav_param_handles);

	/* first parameters read at start up */
	struct parameter_update_s param_update;
	orb_copy(ORB_ID(parameter_update), parameter_update_sub, &param_update); /* read from param topic to clear updated flag */
	/* first parameters update */
	inav_parameters_update(&pos_inav_param_handles, &params);

	px4_pollfd_struct_t fds_init[1] = {
		{ .fd = sensor_combined_sub, .events = POLLIN },
	};

	/* wait for initial baro value */
	bool wait_baro = true;

	thread_running = true;

	while (wait_baro && !thread_should_exit) {
		int ret = px4_poll(fds_init, 1, 1000);

		if (ret < 0) {
			/* poll error */
			mavlink_log_info(mavlink_fd, "[inav] poll error on init");

		} else if (ret > 0) {
			if (fds_init[0].revents & POLLIN) {
				orb_copy(ORB_ID(sensor_combined), sensor_combined_sub, &sensor);

				if (wait_baro && sensor.baro_timestamp != baro_timestamp) {
					baro_timestamp = sensor.baro_timestamp;

					/* mean calculation over several measurements */
					if (baro_init_cnt < baro_init_num) {
						if (PX4_ISFINITE(sensor.baro_alt_meter)) {
							baro_offset += sensor.baro_alt_meter;
							baro_init_cnt++;
						}

					} else {
						wait_baro = false;
						baro_offset /= (float) baro_init_cnt;
						warnx("baro offset: %d m", (int)baro_offset);
						mavlink_log_info(mavlink_fd, "[inav] baro offset: %d m", (int)baro_offset);
						local_pos.z_valid = true;
						local_pos.v_z_valid = true;
					}
				}
			}
		}
	}

	/* main loop */
	px4_pollfd_struct_t fds[1] = {
		{ .fd = vehicle_attitude_sub, .events = POLLIN },
	};

	while (!thread_should_exit) {
		int ret = px4_poll(fds, 1, 20); // wait maximal 20 ms = 50 Hz minimum rate
		hrt_abstime t = hrt_absolute_time();

		if (ret < 0) {
			/* poll error */
			mavlink_log_info(mavlink_fd, "[inav] poll error on init");
			continue;

		} else if (ret > 0) {
			/* act on attitude updates */

			/* vehicle attitude */
			orb_copy(ORB_ID(vehicle_attitude), vehicle_attitude_sub, &att);
			attitude_updates++;

			bool updated;

			/* parameter update */
			orb_check(parameter_update_sub, &updated);

			if (updated) {
				struct parameter_update_s update;
				orb_copy(ORB_ID(parameter_update), parameter_update_sub, &update);
				inav_parameters_update(&pos_inav_param_handles, &params);
			}

			/* actuator */
			orb_check(actuator_sub, &updated);

			if (updated) {
				orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_sub, &actuator);
			}

			/* armed */
			orb_check(armed_sub, &updated);

			if (updated) {
				orb_copy(ORB_ID(actuator_armed), armed_sub, &armed);
			}

			/* sensor combined */
			orb_check(sensor_combined_sub, &updated);

			if (updated) {
				orb_copy(ORB_ID(sensor_combined), sensor_combined_sub, &sensor);

				if (sensor.accelerometer_timestamp != accel_timestamp) {
					if (att.R_valid) {
						/* correct accel bias */
						sensor.accelerometer_m_s2[0] -= acc_bias[0];
						sensor.accelerometer_m_s2[1] -= acc_bias[1];
						sensor.accelerometer_m_s2[2] -= acc_bias[2];

						/* transform acceleration vector from body frame to NED frame */
						for (int i = 0; i < 3; i++) {
							acc[i] = 0.0f;

							for (int j = 0; j < 3; j++) {
								acc[i] += PX4_R(att.R, i, j) * sensor.accelerometer_m_s2[j];
							}
						}

						acc[2] += CONSTANTS_ONE_G;

					} else {
						memset(acc, 0, sizeof(acc));
					}

					accel_timestamp = sensor.accelerometer_timestamp;
					accel_updates++;
				}

				if (sensor.baro_timestamp != baro_timestamp) {
					corr_baro = baro_offset - sensor.baro_alt_meter - z_est[0];
					baro_timestamp = sensor.baro_timestamp;
					baro_updates++;
				}
			}

			/* optical flow */
			orb_check(optical_flow_sub, &updated);

			if (updated) {
				orb_copy(ORB_ID(optical_flow), optical_flow_sub, &flow);

				/* calculate time from previous update */
//				float flow_dt = flow_prev > 0 ? (flow.flow_timestamp - flow_prev) * 1e-6f : 0.1f;
//				flow_prev = flow.flow_timestamp;

				if ((flow.ground_distance_m > 0.31f) &&
					(flow.ground_distance_m < 4.0f) &&
					(PX4_R(att.R, 2, 2) > 0.7f) &&
					(fabsf(flow.ground_distance_m - sonar_prev) > FLT_EPSILON)) {

					sonar_time = t;
					sonar_prev = flow.ground_distance_m;
					corr_sonar = flow.ground_distance_m + surface_offset + z_est[0];
					corr_sonar_filtered += (corr_sonar - corr_sonar_filtered) * params.sonar_filt;

					if (fabsf(corr_sonar) > params.sonar_err) {
						/* correction is too large: spike or new ground level? */
						if (fabsf(corr_sonar - corr_sonar_filtered) > params.sonar_err) {
							/* spike detected, ignore */
							corr_sonar = 0.0f;
							sonar_valid = false;

						} else {
							/* new ground level */
							surface_offset -= corr_sonar;
							surface_offset_rate = 0.0f;
							corr_sonar = 0.0f;
							corr_sonar_filtered = 0.0f;
							sonar_valid_time = t;
							sonar_valid = true;
							local_pos.surface_bottom_timestamp = t;
							mavlink_log_info(mavlink_fd, "[inav] new surface level: %d", (int)surface_offset);
						}

					} else {
						/* correction is ok, use it */
						sonar_valid_time = t;
						sonar_valid = true;
					}
				}

				float flow_q = flow.quality / 255.0f;
				float dist_bottom = - z_est[0] - surface_offset;

				if (dist_bottom > 0.3f && flow_q > params.flow_q_min && (t < sonar_valid_time + sonar_valid_timeout) && PX4_R(att.R, 2, 2) > 0.7f) {
					/* distance to surface */
					float flow_dist = dist_bottom / PX4_R(att.R, 2, 2);
					/* check if flow if too large for accurate measurements */
					/* calculate estimated velocity in body frame */
					float body_v_est[2] = { 0.0f, 0.0f };

					for (int i = 0; i < 2; i++) {
						body_v_est[i] = PX4_R(att.R, 0, i) * x_est[1] + PX4_R(att.R, 1, i) * y_est[1] + PX4_R(att.R, 2, i) * z_est[1];
					}

					/* set this flag if flow should be accurate according to current velocity and attitude rate estimate */
					flow_accurate = fabsf(body_v_est[1] / flow_dist - att.rollspeed) < max_flow &&
							fabsf(body_v_est[0] / flow_dist + att.pitchspeed) < max_flow;

					/* convert raw flow to angular flow (rad/s) */
					float flow_ang[2];
					//todo check direction of x und y axis
					flow_ang[0] = flow.pixel_flow_x_integral/(float)flow.integration_timespan*1000000.0f;//flow.flow_raw_x * params.flow_k / 1000.0f / flow_dt;
					flow_ang[1] = flow.pixel_flow_y_integral/(float)flow.integration_timespan*1000000.0f;//flow.flow_raw_y * params.flow_k / 1000.0f / flow_dt;
					/* flow measurements vector */
					float flow_m[3];
					flow_m[0] = -flow_ang[0] * flow_dist;
					flow_m[1] = -flow_ang[1] * flow_dist;
					flow_m[2] = z_est[1];
					/* velocity in NED */
					float flow_v[2] = { 0.0f, 0.0f };

					/* project measurements vector to NED basis, skip Z component */
					for (int i = 0; i < 2; i++) {
						for (int j = 0; j < 3; j++) {
							flow_v[i] += PX4_R(att.R, i, j) * flow_m[j];
						}
					}

					/* velocity correction */
					corr_flow[0] = flow_v[0] - x_est[1];
					corr_flow[1] = flow_v[1] - y_est[1];
					/* adjust correction weight */
					float flow_q_weight = (flow_q - params.flow_q_min) / (1.0f - params.flow_q_min);
					w_flow = PX4_R(att.R, 2, 2) * flow_q_weight / fmaxf(1.0f, flow_dist);

					/* if flow is not accurate, reduce weight for it */
					// TODO make this more fuzzy
					if (!flow_accurate) {
						w_flow *= 0.05f;
					}

					/* under ideal conditions, on 1m distance assume EPH = 10cm */
					eph_flow = 0.1f / w_flow;

					flow_valid = true;

				} else {
					w_flow = 0.0f;
					flow_valid = false;
				}

				flow_updates++;
			}

			/* home position */
			orb_check(home_position_sub, &updated);

			if (updated) {
				orb_copy(ORB_ID(home_position), home_position_sub, &home);

				if (home.timestamp != home_timestamp) {
					home_timestamp = home.timestamp;

					double est_lat, est_lon;
					float est_alt;

					if (ref_inited) {
						/* calculate current estimated position in global frame */
						est_alt = local_pos.ref_alt - local_pos.z;
						map_projection_reproject(&ref, local_pos.x, local_pos.y, &est_lat, &est_lon);
					}

					/* update reference */
					map_projection_init(&ref, home.lat, home.lon);

					/* update baro offset */
					baro_offset += home.alt - local_pos.ref_alt;

					local_pos.ref_lat = home.lat;
					local_pos.ref_lon = home.lon;
					local_pos.ref_alt = home.alt;
					local_pos.ref_timestamp = home.timestamp;

					if (ref_inited) {
						/* reproject position estimate with new reference */
						map_projection_project(&ref, est_lat, est_lon, &x_est[0], &y_est[0]);
						z_est[0] = -(est_alt - local_pos.ref_alt);
					}

					ref_inited = true;
				}
			}


			/* check no vision circuit breaker is set */
			if (params.no_vision != CBRK_NO_VISION_KEY) {
				/* vehicle vision position */
				orb_check(vision_position_estimate_sub, &updated);

				if (updated) {
					orb_copy(ORB_ID(vision_position_estimate), vision_position_estimate_sub, &vision);

					static float last_vision_x = 0.0f;
					static float last_vision_y = 0.0f;
					static float last_vision_z = 0.0f;

					/* reset position estimate on first vision update */
					if (!vision_valid) {
						x_est[0] = vision.x;
						x_est[1] = vision.vx;
						y_est[0] = vision.y;
						y_est[1] = vision.vy;
						/* only reset the z estimate if the z weight parameter is not zero */
						if (params.w_z_vision_p > MIN_VALID_W)
						{
							z_est[0] = vision.z;
							z_est[1] = vision.vz;
						}

						vision_valid = true;

						last_vision_x = vision.x;
						last_vision_y = vision.y;
						last_vision_z = vision.z;

						warnx("VISION estimate valid");
						mavlink_log_info(mavlink_fd, "[inav] VISION estimate valid");
					}

					/* calculate correction for position */
					corr_vision[0][0] = vision.x - x_est[0];
					corr_vision[1][0] = vision.y - y_est[0];
					corr_vision[2][0] = vision.z - z_est[0];

					static hrt_abstime last_vision_time = 0;

					float vision_dt = (vision.timestamp_boot - last_vision_time) / 1e6f;
					last_vision_time = vision.timestamp_boot;

					if (vision_dt > 0.000001f && vision_dt < 0.2f) {
						vision.vx = (vision.x - last_vision_x) / vision_dt;
						vision.vy = (vision.y - last_vision_y) / vision_dt;
						vision.vz = (vision.z - last_vision_z) / vision_dt;

						last_vision_x = vision.x;
						last_vision_y = vision.y;
						last_vision_z = vision.z;

						/* calculate correction for velocity */
						corr_vision[0][1] = vision.vx - x_est[1];
						corr_vision[1][1] = vision.vy - y_est[1];
						corr_vision[2][1] = vision.vz - z_est[1];
					} else {
						/* assume zero motion */
						corr_vision[0][1] = 0.0f - x_est[1];
						corr_vision[1][1] = 0.0f - y_est[1];
						corr_vision[2][1] = 0.0f - z_est[1];
					}

					vision_updates++;
				}
			}

			/* vehicle mocap position */
			orb_check(att_pos_mocap_sub, &updated);

			if (updated) {
				orb_copy(ORB_ID(att_pos_mocap), att_pos_mocap_sub, &mocap);

				/* reset position estimate on first mocap update */
				if (!mocap_valid) {
					x_est[0] = mocap.x;
					y_est[0] = mocap.y;
					z_est[0] = mocap.z;

					mocap_valid = true;

					warnx("MOCAP data valid");
					mavlink_log_info(mavlink_fd, "[inav] MOCAP data valid");
				}

				/* calculate correction for position */
				corr_mocap[0][0] = mocap.x - x_est[0];
				corr_mocap[1][0] = mocap.y - y_est[0];
				corr_mocap[2][0] = mocap.z - z_est[0];

				mocap_updates++;
			}

			/* vehicle GPS position */
			orb_check(vehicle_gps_position_sub, &updated);

			if (updated) {
				orb_copy(ORB_ID(vehicle_gps_position), vehicle_gps_position_sub, &gps);

				bool reset_est = false;

				/* hysteresis for GPS quality */
				if (gps_valid) {
					if (gps.eph > max_eph_epv || gps.epv > max_eph_epv || gps.fix_type < 3) {
						gps_valid = false;
						mavlink_log_info(mavlink_fd, "[inav] GPS signal lost");
					}

				} else {
					if (gps.eph < max_eph_epv * 0.7f && gps.epv < max_eph_epv * 0.7f && gps.fix_type >= 3) {
						gps_valid = true;
						reset_est = true;
						mavlink_log_info(mavlink_fd, "[inav] GPS signal found");
					}
				}

				if (gps_valid) {
					double lat = gps.lat * 1e-7;
					double lon = gps.lon * 1e-7;
					float alt = gps.alt * 1e-3;

					/* initialize reference position if needed */
					if (!ref_inited) {
						if (ref_init_start == 0) {
							ref_init_start = t;

						} else if (t > ref_init_start + ref_init_delay) {
							ref_inited = true;

							/* set position estimate to (0, 0, 0), use GPS velocity for XY */
							x_est[0] = 0.0f;
							x_est[1] = gps.vel_n_m_s;
							y_est[0] = 0.0f;
							y_est[1] = gps.vel_e_m_s;

							local_pos.ref_lat = lat;
							local_pos.ref_lon = lon;
							local_pos.ref_alt = alt + z_est[0];
							local_pos.ref_timestamp = t;

							/* initialize projection */
							map_projection_init(&ref, lat, lon);
							// XXX replace this print
							warnx("init ref: lat=%.7f, lon=%.7f, alt=%8.4f", (double)lat, (double)lon, (double)alt);
							mavlink_log_info(mavlink_fd, "[inav] init ref: %.7f, %.7f, %8.4f", (double)lat, (double)lon, (double)alt);
						}
					}

					if (ref_inited) {
						/* project GPS lat lon to plane */
						float gps_proj[2];
						map_projection_project(&ref, lat, lon, &(gps_proj[0]), &(gps_proj[1]));

						/* reset position estimate when GPS becomes good */
						if (reset_est) {
							x_est[0] = gps_proj[0];
							x_est[1] = gps.vel_n_m_s;
							y_est[0] = gps_proj[1];
							y_est[1] = gps.vel_e_m_s;
						}

						/* calculate index of estimated values in buffer */
						int est_i = buf_ptr - 1 - min(EST_BUF_SIZE - 1, max(0, (int)(params.delay_gps * 1000000.0f / PUB_INTERVAL)));
						if (est_i < 0) {
							est_i += EST_BUF_SIZE;
						}

						/* calculate correction for position */
						corr_gps[0][0] = gps_proj[0] - est_buf[est_i][0][0];
						corr_gps[1][0] = gps_proj[1] - est_buf[est_i][1][0];
						corr_gps[2][0] = local_pos.ref_alt - alt - est_buf[est_i][2][0];

						/* calculate correction for velocity */
						if (gps.vel_ned_valid) {
							corr_gps[0][1] = gps.vel_n_m_s - est_buf[est_i][0][1];
							corr_gps[1][1] = gps.vel_e_m_s - est_buf[est_i][1][1];
							corr_gps[2][1] = gps.vel_d_m_s - est_buf[est_i][2][1];

						} else {
							corr_gps[0][1] = 0.0f;
							corr_gps[1][1] = 0.0f;
							corr_gps[2][1] = 0.0f;
						}

						/* save rotation matrix at this moment */
						memcpy(R_gps, R_buf[est_i], sizeof(R_gps));

						w_gps_xy = min_eph_epv / fmaxf(min_eph_epv, gps.eph);
						w_gps_z = min_eph_epv / fmaxf(min_eph_epv, gps.epv);
					}

				} else {
					/* no GPS lock */
					memset(corr_gps, 0, sizeof(corr_gps));
					ref_init_start = 0;
				}

				gps_updates++;
			}
		}

		/* check for timeout on FLOW topic */
		if ((flow_valid || sonar_valid) && t > flow.timestamp + flow_topic_timeout) {
			flow_valid = false;
			sonar_valid = false;
			warnx("FLOW timeout");
			mavlink_log_info(mavlink_fd, "[inav] FLOW timeout");
		}

		/* check for timeout on GPS topic */
		if (gps_valid && (t > (gps.timestamp_position + gps_topic_timeout))) {
			gps_valid = false;
			warnx("GPS timeout");
			mavlink_log_info(mavlink_fd, "[inav] GPS timeout");
		}

		/* check for timeout on vision topic */
		if (vision_valid && (t > (vision.timestamp_boot + vision_topic_timeout))) {
			vision_valid = false;
			warnx("VISION timeout");
			mavlink_log_info(mavlink_fd, "[inav] VISION timeout");
		}

		/* check for timeout on mocap topic */
		if (mocap_valid && (t > (mocap.timestamp_boot + mocap_topic_timeout))) {
			mocap_valid = false;
			warnx("MOCAP timeout");
			mavlink_log_info(mavlink_fd, "[inav] MOCAP timeout");
		}

		/* check for sonar measurement timeout */
		if (sonar_valid && (t > (sonar_time + sonar_timeout))) {
			corr_sonar = 0.0f;
			sonar_valid = false;
		}

		float dt = t_prev > 0 ? (t - t_prev) / 1000000.0f : 0.0f;
		dt = fmaxf(fminf(0.02, dt), 0.002);		// constrain dt from 2 to 20 ms
		t_prev = t;

		/* increase EPH/EPV on each step */
		if (eph < max_eph_epv) {
			eph *= 1.0f + dt;
		}
		if (epv < max_eph_epv) {
			epv += 0.005f * dt;	// add 1m to EPV each 200s (baro drift)
		}

		/* use GPS if it's valid and reference position initialized */
		bool use_gps_xy = ref_inited && gps_valid && params.w_xy_gps_p > MIN_VALID_W;
		bool use_gps_z = ref_inited && gps_valid && params.w_z_gps_p > MIN_VALID_W;
		/* use VISION if it's valid and has a valid weight parameter */
		bool use_vision_xy = vision_valid && params.w_xy_vision_p > MIN_VALID_W;
		bool use_vision_z = vision_valid && params.w_z_vision_p > MIN_VALID_W;
		/* use MOCAP if it's valid and has a valid weight parameter */
		bool use_mocap = mocap_valid && params.w_mocap_p > MIN_VALID_W;
		/* use flow if it's valid and (accurate or no GPS available) */
		bool use_flow = flow_valid && (flow_accurate || !use_gps_xy);

		bool can_estimate_xy = (eph < max_eph_epv) || use_gps_xy || use_flow || use_vision_xy || use_mocap;

		bool dist_bottom_valid = (t < sonar_valid_time + sonar_valid_timeout);

		if (dist_bottom_valid) {
			/* surface distance prediction */
			surface_offset += surface_offset_rate * dt;

			/* surface distance correction */
			if (sonar_valid) {
				surface_offset_rate -= corr_sonar * 0.5f * params.w_z_sonar * params.w_z_sonar * dt;
				surface_offset -= corr_sonar * params.w_z_sonar * dt;
			}
		}

		float w_xy_gps_p = params.w_xy_gps_p * w_gps_xy;
		float w_xy_gps_v = params.w_xy_gps_v * w_gps_xy;
		float w_z_gps_p = params.w_z_gps_p * w_gps_z;
		float w_z_gps_v = params.w_z_gps_v * w_gps_z;

		float w_xy_vision_p = params.w_xy_vision_p;
		float w_xy_vision_v = params.w_xy_vision_v;
		float w_z_vision_p = params.w_z_vision_p;

		float w_mocap_p = params.w_mocap_p;

		/* reduce GPS weight if optical flow is good */
		if (use_flow && flow_accurate) {
			w_xy_gps_p *= params.w_gps_flow;
			w_xy_gps_v *= params.w_gps_flow;
		}

		/* baro offset correction */
		if (use_gps_z) {
			float offs_corr = corr_gps[2][0] * w_z_gps_p * dt;
			baro_offset += offs_corr;
			corr_baro += offs_corr;
		}

		/* accelerometer bias correction for GPS (use buffered rotation matrix) */
		float accel_bias_corr[3] = { 0.0f, 0.0f, 0.0f };

		if (use_gps_xy) {
			accel_bias_corr[0] -= corr_gps[0][0] * w_xy_gps_p * w_xy_gps_p;
			accel_bias_corr[0] -= corr_gps[0][1] * w_xy_gps_v;
			accel_bias_corr[1] -= corr_gps[1][0] * w_xy_gps_p * w_xy_gps_p;
			accel_bias_corr[1] -= corr_gps[1][1] * w_xy_gps_v;
		}

		if (use_gps_z) {
			accel_bias_corr[2] -= corr_gps[2][0] * w_z_gps_p * w_z_gps_p;
			accel_bias_corr[2] -= corr_gps[2][1] * w_z_gps_v;
		}

		/* transform error vector from NED frame to body frame */
		for (int i = 0; i < 3; i++) {
			float c = 0.0f;

			for (int j = 0; j < 3; j++) {
				c += R_gps[j][i] * accel_bias_corr[j];
			}

			if (isfinite(c)) {
				acc_bias[i] += c * params.w_acc_bias * dt;
			}
		}

		/* accelerometer bias correction for VISION (use buffered rotation matrix) */
		accel_bias_corr[0] = 0.0f;
		accel_bias_corr[1] = 0.0f;
		accel_bias_corr[2] = 0.0f;

		if (use_vision_xy) {
			accel_bias_corr[0] -= corr_vision[0][0] * w_xy_vision_p * w_xy_vision_p;
			accel_bias_corr[0] -= corr_vision[0][1] * w_xy_vision_v;
			accel_bias_corr[1] -= corr_vision[1][0] * w_xy_vision_p * w_xy_vision_p;
			accel_bias_corr[1] -= corr_vision[1][1] * w_xy_vision_v;
		}

		if (use_vision_z) {
			accel_bias_corr[2] -= corr_vision[2][0] * w_z_vision_p * w_z_vision_p;
		}

		/* accelerometer bias correction for MOCAP (use buffered rotation matrix) */
		accel_bias_corr[0] = 0.0f;
		accel_bias_corr[1] = 0.0f;
		accel_bias_corr[2] = 0.0f;

		if (use_mocap) {
			accel_bias_corr[0] -= corr_mocap[0][0] * w_mocap_p * w_mocap_p;
			accel_bias_corr[1] -= corr_mocap[1][0] * w_mocap_p * w_mocap_p;
			accel_bias_corr[2] -= corr_mocap[2][0] * w_mocap_p * w_mocap_p;
		}

		/* transform error vector from NED frame to body frame */
		for (int i = 0; i < 3; i++) {
			float c = 0.0f;

			for (int j = 0; j < 3; j++) {
				c += PX4_R(att.R, j, i) * accel_bias_corr[j];
			}

			if (isfinite(c)) {
				acc_bias[i] += c * params.w_acc_bias * dt;
			}
		}

		/* accelerometer bias correction for flow and baro (assume that there is no delay) */
		accel_bias_corr[0] = 0.0f;
		accel_bias_corr[1] = 0.0f;
		accel_bias_corr[2] = 0.0f;

		if (use_flow) {
			accel_bias_corr[0] -= corr_flow[0] * params.w_xy_flow;
			accel_bias_corr[1] -= corr_flow[1] * params.w_xy_flow;
		}

		accel_bias_corr[2] -= corr_baro * params.w_z_baro * params.w_z_baro;

		/* transform error vector from NED frame to body frame */
		for (int i = 0; i < 3; i++) {
			float c = 0.0f;

			for (int j = 0; j < 3; j++) {
				c += PX4_R(att.R, j, i) * accel_bias_corr[j];
			}

			if (isfinite(c)) {
				acc_bias[i] += c * params.w_acc_bias * dt;
			}
		}

		/* inertial filter prediction for altitude */
		inertial_filter_predict(dt, z_est, acc[2]);

		if (!(isfinite(z_est[0]) && isfinite(z_est[1]))) {
			write_debug_log("BAD ESTIMATE AFTER Z PREDICTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev,
										acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p,
										corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v);
			memcpy(z_est, z_est_prev, sizeof(z_est));
		}

		/* inertial filter correction for altitude */
		inertial_filter_correct(corr_baro, dt, z_est, 0, params.w_z_baro);

		if (use_gps_z) {
			epv = fminf(epv, gps.epv);

			inertial_filter_correct(corr_gps[2][0], dt, z_est, 0, w_z_gps_p);
			inertial_filter_correct(corr_gps[2][1], dt, z_est, 1, w_z_gps_v);
		}

		if (use_vision_z) {
			epv = fminf(epv, epv_vision);
			inertial_filter_correct(corr_vision[2][0], dt, z_est, 0, w_z_vision_p);
		}

		if (use_mocap) {
			epv = fminf(epv, epv_mocap);
			inertial_filter_correct(corr_mocap[2][0], dt, z_est, 0, w_mocap_p);
		}

		if (!(isfinite(z_est[0]) && isfinite(z_est[1]))) {
			write_debug_log("BAD ESTIMATE AFTER Z CORRECTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev,
										acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p,
										corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v);										
			memcpy(z_est, z_est_prev, sizeof(z_est));
			memset(corr_gps, 0, sizeof(corr_gps));
			memset(corr_vision, 0, sizeof(corr_vision));
			memset(corr_mocap, 0, sizeof(corr_mocap));
			corr_baro = 0;

		} else {
			memcpy(z_est_prev, z_est, sizeof(z_est));
		}

		if (can_estimate_xy) {
			/* inertial filter prediction for position */
			inertial_filter_predict(dt, x_est, acc[0]);
			inertial_filter_predict(dt, y_est, acc[1]);

			if (!(isfinite(x_est[0]) && isfinite(x_est[1]) && isfinite(y_est[0]) && isfinite(y_est[1]))) {
				write_debug_log("BAD ESTIMATE AFTER PREDICTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev,
										acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p,
										corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v);
				memcpy(x_est, x_est_prev, sizeof(x_est));
				memcpy(y_est, y_est_prev, sizeof(y_est));
			}

			/* inertial filter correction for position */
			if (use_flow) {
				eph = fminf(eph, eph_flow);

				inertial_filter_correct(corr_flow[0], dt, x_est, 1, params.w_xy_flow * w_flow);
				inertial_filter_correct(corr_flow[1], dt, y_est, 1, params.w_xy_flow * w_flow);
			}

			if (use_gps_xy) {
				eph = fminf(eph, gps.eph);

				inertial_filter_correct(corr_gps[0][0], dt, x_est, 0, w_xy_gps_p);
				inertial_filter_correct(corr_gps[1][0], dt, y_est, 0, w_xy_gps_p);

				if (gps.vel_ned_valid && t < gps.timestamp_velocity + gps_topic_timeout) {
					inertial_filter_correct(corr_gps[0][1], dt, x_est, 1, w_xy_gps_v);
					inertial_filter_correct(corr_gps[1][1], dt, y_est, 1, w_xy_gps_v);
				}
			}

			if (use_vision_xy) {
				eph = fminf(eph, eph_vision);

				inertial_filter_correct(corr_vision[0][0], dt, x_est, 0, w_xy_vision_p);
				inertial_filter_correct(corr_vision[1][0], dt, y_est, 0, w_xy_vision_p);

				if (w_xy_vision_v > MIN_VALID_W) {
					inertial_filter_correct(corr_vision[0][1], dt, x_est, 1, w_xy_vision_v);
					inertial_filter_correct(corr_vision[1][1], dt, y_est, 1, w_xy_vision_v);
				}
			}

			if (use_mocap) {
				eph = fminf(eph, eph_mocap);

				inertial_filter_correct(corr_mocap[0][0], dt, x_est, 0, w_mocap_p);
				inertial_filter_correct(corr_mocap[1][0], dt, y_est, 0, w_mocap_p);
			}

			if (!(isfinite(x_est[0]) && isfinite(x_est[1]) && isfinite(y_est[0]) && isfinite(y_est[1]))) {
				write_debug_log("BAD ESTIMATE AFTER CORRECTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev,
										acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p,
										corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v);
				memcpy(x_est, x_est_prev, sizeof(x_est));
				memcpy(y_est, y_est_prev, sizeof(y_est));
				memset(corr_gps, 0, sizeof(corr_gps));
				memset(corr_vision, 0, sizeof(corr_vision));
				memset(corr_mocap, 0, sizeof(corr_mocap));
				memset(corr_flow, 0, sizeof(corr_flow));

			} else {
				memcpy(x_est_prev, x_est, sizeof(x_est));
				memcpy(y_est_prev, y_est, sizeof(y_est));
			}
		} else {
			/* gradually reset xy velocity estimates */
			inertial_filter_correct(-x_est[1], dt, x_est, 1, params.w_xy_res_v);
			inertial_filter_correct(-y_est[1], dt, y_est, 1, params.w_xy_res_v);
		}

		if (inav_verbose_mode) {
			/* print updates rate */
			if (t > updates_counter_start + updates_counter_len) {
				float updates_dt = (t - updates_counter_start) * 0.000001f;
				warnx(
					"updates rate: accelerometer = %.1f/s, baro = %.1f/s, gps = %.1f/s, attitude = %.1f/s, flow = %.1f/s, vision = %.1f/s, mocap = %.1f/s",
					(double)(accel_updates / updates_dt),
					(double)(baro_updates / updates_dt),
					(double)(gps_updates / updates_dt),
					(double)(attitude_updates / updates_dt),
					(double)(flow_updates / updates_dt),
					(double)(vision_updates / updates_dt),
					(double)(mocap_updates / updates_dt));
				updates_counter_start = t;
				accel_updates = 0;
				baro_updates = 0;
				gps_updates = 0;
				attitude_updates = 0;
				flow_updates = 0;
				vision_updates = 0;
				mocap_updates = 0;
			}
		}

		if (t > pub_last + PUB_INTERVAL) {
			pub_last = t;

			/* push current estimate to buffer */
			est_buf[buf_ptr][0][0] = x_est[0];
			est_buf[buf_ptr][0][1] = x_est[1];
			est_buf[buf_ptr][1][0] = y_est[0];
			est_buf[buf_ptr][1][1] = y_est[1];
			est_buf[buf_ptr][2][0] = z_est[0];
			est_buf[buf_ptr][2][1] = z_est[1];

			/* push current rotation matrix to buffer */
			memcpy(R_buf[buf_ptr], att.R, sizeof(att.R));

			buf_ptr++;
			if (buf_ptr >= EST_BUF_SIZE) {
				buf_ptr = 0;
			}

			/* publish local position */
			local_pos.xy_valid = can_estimate_xy;
			local_pos.v_xy_valid = can_estimate_xy;
			local_pos.xy_global = local_pos.xy_valid && use_gps_xy;
			local_pos.z_global = local_pos.z_valid && use_gps_z;
			local_pos.x = x_est[0];
			local_pos.vx = x_est[1];
			local_pos.y = y_est[0];
			local_pos.vy = y_est[1];
			local_pos.z = z_est[0];
			local_pos.vz = z_est[1];
			local_pos.yaw = att.yaw;
			local_pos.dist_bottom_valid = dist_bottom_valid;
			local_pos.eph = eph;
			local_pos.epv = epv;

			if (local_pos.dist_bottom_valid) {
				local_pos.dist_bottom = -z_est[0] - surface_offset;
				local_pos.dist_bottom_rate = -z_est[1] - surface_offset_rate;
			}

			local_pos.timestamp = t;

			orb_publish(ORB_ID(vehicle_local_position), vehicle_local_position_pub, &local_pos);

			if (local_pos.xy_global && local_pos.z_global) {
				/* publish global position */
				global_pos.timestamp = t;
				global_pos.time_utc_usec = gps.time_utc_usec;

				double est_lat, est_lon;
				map_projection_reproject(&ref, local_pos.x, local_pos.y, &est_lat, &est_lon);

				global_pos.lat = est_lat;
				global_pos.lon = est_lon;
				global_pos.alt = local_pos.ref_alt - local_pos.z;

				global_pos.vel_n = local_pos.vx;
				global_pos.vel_e = local_pos.vy;
				global_pos.vel_d = local_pos.vz;

				global_pos.yaw = local_pos.yaw;

				global_pos.eph = eph;
				global_pos.epv = epv;

				if (vehicle_global_position_pub == NULL) {
					vehicle_global_position_pub = orb_advertise(ORB_ID(vehicle_global_position), &global_pos);

				} else {
					orb_publish(ORB_ID(vehicle_global_position), vehicle_global_position_pub, &global_pos);
				}
			}
		}
	}

	warnx("stopped");
	mavlink_log_info(mavlink_fd, "[inav] stopped");
	thread_running = false;
	return 0;
}
Exemplo n.º 6
0
void
MavlinkReceiver::handle_message_hil_state_quaternion(mavlink_message_t *msg)
{
	mavlink_hil_state_quaternion_t hil_state;
	mavlink_msg_hil_state_quaternion_decode(msg, &hil_state);

	uint64_t timestamp = hrt_absolute_time();

	/* airspeed */
	{
		struct airspeed_s airspeed;
		memset(&airspeed, 0, sizeof(airspeed));

		airspeed.timestamp = timestamp;
		airspeed.indicated_airspeed_m_s = hil_state.ind_airspeed * 1e-2f;
		airspeed.true_airspeed_m_s = hil_state.true_airspeed * 1e-2f;

		if (_airspeed_pub < 0) {
			_airspeed_pub = orb_advertise(ORB_ID(airspeed), &airspeed);

		} else {
			orb_publish(ORB_ID(airspeed), _airspeed_pub, &airspeed);
		}
	}

	/* attitude */
	struct vehicle_attitude_s hil_attitude;
	{
		memset(&hil_attitude, 0, sizeof(hil_attitude));
		math::Quaternion q(hil_state.attitude_quaternion);
		math::Matrix<3, 3> C_nb = q.to_dcm();
		math::Vector<3> euler = C_nb.to_euler();

		hil_attitude.timestamp = timestamp;
		memcpy(hil_attitude.R, C_nb.data, sizeof(hil_attitude.R));
		hil_attitude.R_valid = true;

		hil_attitude.q[0] = q(0);
		hil_attitude.q[1] = q(1);
		hil_attitude.q[2] = q(2);
		hil_attitude.q[3] = q(3);
		hil_attitude.q_valid = true;

		hil_attitude.roll = euler(0);
		hil_attitude.pitch = euler(1);
		hil_attitude.yaw = euler(2);
		hil_attitude.rollspeed = hil_state.rollspeed;
		hil_attitude.pitchspeed = hil_state.pitchspeed;
		hil_attitude.yawspeed = hil_state.yawspeed;

		if (_attitude_pub < 0) {
			_attitude_pub = orb_advertise(ORB_ID(vehicle_attitude), &hil_attitude);

		} else {
			orb_publish(ORB_ID(vehicle_attitude), _attitude_pub, &hil_attitude);
		}
	}

	/* global position */
	{
		struct vehicle_global_position_s hil_global_pos;
		memset(&hil_global_pos, 0, sizeof(hil_global_pos));

		hil_global_pos.timestamp = timestamp;
		hil_global_pos.global_valid = true;
		hil_global_pos.lat = hil_state.lat;
		hil_global_pos.lon = hil_state.lon;
		hil_global_pos.alt = hil_state.alt / 1000.0f;
		hil_global_pos.vel_n = hil_state.vx / 100.0f;
		hil_global_pos.vel_e = hil_state.vy / 100.0f;
		hil_global_pos.vel_d = hil_state.vz / 100.0f;
		hil_global_pos.yaw = hil_attitude.yaw;

		if (_global_pos_pub < 0) {
			_global_pos_pub = orb_advertise(ORB_ID(vehicle_global_position), &hil_global_pos);

		} else {
			orb_publish(ORB_ID(vehicle_global_position), _global_pos_pub, &hil_global_pos);
		}
	}

	/* local position */
	{
		if (!_hil_local_proj_inited) {
			_hil_local_proj_inited = true;
			_hil_local_alt0 = hil_state.alt / 1000.0f;
			map_projection_init(hil_state.lat, hil_state.lon);
			hil_local_pos.ref_timestamp = timestamp;
			hil_local_pos.ref_lat = hil_state.lat;
			hil_local_pos.ref_lon = hil_state.lon;
			hil_local_pos.ref_alt = _hil_local_alt0;
		}

		float x;
		float y;
		map_projection_project(hil_state.lat * 1e-7, hil_state.lon * 1e-7, &x, &y);
		hil_local_pos.timestamp = timestamp;
		hil_local_pos.xy_valid = true;
		hil_local_pos.z_valid = true;
		hil_local_pos.v_xy_valid = true;
		hil_local_pos.v_z_valid = true;
		hil_local_pos.x = x;
		hil_local_pos.y = y;
		hil_local_pos.z = _hil_local_alt0 - hil_state.alt / 1000.0f;
		hil_local_pos.vx = hil_state.vx / 100.0f;
		hil_local_pos.vy = hil_state.vy / 100.0f;
		hil_local_pos.vz = hil_state.vz / 100.0f;
		hil_local_pos.yaw = hil_attitude.yaw;
		hil_local_pos.xy_global = true;
		hil_local_pos.z_global = true;

		bool landed = (float)(hil_state.alt) / 1000.0f < (_hil_local_alt0 + 0.1f); // XXX improve?
		hil_local_pos.landed = landed;

		if (_local_pos_pub < 0) {
			_local_pos_pub = orb_advertise(ORB_ID(vehicle_local_position), &hil_local_pos);

		} else {
			orb_publish(ORB_ID(vehicle_local_position), _local_pos_pub, &hil_local_pos);
		}
	}

	/* accelerometer */
	{
		struct accel_report accel;
		memset(&accel, 0, sizeof(accel));

		accel.timestamp = timestamp;
		accel.x_raw = hil_state.xacc / CONSTANTS_ONE_G * 1e3f;
		accel.y_raw = hil_state.yacc / CONSTANTS_ONE_G * 1e3f;
		accel.z_raw = hil_state.zacc / CONSTANTS_ONE_G * 1e3f;
		accel.x = hil_state.xacc;
		accel.y = hil_state.yacc;
		accel.z = hil_state.zacc;
		accel.temperature = 25.0f;

		if (_accel_pub < 0) {
			_accel_pub = orb_advertise(ORB_ID(sensor_accel), &accel);

		} else {
			orb_publish(ORB_ID(sensor_accel), _accel_pub, &accel);
		}
	}

	/* battery status */
	{
		struct battery_status_s	hil_battery_status;
		memset(&hil_battery_status, 0, sizeof(hil_battery_status));

		hil_battery_status.timestamp = timestamp;
		hil_battery_status.voltage_v = 11.1f;
		hil_battery_status.voltage_filtered_v = 11.1f;
		hil_battery_status.current_a = 10.0f;
		hil_battery_status.discharged_mah = -1.0f;

		if (_battery_pub < 0) {
			_battery_pub = orb_advertise(ORB_ID(battery_status), &hil_battery_status);

		} else {
			orb_publish(ORB_ID(battery_status), _battery_pub, &hil_battery_status);
		}
	}
}
Exemplo n.º 7
0
static void
handle_message(mavlink_message_t *msg)
{
	if (msg->msgid == MAVLINK_MSG_ID_COMMAND_LONG) {

		mavlink_command_long_t cmd_mavlink;
		mavlink_msg_command_long_decode(msg, &cmd_mavlink);

		if (cmd_mavlink.target_system == mavlink_system.sysid && ((cmd_mavlink.target_component == mavlink_system.compid)
				|| (cmd_mavlink.target_component == MAV_COMP_ID_ALL))) {
			//check for MAVLINK terminate command
			if (cmd_mavlink.command == MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN && ((int)cmd_mavlink.param1) == 3) {
				/* This is the link shutdown command, terminate mavlink */
				printf("[mavlink] Terminating .. \n");
				fflush(stdout);
				usleep(50000);

				/* terminate other threads and this thread */
				thread_should_exit = true;

			} else {

				/* Copy the content of mavlink_command_long_t cmd_mavlink into command_t cmd */
				vcmd.param1 = cmd_mavlink.param1;
				vcmd.param2 = cmd_mavlink.param2;
				vcmd.param3 = cmd_mavlink.param3;
				vcmd.param4 = cmd_mavlink.param4;
				vcmd.param5 = cmd_mavlink.param5;
				vcmd.param6 = cmd_mavlink.param6;
				vcmd.param7 = cmd_mavlink.param7;
				// XXX do proper translation
				vcmd.command = (enum VEHICLE_CMD)cmd_mavlink.command;
				vcmd.target_system = cmd_mavlink.target_system;
				vcmd.target_component = cmd_mavlink.target_component;
				vcmd.source_system = msg->sysid;
				vcmd.source_component = msg->compid;
				vcmd.confirmation =  cmd_mavlink.confirmation;

				/* check if topic is advertised */
				if (cmd_pub <= 0) {
					cmd_pub = orb_advertise(ORB_ID(vehicle_command), &vcmd);

				} else {
					/* publish */
					orb_publish(ORB_ID(vehicle_command), cmd_pub, &vcmd);
				}
			}
		}
	}

	if (msg->msgid == MAVLINK_MSG_ID_OPTICAL_FLOW) {
		mavlink_optical_flow_t flow;
		mavlink_msg_optical_flow_decode(msg, &flow);

		struct optical_flow_s f;

		f.timestamp = flow.time_usec;
		f.flow_raw_x = flow.flow_x;
		f.flow_raw_y = flow.flow_y;
		f.flow_comp_x_m = flow.flow_comp_m_x;
		f.flow_comp_y_m = flow.flow_comp_m_y;
		f.ground_distance_m = flow.ground_distance;
		f.quality = flow.quality;
		f.sensor_id = flow.sensor_id;

		/* check if topic is advertised */
		if (flow_pub <= 0) {
			flow_pub = orb_advertise(ORB_ID(optical_flow), &f);

		} else {
			/* publish */
			orb_publish(ORB_ID(optical_flow), flow_pub, &f);
		}
	}

	if (msg->msgid == MAVLINK_MSG_ID_SET_MODE) {
		/* Set mode on request */
		mavlink_set_mode_t new_mode;
		mavlink_msg_set_mode_decode(msg, &new_mode);

		union px4_custom_mode custom_mode;
		custom_mode.data = new_mode.custom_mode;
		/* Copy the content of mavlink_command_long_t cmd_mavlink into command_t cmd */
		vcmd.param1 = new_mode.base_mode;
		vcmd.param2 = custom_mode.main_mode;
		vcmd.param3 = 0;
		vcmd.param4 = 0;
		vcmd.param5 = 0;
		vcmd.param6 = 0;
		vcmd.param7 = 0;
		vcmd.command = VEHICLE_CMD_DO_SET_MODE;
		vcmd.target_system = new_mode.target_system;
		vcmd.target_component = MAV_COMP_ID_ALL;
		vcmd.source_system = msg->sysid;
		vcmd.source_component = msg->compid;
		vcmd.confirmation = 1;

		/* check if topic is advertised */
		if (cmd_pub <= 0) {
			cmd_pub = orb_advertise(ORB_ID(vehicle_command), &vcmd);

		} else {
			/* create command */
			orb_publish(ORB_ID(vehicle_command), cmd_pub, &vcmd);
		}
	}

	/* Handle Vicon position estimates */
	if (msg->msgid == MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE) {
		mavlink_vicon_position_estimate_t pos;
		mavlink_msg_vicon_position_estimate_decode(msg, &pos);

		vicon_position.timestamp = hrt_absolute_time();

		vicon_position.x = pos.x;
		vicon_position.y = pos.y;
		vicon_position.z = pos.z;

		vicon_position.roll = pos.roll;
		vicon_position.pitch = pos.pitch;
		vicon_position.yaw = pos.yaw;

		if (vicon_position_pub <= 0) {
			vicon_position_pub = orb_advertise(ORB_ID(vehicle_vicon_position), &vicon_position);

		} else {
			orb_publish(ORB_ID(vehicle_vicon_position), vicon_position_pub, &vicon_position);
		}
	}

	/* Handle quadrotor motor setpoints */

	if (msg->msgid == MAVLINK_MSG_ID_SET_QUAD_SWARM_ROLL_PITCH_YAW_THRUST) {
		mavlink_set_quad_swarm_roll_pitch_yaw_thrust_t quad_motors_setpoint;
		mavlink_msg_set_quad_swarm_roll_pitch_yaw_thrust_decode(msg, &quad_motors_setpoint);

		if (mavlink_system.sysid < 4) {

			/* switch to a receiving link mode */
			gcs_link = false;

			/*
			 * rate control mode - defined by MAVLink
			 */

			uint8_t ml_mode = 0;
			bool ml_armed = false;

			switch (quad_motors_setpoint.mode) {
			case 0:
				ml_armed = false;
				break;

			case 1:
				ml_mode = OFFBOARD_CONTROL_MODE_DIRECT_RATES;
				ml_armed = true;

				break;

			case 2:
				ml_mode = OFFBOARD_CONTROL_MODE_DIRECT_ATTITUDE;
				ml_armed = true;

				break;

			case 3:
				ml_mode = OFFBOARD_CONTROL_MODE_DIRECT_VELOCITY;
				break;

			case 4:
				ml_mode = OFFBOARD_CONTROL_MODE_DIRECT_POSITION;
				break;
			}

			offboard_control_sp.p1 = (float)quad_motors_setpoint.roll[mavlink_system.sysid - 1]   / (float)INT16_MAX;
			offboard_control_sp.p2 = (float)quad_motors_setpoint.pitch[mavlink_system.sysid - 1]  / (float)INT16_MAX;
			offboard_control_sp.p3 = (float)quad_motors_setpoint.yaw[mavlink_system.sysid - 1]    / (float)INT16_MAX;
			offboard_control_sp.p4 = (float)quad_motors_setpoint.thrust[mavlink_system.sysid - 1] / (float)UINT16_MAX;

			if (quad_motors_setpoint.thrust[mavlink_system.sysid - 1] == 0) {
				ml_armed = false;
			}

			offboard_control_sp.armed = ml_armed;
			offboard_control_sp.mode = static_cast<enum OFFBOARD_CONTROL_MODE>(ml_mode);

			offboard_control_sp.timestamp = hrt_absolute_time();

			/* check if topic has to be advertised */
			if (offboard_control_sp_pub <= 0) {
				offboard_control_sp_pub = orb_advertise(ORB_ID(offboard_control_setpoint), &offboard_control_sp);

			} else {
				/* Publish */
				orb_publish(ORB_ID(offboard_control_setpoint), offboard_control_sp_pub, &offboard_control_sp);
			}
		}
	}

	/* handle status updates of the radio */
	if (msg->msgid == MAVLINK_MSG_ID_RADIO_STATUS) {

		struct telemetry_status_s tstatus;

		mavlink_radio_status_t rstatus;
		mavlink_msg_radio_status_decode(msg, &rstatus);

		/* publish telemetry status topic */
		tstatus.timestamp = hrt_absolute_time();
		tstatus.type = TELEMETRY_STATUS_RADIO_TYPE_3DR_RADIO;
		tstatus.rssi = rstatus.rssi;
		tstatus.remote_rssi = rstatus.remrssi;
		tstatus.txbuf = rstatus.txbuf;
		tstatus.noise = rstatus.noise;
		tstatus.remote_noise = rstatus.remnoise;
		tstatus.rxerrors = rstatus.rxerrors;
		tstatus.fixed = rstatus.fixed;

		if (telemetry_status_pub == 0) {
			telemetry_status_pub = orb_advertise(ORB_ID(telemetry_status), &tstatus);

		} else {
			orb_publish(ORB_ID(telemetry_status), telemetry_status_pub, &tstatus);
		}
	}

	/*
	 * Only decode hil messages in HIL mode.
	 *
	 * The HIL mode is enabled by the HIL bit flag
	 * in the system mode. Either send a set mode
	 * COMMAND_LONG message or a SET_MODE message
	 */

	if (mavlink_hil_enabled) {

		uint64_t timestamp = hrt_absolute_time();

		if (msg->msgid == MAVLINK_MSG_ID_HIL_SENSOR) {

			mavlink_hil_sensor_t imu;
			mavlink_msg_hil_sensor_decode(msg, &imu);

			/* sensors general */
			hil_sensors.timestamp = hrt_absolute_time();

			/* hil gyro */
			static const float mrad2rad = 1.0e-3f;
			hil_sensors.gyro_counter = hil_counter;
			hil_sensors.gyro_raw[0] = imu.xgyro / mrad2rad;
			hil_sensors.gyro_raw[1] = imu.ygyro / mrad2rad;
			hil_sensors.gyro_raw[2] = imu.zgyro / mrad2rad;
			hil_sensors.gyro_rad_s[0] = imu.xgyro;
			hil_sensors.gyro_rad_s[1] = imu.ygyro;
			hil_sensors.gyro_rad_s[2] = imu.zgyro;

			/* accelerometer */
			hil_sensors.accelerometer_counter = hil_counter;
			static const float mg2ms2 = 9.8f / 1000.0f;
			hil_sensors.accelerometer_raw[0] = imu.xacc / mg2ms2;
			hil_sensors.accelerometer_raw[1] = imu.yacc / mg2ms2;
			hil_sensors.accelerometer_raw[2] = imu.zacc / mg2ms2;
			hil_sensors.accelerometer_m_s2[0] = imu.xacc;
			hil_sensors.accelerometer_m_s2[1] = imu.yacc;
			hil_sensors.accelerometer_m_s2[2] = imu.zacc;
			hil_sensors.accelerometer_mode = 0; // TODO what is this?
			hil_sensors.accelerometer_range_m_s2 = 32.7f; // int16

			/* adc */
			hil_sensors.adc_voltage_v[0] = 0.0f;
			hil_sensors.adc_voltage_v[1] = 0.0f;
			hil_sensors.adc_voltage_v[2] = 0.0f;

			/* magnetometer */
			float mga2ga = 1.0e-3f;
			hil_sensors.magnetometer_counter = hil_counter;
			hil_sensors.magnetometer_raw[0] = imu.xmag / mga2ga;
			hil_sensors.magnetometer_raw[1] = imu.ymag / mga2ga;
			hil_sensors.magnetometer_raw[2] = imu.zmag / mga2ga;
			hil_sensors.magnetometer_ga[0] = imu.xmag;
			hil_sensors.magnetometer_ga[1] = imu.ymag;
			hil_sensors.magnetometer_ga[2] = imu.zmag;
			hil_sensors.magnetometer_range_ga = 32.7f; // int16
			hil_sensors.magnetometer_mode = 0; // TODO what is this
			hil_sensors.magnetometer_cuttoff_freq_hz = 50.0f;

			/* baro */
			hil_sensors.baro_pres_mbar = imu.abs_pressure;
			hil_sensors.baro_alt_meter = imu.pressure_alt;
			hil_sensors.baro_temp_celcius = imu.temperature;

			hil_sensors.gyro_counter = hil_counter;
			hil_sensors.magnetometer_counter = hil_counter;
			hil_sensors.accelerometer_counter = hil_counter;

			/* differential pressure */
			hil_sensors.differential_pressure_pa = imu.diff_pressure * 1e2f; //from hPa to Pa
			hil_sensors.differential_pressure_counter = hil_counter;

			/* airspeed from differential pressure, ambient pressure and temp */
			struct airspeed_s airspeed;

			float ias = calc_indicated_airspeed(hil_sensors.differential_pressure_pa);
			// XXX need to fix this
			float tas = ias;

			airspeed.timestamp = hrt_absolute_time();
			airspeed.indicated_airspeed_m_s = ias;
			airspeed.true_airspeed_m_s = tas;

			if (pub_hil_airspeed < 0) {
				pub_hil_airspeed = orb_advertise(ORB_ID(airspeed), &airspeed);

			} else {
				orb_publish(ORB_ID(airspeed), pub_hil_airspeed, &airspeed);
			}

			//warnx("SENSOR: IAS: %6.2f TAS: %6.2f", airspeed.indicated_airspeed_m_s, airspeed.true_airspeed_m_s);

			/* individual sensor publications */
			struct gyro_report gyro;
			gyro.x_raw = imu.xgyro / mrad2rad;
			gyro.y_raw = imu.ygyro / mrad2rad;
			gyro.z_raw = imu.zgyro / mrad2rad;
			gyro.x = imu.xgyro;
			gyro.y = imu.ygyro;
			gyro.z = imu.zgyro;
			gyro.temperature = imu.temperature;
			gyro.timestamp = hrt_absolute_time();

			if (pub_hil_gyro < 0) {
				pub_hil_gyro = orb_advertise(ORB_ID(sensor_gyro), &gyro);

			} else {
				orb_publish(ORB_ID(sensor_gyro), pub_hil_gyro, &gyro);
			}

			struct accel_report accel;

			accel.x_raw = imu.xacc / mg2ms2;

			accel.y_raw = imu.yacc / mg2ms2;

			accel.z_raw = imu.zacc / mg2ms2;

			accel.x = imu.xacc;

			accel.y = imu.yacc;

			accel.z = imu.zacc;

			accel.temperature = imu.temperature;

			accel.timestamp = hrt_absolute_time();

			if (pub_hil_accel < 0) {
				pub_hil_accel = orb_advertise(ORB_ID(sensor_accel), &accel);

			} else {
				orb_publish(ORB_ID(sensor_accel), pub_hil_accel, &accel);
			}

			struct mag_report mag;

			mag.x_raw = imu.xmag / mga2ga;

			mag.y_raw = imu.ymag / mga2ga;

			mag.z_raw = imu.zmag / mga2ga;

			mag.x = imu.xmag;

			mag.y = imu.ymag;

			mag.z = imu.zmag;

			mag.timestamp = hrt_absolute_time();

			if (pub_hil_mag < 0) {
				pub_hil_mag = orb_advertise(ORB_ID(sensor_mag), &mag);

			} else {
				orb_publish(ORB_ID(sensor_mag), pub_hil_mag, &mag);
			}

			struct baro_report baro;

			baro.pressure = imu.abs_pressure;

			baro.altitude = imu.pressure_alt;

			baro.temperature = imu.temperature;

			baro.timestamp = hrt_absolute_time();

			if (pub_hil_baro < 0) {
				pub_hil_baro = orb_advertise(ORB_ID(sensor_baro), &baro);

			} else {
				orb_publish(ORB_ID(sensor_baro), pub_hil_baro, &baro);
			}

			/* publish combined sensor topic */
			if (pub_hil_sensors > 0) {
				orb_publish(ORB_ID(sensor_combined), pub_hil_sensors, &hil_sensors);

			} else {
				pub_hil_sensors = orb_advertise(ORB_ID(sensor_combined), &hil_sensors);
			}

			/* fill in HIL battery status */
			hil_battery_status.timestamp = hrt_absolute_time();
			hil_battery_status.voltage_v = 11.1f;
			hil_battery_status.current_a = 10.0f;

			/* lazily publish the battery voltage */
			if (pub_hil_battery > 0) {
				orb_publish(ORB_ID(battery_status), pub_hil_battery, &hil_battery_status);

			} else {
				pub_hil_battery = orb_advertise(ORB_ID(battery_status), &hil_battery_status);
			}

			// increment counters
			hil_counter++;
			hil_frames++;

			// output
			if ((timestamp - old_timestamp) > 10000000) {
				printf("receiving hil sensor at %d hz\n", hil_frames / 10);
				old_timestamp = timestamp;
				hil_frames = 0;
			}
		}

		if (msg->msgid == MAVLINK_MSG_ID_HIL_GPS) {

			mavlink_hil_gps_t gps;
			mavlink_msg_hil_gps_decode(msg, &gps);

			/* gps */
			hil_gps.timestamp_position = gps.time_usec;
			hil_gps.time_gps_usec = gps.time_usec;
			hil_gps.lat = gps.lat;
			hil_gps.lon = gps.lon;
			hil_gps.alt = gps.alt;
			hil_gps.eph_m = (float)gps.eph * 1e-2f; // from cm to m
			hil_gps.epv_m = (float)gps.epv * 1e-2f; // from cm to m
			hil_gps.s_variance_m_s = 5.0f;
			hil_gps.p_variance_m = hil_gps.eph_m * hil_gps.eph_m;
			hil_gps.vel_m_s = (float)gps.vel * 1e-2f; // from cm/s to m/s

			/* gps.cog is in degrees 0..360 * 100, heading is -PI..+PI */
			float heading_rad = gps.cog * M_DEG_TO_RAD_F * 1e-2f;

			/* go back to -PI..PI */
			if (heading_rad > M_PI_F)
				heading_rad -= 2.0f * M_PI_F;

			hil_gps.vel_n_m_s = gps.vn * 1e-2f; // from cm to m
			hil_gps.vel_e_m_s = gps.ve * 1e-2f; // from cm to m
			hil_gps.vel_d_m_s = gps.vd * 1e-2f; // from cm to m
			hil_gps.vel_ned_valid = true;
			/* COG (course over ground) is spec'ed as -PI..+PI */
			hil_gps.cog_rad = heading_rad;
			hil_gps.fix_type = gps.fix_type;
			hil_gps.satellites_visible = gps.satellites_visible;

			/* publish GPS measurement data */
			if (pub_hil_gps > 0) {
				orb_publish(ORB_ID(vehicle_gps_position), pub_hil_gps, &hil_gps);

			} else {
				pub_hil_gps = orb_advertise(ORB_ID(vehicle_gps_position), &hil_gps);
			}

		}

		if (msg->msgid == MAVLINK_MSG_ID_HIL_STATE_QUATERNION) {

			mavlink_hil_state_quaternion_t hil_state;
			mavlink_msg_hil_state_quaternion_decode(msg, &hil_state);

			struct airspeed_s airspeed;
			airspeed.timestamp = hrt_absolute_time();
			airspeed.indicated_airspeed_m_s = hil_state.ind_airspeed * 1e-2f;
			airspeed.true_airspeed_m_s = hil_state.true_airspeed * 1e-2f;

			if (pub_hil_airspeed < 0) {
				pub_hil_airspeed = orb_advertise(ORB_ID(airspeed), &airspeed);

			} else {
				orb_publish(ORB_ID(airspeed), pub_hil_airspeed, &airspeed);
			}

			uint64_t timestamp = hrt_absolute_time();

			// publish global position	
			if (pub_hil_global_pos > 0) {
				orb_publish(ORB_ID(vehicle_global_position), pub_hil_global_pos, &hil_global_pos);
				// global position packet
				hil_global_pos.timestamp = timestamp;
				hil_global_pos.valid = true;
				hil_global_pos.lat = hil_state.lat;
				hil_global_pos.lon = hil_state.lon;
				hil_global_pos.alt = hil_state.alt / 1000.0f;
				hil_global_pos.vx = hil_state.vx / 100.0f;
				hil_global_pos.vy = hil_state.vy / 100.0f;
				hil_global_pos.vz = hil_state.vz / 100.0f;

			} else {
				pub_hil_global_pos = orb_advertise(ORB_ID(vehicle_global_position), &hil_global_pos);
			}

			// publish local position
			if (pub_hil_local_pos > 0) {
				float x;
				float y;
				bool landed = hil_state.alt/1000.0f < (alt0 + 0.1); // XXX improve?
				double lat = hil_state.lat*1e-7;
				double lon = hil_state.lon*1e-7;
				map_projection_project(lat, lon, &x, &y); 
				hil_local_pos.timestamp = timestamp;
				hil_local_pos.xy_valid = true;
				hil_local_pos.z_valid = true;
				hil_local_pos.v_xy_valid = true;
				hil_local_pos.v_z_valid = true;
				hil_local_pos.x = x;
				hil_local_pos.y = y;
				hil_local_pos.z = alt0 - hil_state.alt/1000.0f;
				hil_local_pos.vx = hil_state.vx/100.0f;
				hil_local_pos.vy = hil_state.vy/100.0f;
				hil_local_pos.vz = hil_state.vz/100.0f;
				hil_local_pos.yaw = hil_attitude.yaw;
				hil_local_pos.xy_global = true;
				hil_local_pos.z_global = true;
				hil_local_pos.ref_timestamp = timestamp;
				hil_local_pos.ref_lat = hil_state.lat;
				hil_local_pos.ref_lon = hil_state.lon;
				hil_local_pos.ref_alt = alt0;
				hil_local_pos.landed = landed;
				orb_publish(ORB_ID(vehicle_local_position), pub_hil_local_pos, &hil_local_pos);
			} else {
				pub_hil_local_pos = orb_advertise(ORB_ID(vehicle_local_position), &hil_local_pos);
				lat0 = hil_state.lat;
				lon0 = hil_state.lon;
				alt0 = hil_state.alt / 1000.0f;
				map_projection_init(hil_state.lat, hil_state.lon);
			}

			/* Calculate Rotation Matrix */
			math::Quaternion q(hil_state.attitude_quaternion);
			math::Dcm C_nb(q);
			math::EulerAngles euler(C_nb);

			/* set rotation matrix */
			for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++)
					hil_attitude.R[i][j] = C_nb(i, j);

			hil_attitude.R_valid = true;

			/* set quaternion */
			hil_attitude.q[0] = q(0);
			hil_attitude.q[1] = q(1);
			hil_attitude.q[2] = q(2);
			hil_attitude.q[3] = q(3);
			hil_attitude.q_valid = true;

			hil_attitude.roll = euler.getPhi();
			hil_attitude.pitch = euler.getTheta();
			hil_attitude.yaw = euler.getPsi();
			hil_attitude.rollspeed = hil_state.rollspeed;
			hil_attitude.pitchspeed = hil_state.pitchspeed;
			hil_attitude.yawspeed = hil_state.yawspeed;

			/* set timestamp and notify processes (broadcast) */
			hil_attitude.timestamp = hrt_absolute_time();

			if (pub_hil_attitude > 0) {
				orb_publish(ORB_ID(vehicle_attitude), pub_hil_attitude, &hil_attitude);

			} else {
				pub_hil_attitude = orb_advertise(ORB_ID(vehicle_attitude), &hil_attitude);
			}

			struct accel_report accel;

			accel.x_raw = hil_state.xacc / 9.81f * 1e3f;

			accel.y_raw = hil_state.yacc / 9.81f * 1e3f;

			accel.z_raw = hil_state.zacc / 9.81f * 1e3f;

			accel.x = hil_state.xacc;

			accel.y = hil_state.yacc;

			accel.z = hil_state.zacc;

			accel.temperature = 25.0f;

			accel.timestamp = hrt_absolute_time();

			if (pub_hil_accel < 0) {
				pub_hil_accel = orb_advertise(ORB_ID(sensor_accel), &accel);

			} else {
				orb_publish(ORB_ID(sensor_accel), pub_hil_accel, &accel);
			}

			/* fill in HIL battery status */
			hil_battery_status.timestamp = hrt_absolute_time();
			hil_battery_status.voltage_v = 11.1f;
			hil_battery_status.current_a = 10.0f;

			/* lazily publish the battery voltage */
			if (pub_hil_battery > 0) {
				orb_publish(ORB_ID(battery_status), pub_hil_battery, &hil_battery_status);

			} else {
				pub_hil_battery = orb_advertise(ORB_ID(battery_status), &hil_battery_status);
			}
		}

		if (msg->msgid == MAVLINK_MSG_ID_MANUAL_CONTROL) {
			mavlink_manual_control_t man;
			mavlink_msg_manual_control_decode(msg, &man);

			struct rc_channels_s rc_hil;
			memset(&rc_hil, 0, sizeof(rc_hil));
			static orb_advert_t rc_pub = 0;

			rc_hil.timestamp = hrt_absolute_time();
			rc_hil.chan_count = 4;

			rc_hil.chan[0].scaled = man.x / 1000.0f;
			rc_hil.chan[1].scaled = man.y / 1000.0f;
			rc_hil.chan[2].scaled = man.r / 1000.0f;
			rc_hil.chan[3].scaled = man.z / 1000.0f;

			struct manual_control_setpoint_s mc;
			static orb_advert_t mc_pub = 0;

			int manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint));

			/* get a copy first, to prevent altering values that are not sent by the mavlink command */
			orb_copy(ORB_ID(manual_control_setpoint), manual_sub, &mc);

			mc.timestamp = rc_hil.timestamp;
			mc.roll = man.x / 1000.0f;
			mc.pitch = man.y / 1000.0f;
			mc.yaw = man.r / 1000.0f;
			mc.throttle = man.z / 1000.0f;

			/* fake RC channels with manual control input from simulator */


			if (rc_pub == 0) {
				rc_pub = orb_advertise(ORB_ID(rc_channels), &rc_hil);

			} else {
				orb_publish(ORB_ID(rc_channels), rc_pub, &rc_hil);
			}

			if (mc_pub == 0) {
				mc_pub = orb_advertise(ORB_ID(manual_control_setpoint), &mc);

			} else {
				orb_publish(ORB_ID(manual_control_setpoint), mc_pub, &mc);
			}
		}
	}
}
Exemplo n.º 8
0
void
MulticopterPositionControl::task_main()
{
	warnx("started");

	_mavlink_fd = open(MAVLINK_LOG_DEVICE, 0);
	mavlink_log_info(_mavlink_fd, "[mpc] started");

	/*
	 * do subscriptions
	 */
	_att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	_att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	_control_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode));
	_params_sub = orb_subscribe(ORB_ID(parameter_update));
	_manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
	_arming_sub = orb_subscribe(ORB_ID(actuator_armed));
	_local_pos_sub = orb_subscribe(ORB_ID(vehicle_local_position));
	_pos_sp_triplet_sub = orb_subscribe(ORB_ID(position_setpoint_triplet));

	parameters_update(true);

	/* initialize values of critical structs until first regular update */
	_arming.armed = false;

	/* get an initial update for all sensor and status data */
	poll_subscriptions();

	bool reset_int_z = true;
	bool reset_int_z_manual = false;
	bool reset_int_xy = true;
	bool was_armed = false;

	hrt_abstime t_prev = 0;

	const float alt_ctl_dz = 0.2f;
	const float pos_ctl_dz = 0.05f;

	math::Vector<3> sp_move_rate;
	sp_move_rate.zero();
	math::Vector<3> thrust_int;
	thrust_int.zero();
	math::Matrix<3, 3> R;
	R.identity();

	/* wakeup source */
	struct pollfd fds[1];

	fds[0].fd = _local_pos_sub;
	fds[0].events = POLLIN;

	while (!_task_should_exit) {
		/* wait for up to 500ms for data */
		int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 500);

		/* timed out - periodic check for _task_should_exit */
		if (pret == 0) {
			continue;
		}

		/* this is undesirable but not much we can do */
		if (pret < 0) {
			warn("poll error %d, %d", pret, errno);
			continue;
		}

		poll_subscriptions();
		parameters_update(false);

		hrt_abstime t = hrt_absolute_time();
		float dt = t_prev != 0 ? (t - t_prev) * 0.000001f : 0.0f;
		t_prev = t;

		if (_control_mode.flag_armed && !was_armed) {
			/* reset setpoints and integrals on arming */
			_reset_pos_sp = true;
			_reset_alt_sp = true;
			reset_int_z = true;
			reset_int_xy = true;
		}

		was_armed = _control_mode.flag_armed;

		update_ref();

		if (_control_mode.flag_control_altitude_enabled ||
		    _control_mode.flag_control_position_enabled ||
		    _control_mode.flag_control_climb_rate_enabled ||
		    _control_mode.flag_control_velocity_enabled) {

			_pos(0) = _local_pos.x;
			_pos(1) = _local_pos.y;
			_pos(2) = _local_pos.z;

			_vel(0) = _local_pos.vx;
			_vel(1) = _local_pos.vy;
			_vel(2) = _local_pos.vz;

			sp_move_rate.zero();

			/* select control source */
			if (_control_mode.flag_control_manual_enabled) {
				/* manual control */
				if (_control_mode.flag_control_altitude_enabled) {
					/* reset alt setpoint to current altitude if needed */
					reset_alt_sp();

					/* move altitude setpoint with throttle stick */
					sp_move_rate(2) = -scale_control(_manual.z - 0.5f, 0.5f, alt_ctl_dz);
				}

				if (_control_mode.flag_control_position_enabled) {
					/* reset position setpoint to current position if needed */
					reset_pos_sp();

					/* move position setpoint with roll/pitch stick */
					sp_move_rate(0) = _manual.x;
					sp_move_rate(1) = _manual.y;
				}

				/* limit setpoint move rate */
				float sp_move_norm = sp_move_rate.length();

				if (sp_move_norm > 1.0f) {
					sp_move_rate /= sp_move_norm;
				}

				/* scale to max speed and rotate around yaw */
				math::Matrix<3, 3> R_yaw_sp;
				R_yaw_sp.from_euler(0.0f, 0.0f, _att_sp.yaw_body);
				sp_move_rate = R_yaw_sp * sp_move_rate.emult(_params.vel_max);

				/* move position setpoint */
				_pos_sp += sp_move_rate * dt;

				/* check if position setpoint is too far from actual position */
				math::Vector<3> pos_sp_offs;
				pos_sp_offs.zero();

				if (_control_mode.flag_control_position_enabled) {
					pos_sp_offs(0) = (_pos_sp(0) - _pos(0)) / _params.sp_offs_max(0);
					pos_sp_offs(1) = (_pos_sp(1) - _pos(1)) / _params.sp_offs_max(1);
				}

				if (_control_mode.flag_control_altitude_enabled) {
					pos_sp_offs(2) = (_pos_sp(2) - _pos(2)) / _params.sp_offs_max(2);
				}

				float pos_sp_offs_norm = pos_sp_offs.length();

				if (pos_sp_offs_norm > 1.0f) {
					pos_sp_offs /= pos_sp_offs_norm;
					_pos_sp = _pos + pos_sp_offs.emult(_params.sp_offs_max);
				}

			} else {
				/* AUTO */
				bool updated;
				orb_check(_pos_sp_triplet_sub, &updated);

				if (updated) {
					orb_copy(ORB_ID(position_setpoint_triplet), _pos_sp_triplet_sub, &_pos_sp_triplet);
				}

				if (_pos_sp_triplet.current.valid) {
					/* in case of interrupted mission don't go to waypoint but stay at current position */
					_reset_pos_sp = true;
					_reset_alt_sp = true;

					/* project setpoint to local frame */
					map_projection_project(&_ref_pos,
							       _pos_sp_triplet.current.lat, _pos_sp_triplet.current.lon,
							       &_pos_sp.data[0], &_pos_sp.data[1]);
					_pos_sp(2) = -(_pos_sp_triplet.current.alt - _ref_alt);

					/* update yaw setpoint if needed */
					if (isfinite(_pos_sp_triplet.current.yaw)) {
						_att_sp.yaw_body = _pos_sp_triplet.current.yaw;
					}

				} else {
					/* no waypoint, loiter, reset position setpoint if needed */
					reset_pos_sp();
					reset_alt_sp();
				}
			}

			/* fill local position setpoint */
			_local_pos_sp.x = _pos_sp(0);
			_local_pos_sp.y = _pos_sp(1);
			_local_pos_sp.z = _pos_sp(2);
			_local_pos_sp.yaw = _att_sp.yaw_body;

			/* publish local position setpoint */
			if (_local_pos_sp_pub > 0) {
				orb_publish(ORB_ID(vehicle_local_position_setpoint), _local_pos_sp_pub, &_local_pos_sp);

			} else {
				_local_pos_sp_pub = orb_advertise(ORB_ID(vehicle_local_position_setpoint), &_local_pos_sp);
			}

			if (!_control_mode.flag_control_manual_enabled && _pos_sp_triplet.current.valid && _pos_sp_triplet.current.type == SETPOINT_TYPE_IDLE) {
				/* idle state, don't run controller and set zero thrust */
				R.identity();
				memcpy(&_att_sp.R_body[0][0], R.data, sizeof(_att_sp.R_body));
				_att_sp.R_valid = true;

				_att_sp.roll_body = 0.0f;
				_att_sp.pitch_body = 0.0f;
				_att_sp.yaw_body = _att.yaw;
				_att_sp.thrust = 0.0f;

				_att_sp.timestamp = hrt_absolute_time();

				/* publish attitude setpoint */
				if (_att_sp_pub > 0) {
					orb_publish(ORB_ID(vehicle_attitude_setpoint), _att_sp_pub, &_att_sp);

				} else {
					_att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &_att_sp);
				}

			} else {
				/* run position & altitude controllers, calculate velocity setpoint */
				math::Vector<3> pos_err = _pos_sp - _pos;

				_vel_sp = pos_err.emult(_params.pos_p) + sp_move_rate.emult(_params.vel_ff);

				if (!_control_mode.flag_control_altitude_enabled) {
					_reset_alt_sp = true;
					_vel_sp(2) = 0.0f;
				}

				if (!_control_mode.flag_control_position_enabled) {
					_reset_pos_sp = true;
					_vel_sp(0) = 0.0f;
					_vel_sp(1) = 0.0f;
				}

				/* use constant descend rate when landing, ignore altitude setpoint */
				if (!_control_mode.flag_control_manual_enabled && _pos_sp_triplet.current.valid && _pos_sp_triplet.current.type == SETPOINT_TYPE_LAND) {
					_vel_sp(2) = _params.land_speed;
				}

				if (!_control_mode.flag_control_manual_enabled) {
					/* limit 3D speed only in non-manual modes */
					float vel_sp_norm = _vel_sp.edivide(_params.vel_max).length();

					if (vel_sp_norm > 1.0f) {
						_vel_sp /= vel_sp_norm;
					}
				}

				_global_vel_sp.vx = _vel_sp(0);
				_global_vel_sp.vy = _vel_sp(1);
				_global_vel_sp.vz = _vel_sp(2);

				/* publish velocity setpoint */
				if (_global_vel_sp_pub > 0) {
					orb_publish(ORB_ID(vehicle_global_velocity_setpoint), _global_vel_sp_pub, &_global_vel_sp);

				} else {
					_global_vel_sp_pub = orb_advertise(ORB_ID(vehicle_global_velocity_setpoint), &_global_vel_sp);
				}

				if (_control_mode.flag_control_climb_rate_enabled || _control_mode.flag_control_velocity_enabled) {
					/* reset integrals if needed */
					if (_control_mode.flag_control_climb_rate_enabled) {
						if (reset_int_z) {
							reset_int_z = false;
							float i = _params.thr_min;

							if (reset_int_z_manual) {
								i = _manual.z;

								if (i < _params.thr_min) {
									i = _params.thr_min;

								} else if (i > _params.thr_max) {
									i = _params.thr_max;
								}
							}

							thrust_int(2) = -i;
						}

					} else {
						reset_int_z = true;
					}

					if (_control_mode.flag_control_velocity_enabled) {
						if (reset_int_xy) {
							reset_int_xy = false;
							thrust_int(0) = 0.0f;
							thrust_int(1) = 0.0f;
						}

					} else {
						reset_int_xy = true;
					}

					/* velocity error */
					math::Vector<3> vel_err = _vel_sp - _vel;

					/* derivative of velocity error, not includes setpoint acceleration */
					math::Vector<3> vel_err_d = (sp_move_rate - _vel).emult(_params.pos_p) - (_vel - _vel_prev) / dt;
					_vel_prev = _vel;

					/* thrust vector in NED frame */
					math::Vector<3> thrust_sp = vel_err.emult(_params.vel_p) + vel_err_d.emult(_params.vel_d) + thrust_int;

					if (!_control_mode.flag_control_velocity_enabled) {
						thrust_sp(0) = 0.0f;
						thrust_sp(1) = 0.0f;
					}

					if (!_control_mode.flag_control_climb_rate_enabled) {
						thrust_sp(2) = 0.0f;
					}

					/* limit thrust vector and check for saturation */
					bool saturation_xy = false;
					bool saturation_z = false;

					/* limit min lift */
					float thr_min = _params.thr_min;

					if (!_control_mode.flag_control_velocity_enabled && thr_min < 0.0f) {
						/* don't allow downside thrust direction in manual attitude mode */
						thr_min = 0.0f;
					}

					float tilt_max = _params.tilt_max_air;

					/* adjust limits for landing mode */
					if (!_control_mode.flag_control_manual_enabled && _pos_sp_triplet.current.valid &&
					    _pos_sp_triplet.current.type == SETPOINT_TYPE_LAND) {
						/* limit max tilt and min lift when landing */
						tilt_max = _params.tilt_max_land;

						if (thr_min < 0.0f) {
							thr_min = 0.0f;
						}
					}

					/* limit min lift */
					if (-thrust_sp(2) < thr_min) {
						thrust_sp(2) = -thr_min;
						saturation_z = true;
					}

					if (_control_mode.flag_control_velocity_enabled) {
						/* limit max tilt */
						if (thr_min >= 0.0f && tilt_max < M_PI / 2 - 0.05f) {
							/* absolute horizontal thrust */
							float thrust_sp_xy_len = math::Vector<2>(thrust_sp(0), thrust_sp(1)).length();

							if (thrust_sp_xy_len > 0.01f) {
								/* max horizontal thrust for given vertical thrust*/
								float thrust_xy_max = -thrust_sp(2) * tanf(tilt_max);

								if (thrust_sp_xy_len > thrust_xy_max) {
									float k = thrust_xy_max / thrust_sp_xy_len;
									thrust_sp(0) *= k;
									thrust_sp(1) *= k;
									saturation_xy = true;
								}
							}
						}

					} else {
						/* thrust compensation for altitude only control mode */
						float att_comp;

						if (_att.R[2][2] > TILT_COS_MAX) {
							att_comp = 1.0f / _att.R[2][2];

						} else if (_att.R[2][2] > 0.0f) {
							att_comp = ((1.0f / TILT_COS_MAX - 1.0f) / TILT_COS_MAX) * _att.R[2][2] + 1.0f;
							saturation_z = true;

						} else {
							att_comp = 1.0f;
							saturation_z = true;
						}

						thrust_sp(2) *= att_comp;
					}

					/* limit max thrust */
					float thrust_abs = thrust_sp.length();

					if (thrust_abs > _params.thr_max) {
						if (thrust_sp(2) < 0.0f) {
							if (-thrust_sp(2) > _params.thr_max) {
								/* thrust Z component is too large, limit it */
								thrust_sp(0) = 0.0f;
								thrust_sp(1) = 0.0f;
								thrust_sp(2) = -_params.thr_max;
								saturation_xy = true;
								saturation_z = true;

							} else {
								/* preserve thrust Z component and lower XY, keeping altitude is more important than position */
								float thrust_xy_max = sqrtf(_params.thr_max * _params.thr_max - thrust_sp(2) * thrust_sp(2));
								float thrust_xy_abs = math::Vector<2>(thrust_sp(0), thrust_sp(1)).length();
								float k = thrust_xy_max / thrust_xy_abs;
								thrust_sp(0) *= k;
								thrust_sp(1) *= k;
								saturation_xy = true;
							}

						} else {
							/* Z component is negative, going down, simply limit thrust vector */
							float k = _params.thr_max / thrust_abs;
							thrust_sp *= k;
							saturation_xy = true;
							saturation_z = true;
						}

						thrust_abs = _params.thr_max;
					}

					/* update integrals */
					if (_control_mode.flag_control_velocity_enabled && !saturation_xy) {
						thrust_int(0) += vel_err(0) * _params.vel_i(0) * dt;
						thrust_int(1) += vel_err(1) * _params.vel_i(1) * dt;
					}

					if (_control_mode.flag_control_climb_rate_enabled && !saturation_z) {
						thrust_int(2) += vel_err(2) * _params.vel_i(2) * dt;

						/* protection against flipping on ground when landing */
						if (thrust_int(2) > 0.0f) {
							thrust_int(2) = 0.0f;
						}
					}

					/* calculate attitude setpoint from thrust vector */
					if (_control_mode.flag_control_velocity_enabled) {
						/* desired body_z axis = -normalize(thrust_vector) */
						math::Vector<3> body_x;
						math::Vector<3> body_y;
						math::Vector<3> body_z;

						if (thrust_abs > SIGMA) {
							body_z = -thrust_sp / thrust_abs;

						} else {
							/* no thrust, set Z axis to safe value */
							body_z.zero();
							body_z(2) = 1.0f;
						}

						/* vector of desired yaw direction in XY plane, rotated by PI/2 */
						math::Vector<3> y_C(-sinf(_att_sp.yaw_body), cosf(_att_sp.yaw_body), 0.0f);

						if (fabsf(body_z(2)) > SIGMA) {
							/* desired body_x axis, orthogonal to body_z */
							body_x = y_C % body_z;

							/* keep nose to front while inverted upside down */
							if (body_z(2) < 0.0f) {
								body_x = -body_x;
							}

							body_x.normalize();

						} else {
							/* desired thrust is in XY plane, set X downside to construct correct matrix,
							 * but yaw component will not be used actually */
							body_x.zero();
							body_x(2) = 1.0f;
						}

						/* desired body_y axis */
						body_y = body_z % body_x;

						/* fill rotation matrix */
						for (int i = 0; i < 3; i++) {
							R(i, 0) = body_x(i);
							R(i, 1) = body_y(i);
							R(i, 2) = body_z(i);
						}

						/* copy rotation matrix to attitude setpoint topic */
						memcpy(&_att_sp.R_body[0][0], R.data, sizeof(_att_sp.R_body));
						_att_sp.R_valid = true;

						/* calculate euler angles, for logging only, must not be used for control */
						math::Vector<3> euler = R.to_euler();
						_att_sp.roll_body = euler(0);
						_att_sp.pitch_body = euler(1);
						/* yaw already used to construct rot matrix, but actual rotation matrix can have different yaw near singularity */

					} else if (!_control_mode.flag_control_manual_enabled) {
						/* autonomous altitude control without position control (failsafe landing),
						 * force level attitude, don't change yaw */
						R.from_euler(0.0f, 0.0f, _att_sp.yaw_body);

						/* copy rotation matrix to attitude setpoint topic */
						memcpy(&_att_sp.R_body[0][0], R.data, sizeof(_att_sp.R_body));
						_att_sp.R_valid = true;

						_att_sp.roll_body = 0.0f;
						_att_sp.pitch_body = 0.0f;
					}

					_att_sp.thrust = thrust_abs;

					_att_sp.timestamp = hrt_absolute_time();

					/* publish attitude setpoint */
					if (_att_sp_pub > 0) {
						orb_publish(ORB_ID(vehicle_attitude_setpoint), _att_sp_pub, &_att_sp);

					} else {
						_att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &_att_sp);
					}

				} else {
					reset_int_z = true;
				}
			}

		} else {
			/* position controller disabled, reset setpoints */
			_reset_alt_sp = true;
			_reset_pos_sp = true;
			reset_int_z = true;
			reset_int_xy = true;
		}

		/* reset altitude controller integral (hovering throttle) to manual throttle after manual throttle control */
		reset_int_z_manual = _control_mode.flag_armed && _control_mode.flag_control_manual_enabled && !_control_mode.flag_control_climb_rate_enabled;
	}

	warnx("stopped");
	mavlink_log_info(_mavlink_fd, "[mpc] stopped");

	_control_task = -1;
	_exit(0);
}
Exemplo n.º 9
0
void BlockLocalPositionEstimator::gpsCorrect()
{
	// measure
	Vector<double, n_y_gps> y_global;

	if (gpsMeasure(y_global) != OK) { return; }

	// gps measurement in local frame
	double  lat = y_global(0);
	double  lon = y_global(1);
	float  alt = y_global(2);
	float px = 0;
	float py = 0;
	float pz = -(alt - _gpsAltHome);
	map_projection_project(&_map_ref, lat, lon, &px, &py);
	Vector<float, 6> y;
	y.setZero();
	y(0) = px;
	y(1) = py;
	y(2) = pz;
	y(3) = y_global(3);
	y(4) = y_global(4);
	y(5) = y_global(5);

	// gps measurement matrix, measures position and velocity
	Matrix<float, n_y_gps, n_x> C;
	C.setZero();
	C(Y_gps_x, X_x) = 1;
	C(Y_gps_y, X_y) = 1;
	C(Y_gps_z, X_z) = 1;
	C(Y_gps_vx, X_vx) = 1;
	C(Y_gps_vy, X_vy) = 1;
	C(Y_gps_vz, X_vz) = 1;

	// gps covariance matrix
	Matrix<float, n_y_gps, n_y_gps> R;
	R.setZero();

	// default to parameter, use gps cov if provided
	float var_xy = _gps_xy_stddev.get() * _gps_xy_stddev.get();
	float var_z = _gps_z_stddev.get() * _gps_z_stddev.get();
	float var_vxy = _gps_vxy_stddev.get() * _gps_vxy_stddev.get();
	float var_vz = _gps_vz_stddev.get() * _gps_vz_stddev.get();

	// if field is not zero, set it to the value provided
	if (_sub_gps.get().eph > 1e-3f) {
		var_xy = _sub_gps.get().eph * _sub_gps.get().eph;
	}

	if (_sub_gps.get().epv > 1e-3f) {
		var_z = _sub_gps.get().epv * _sub_gps.get().epv;
	}

	R(0, 0) = var_xy;
	R(1, 1) = var_xy;
	R(2, 2) = var_z;
	R(3, 3) = var_vxy;
	R(4, 4) = var_vxy;
	R(5, 5) = var_vz;

	// get delayed x and P
	float t_delay = 0;
	int i = 0;

	for (i = 1; i < HIST_LEN; i++) {
		t_delay = 1.0e-6f * (_timeStamp - _tDelay.get(i)(0, 0));

		if (t_delay > _gps_delay.get()) {
			break;
		}
	}

	// if you are 3 steps past the delay you wanted, this
	// data is probably too old to use
	if (t_delay > GPS_DELAY_MAX) {
		mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] gps delayed data too old: %8.4f", double(t_delay));
		return;
	}

	Vector<float, n_x> x0 = _xDelay.get(i);

	// residual
	Vector<float, n_y_gps> r = y - C * x0;
	Matrix<float, n_y_gps, n_y_gps> S_I = inv<float, 6>(C * _P * C.transpose() + R);

	// fault detection
	float beta = (r.transpose() * (S_I * r))(0, 0);

	if (beta > BETA_TABLE[n_y_gps]) {
		if (_gpsFault < FAULT_MINOR) {
			//mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] gps fault, beta: %5.2f", double(beta));
			//mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] r: %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f",
			//double(r(0)),  double(r(1)), double(r(2)),
			//double(r(3)), double(r(4)), double(r(5)));
			//mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] S_I: %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f",
			//double(S_I(0, 0)),  double(S_I(1, 1)), double(S_I(2, 2)),
			//double(S_I(3, 3)),  double(S_I(4, 4)), double(S_I(5, 5)));
			_gpsFault = FAULT_MINOR;
		}

	} else if (_gpsFault) {
		_gpsFault = FAULT_NONE;
		//mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] GPS OK");
	}

	// kalman filter correction if no hard fault
	if (_gpsFault < fault_lvl_disable) {
		Matrix<float, n_x, n_y_gps> K = _P * C.transpose() * S_I;
		_x += K * r;
		_P -= K * C * _P;
	}
}
Exemplo n.º 10
0
void
BottleDrop::task_main()
{

	_mavlink_fd = open(MAVLINK_LOG_DEVICE, 0);
	mavlink_log_info(_mavlink_fd, "[bottle_drop] started");

	_command_sub = orb_subscribe(ORB_ID(vehicle_command));
	_wind_estimate_sub = orb_subscribe(ORB_ID(wind_estimate));

	bool updated = false;

	float z_0;		// ground properties
	float turn_radius;	// turn radius of the UAV
	float precision;	// Expected precision of the UAV

	float ground_distance = _alt_clearance;		// Replace by closer estimate in loop

	// constant
	float g = CONSTANTS_ONE_G;               		// constant of gravity [m/s^2]
	float m = 0.5f;                		// mass of bottle [kg]
	float rho = 1.2f;              		// air density [kg/m^3]
	float A = ((0.063f * 0.063f) / 4.0f * M_PI_F); // Bottle cross section [m^2]
	float dt_freefall_prediction = 0.01f;   // step size of the free fall prediction [s]

	// Has to be estimated by experiment
	float cd = 0.86f;              	// Drag coefficient for a cylinder with a d/l ratio of 1/3 []
	float t_signal =
		0.084f;	// Time span between sending the signal and the bottle top reaching level height with the bottom of the plane [s]
	float t_door =
		0.7f;		// The time the system needs to open the door + safety, is also the time the palyload needs to safely escape the shaft [s]


	// Definition
	float h_0;						// height over target
	float az;                 				// acceleration in z direction[m/s^2]
	float vz; 						// velocity in z direction [m/s]
	float z; 						// fallen distance [m]
	float h; 						// height over target [m]
	float ax;						// acceleration in x direction [m/s^2]
	float vx;						// ground speed in x direction [m/s]
	float x;					        // traveled distance in x direction [m]
	float vw;                 				// wind speed [m/s]
	float vrx;						// relative velocity in x direction [m/s]
	float v;						// relative speed vector [m/s]
	float Fd;						// Drag force [N]
	float Fdx;						// Drag force in x direction [N]
	float Fdz;						// Drag force in z direction [N]
	float x_drop, y_drop;					// coordinates of the drop point in reference to the target (projection of NED)
	float x_t, y_t;						// coordinates of the target in reference to the target x_t = 0, y_t = 0 (projection of NED)
	float x_l, y_l;						// local position in projected coordinates
	float x_f, y_f;						// to-be position of the UAV after dt_runs seconds in projected coordinates
	double x_f_NED, y_f_NED;				// to-be position of the UAV after dt_runs seconds in NED
	float distance_open_door;				// The distance the UAV travels during its doors open [m]
	float approach_error = 0.0f;				// The error in radians between current ground vector and desired ground vector
	float distance_real = 0;				// The distance between the UAVs position and the drop point [m]
	float future_distance = 0;				// The distance between the UAVs to-be position and the drop point [m]

	unsigned counter = 0;

	param_t param_gproperties = param_find("BD_GPROPERTIES");
	param_t param_turn_radius = param_find("BD_TURNRADIUS");
	param_t param_precision = param_find("BD_PRECISION");
	param_t param_cd = param_find("BD_OBJ_CD");
	param_t param_mass = param_find("BD_OBJ_MASS");
	param_t param_surface = param_find("BD_OBJ_SURFACE");


	param_get(param_precision, &precision);
	param_get(param_turn_radius, &turn_radius);
	param_get(param_gproperties, &z_0);
	param_get(param_cd, &cd);
	param_get(param_mass, &m);
	param_get(param_surface, &A);

	int vehicle_global_position_sub = orb_subscribe(ORB_ID(vehicle_global_position));

	struct parameter_update_s update;
	memset(&update, 0, sizeof(update));
	int parameter_update_sub = orb_subscribe(ORB_ID(parameter_update));

	struct mission_item_s flight_vector_s {};
	struct mission_item_s flight_vector_e {};

	flight_vector_s.nav_cmd = NAV_CMD_WAYPOINT;
	flight_vector_s.acceptance_radius = 50; // TODO: make parameter
	flight_vector_s.autocontinue = true;
	flight_vector_s.altitude_is_relative = false;

	flight_vector_e.nav_cmd = NAV_CMD_WAYPOINT;
	flight_vector_e.acceptance_radius = 50; // TODO: make parameter
	flight_vector_e.autocontinue = true;
	flight_vector_s.altitude_is_relative = false;

	struct wind_estimate_s wind;

	// wakeup source(s)
	struct pollfd fds[1];

	// Setup of loop
	fds[0].fd = _command_sub;
	fds[0].events = POLLIN;

	// Whatever state the bay is in, we want it closed on startup
	lock_release();
	close_bay();

	while (!_task_should_exit) {

		/* wait for up to 100ms for data */
		int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 50);

		/* this is undesirable but not much we can do - might want to flag unhappy status */
		if (pret < 0) {
			warn("poll error %d, %d", pret, errno);
			continue;
		}

		/* vehicle commands updated */
		if (fds[0].revents & POLLIN) {
			orb_copy(ORB_ID(vehicle_command), _command_sub, &_command);
			handle_command(&_command);
		}

		orb_check(vehicle_global_position_sub, &updated);
		if (updated) {
			/* copy global position */
			orb_copy(ORB_ID(vehicle_global_position), vehicle_global_position_sub, &_global_pos);
		}

		if (_global_pos.timestamp == 0) {
			continue;
		}

		const unsigned sleeptime_us = 9500;

		hrt_abstime last_run = hrt_absolute_time();
		float dt_runs = sleeptime_us / 1e6f;

		// switch to faster updates during the drop
		while (_drop_state > DROP_STATE_INIT) {

			// Get wind estimate
			orb_check(_wind_estimate_sub, &updated);
			if (updated) {
				orb_copy(ORB_ID(wind_estimate), _wind_estimate_sub, &wind);
			}

			// Get vehicle position
			orb_check(vehicle_global_position_sub, &updated);
			if (updated) {
				// copy global position
				orb_copy(ORB_ID(vehicle_global_position), vehicle_global_position_sub, &_global_pos);
			}

			// Get parameter updates
			orb_check(parameter_update_sub, &updated);
			if (updated) {
				// copy global position
				orb_copy(ORB_ID(parameter_update), parameter_update_sub, &update);

				// update all parameters
				param_get(param_gproperties, &z_0);
				param_get(param_turn_radius, &turn_radius);
				param_get(param_precision, &precision);
			}

			orb_check(_command_sub, &updated);
			if (updated) {
				orb_copy(ORB_ID(vehicle_command), _command_sub, &_command);
				handle_command(&_command);
			}


			float windspeed_norm = sqrtf(wind.windspeed_north * wind.windspeed_north + wind.windspeed_east * wind.windspeed_east);
			float groundspeed_body = sqrtf(_global_pos.vel_n * _global_pos.vel_n + _global_pos.vel_e * _global_pos.vel_e);
			ground_distance = _global_pos.alt - _target_position.alt;

			// Distance to drop position and angle error to approach vector
			// are relevant in all states greater than target valid (which calculates these positions)
			if (_drop_state > DROP_STATE_TARGET_VALID) {
				distance_real = fabsf(get_distance_to_next_waypoint(_global_pos.lat, _global_pos.lon, _drop_position.lat, _drop_position.lon));

				float ground_direction = atan2f(_global_pos.vel_e, _global_pos.vel_n);
				float approach_direction = get_bearing_to_next_waypoint(flight_vector_s.lat, flight_vector_s.lon, flight_vector_e.lat, flight_vector_e.lon);

				approach_error = _wrap_pi(ground_direction - approach_direction);

				if (counter % 90 == 0) {
					mavlink_log_info(_mavlink_fd, "drop distance %u, heading error %u", (unsigned)distance_real, (unsigned)math::degrees(approach_error));
				}
			}

			switch (_drop_state) {
				case DROP_STATE_INIT:
					// do nothing
					break;

				case DROP_STATE_TARGET_VALID:
				{

					az = g;							// acceleration in z direction[m/s^2]
					vz = 0; 						// velocity in z direction [m/s]
					z = 0; 							// fallen distance [m]
					h_0 = _global_pos.alt - _target_position.alt; 		// height over target at start[m]
					h = h_0;						// height over target [m]
					ax = 0;							// acceleration in x direction [m/s^2]
					vx = groundspeed_body;// XXX project					// ground speed in x direction [m/s]
					x = 0;							// traveled distance in x direction [m]
					vw = 0;							// wind speed [m/s]
					vrx = 0;						// relative velocity in x direction [m/s]
					v = groundspeed_body;					// relative speed vector [m/s]
					Fd = 0;							// Drag force [N]
					Fdx = 0;						// Drag force in x direction [N]
					Fdz = 0;						// Drag force in z direction [N]


					// Compute the distance the bottle will travel after it is dropped in body frame coordinates --> x
					while (h > 0.05f) {
						// z-direction
						vz = vz + az * dt_freefall_prediction;
						z = z + vz * dt_freefall_prediction;
						h = h_0 - z;

						// x-direction
						vw = windspeed_norm * logf(h / z_0) / logf(ground_distance / z_0);
						vx = vx + ax * dt_freefall_prediction;
						x = x + vx * dt_freefall_prediction;
						vrx = vx + vw;

						// drag force
						v = sqrtf(vz * vz + vrx * vrx);
						Fd = 0.5f * rho * A * cd * (v * v);
						Fdx = Fd * vrx / v;
						Fdz = Fd * vz / v;

						// acceleration
						az = g - Fdz / m;
						ax = -Fdx / m;
					}

					// compute drop vector
					x = groundspeed_body * t_signal + x;

					x_t = 0.0f;
					y_t = 0.0f;

					float wind_direction_n, wind_direction_e;

					if (windspeed_norm < 0.5f) {	// If there is no wind, an arbitrarily direction is chosen
						wind_direction_n = 1.0f;
						wind_direction_e = 0.0f;

					} else {
						wind_direction_n = wind.windspeed_north / windspeed_norm;
						wind_direction_e = wind.windspeed_east / windspeed_norm;
					}

					x_drop = x_t + x * wind_direction_n;
					y_drop = y_t + x * wind_direction_e;
					map_projection_reproject(&ref, x_drop, y_drop, &_drop_position.lat, &_drop_position.lon);
					_drop_position.alt = _target_position.alt + _alt_clearance;

					// Compute flight vector
					map_projection_reproject(&ref, x_drop + 2 * turn_radius * wind_direction_n, y_drop + 2 * turn_radius * wind_direction_e,
								 &(flight_vector_s.lat), &(flight_vector_s.lon));
					flight_vector_s.altitude = _drop_position.alt;
					map_projection_reproject(&ref, x_drop - turn_radius * wind_direction_n, y_drop - turn_radius * wind_direction_e,
								 &flight_vector_e.lat, &flight_vector_e.lon);
					flight_vector_e.altitude = _drop_position.alt;

					// Save WPs in datamanager
					const ssize_t len = sizeof(struct mission_item_s);

					if (dm_write(DM_KEY_WAYPOINTS_ONBOARD, 0, DM_PERSIST_IN_FLIGHT_RESET, &flight_vector_s, len) != len) {
						warnx("ERROR: could not save onboard WP");
					}

					if (dm_write(DM_KEY_WAYPOINTS_ONBOARD, 1, DM_PERSIST_IN_FLIGHT_RESET, &flight_vector_e, len) != len) {
						warnx("ERROR: could not save onboard WP");
					}

					_onboard_mission.count = 2;
					_onboard_mission.current_seq = 0;

					if (_onboard_mission_pub > 0) {
						orb_publish(ORB_ID(onboard_mission), _onboard_mission_pub, &_onboard_mission);

					} else {
						_onboard_mission_pub = orb_advertise(ORB_ID(onboard_mission), &_onboard_mission);
					}

					float approach_direction = get_bearing_to_next_waypoint(flight_vector_s.lat, flight_vector_s.lon, flight_vector_e.lat, flight_vector_e.lon);
					mavlink_log_critical(_mavlink_fd, "position set, approach heading: %u", (unsigned)distance_real, (unsigned)math::degrees(approach_direction + M_PI_F));

					_drop_state = DROP_STATE_TARGET_SET;
				}
				break;

				case DROP_STATE_TARGET_SET:
				{
					float distance_wp2 = get_distance_to_next_waypoint(_global_pos.lat, _global_pos.lon, flight_vector_e.lat, flight_vector_e.lon);

					if (distance_wp2 < distance_real) {
						_onboard_mission.current_seq = 0;
						orb_publish(ORB_ID(onboard_mission), _onboard_mission_pub, &_onboard_mission);
					} else {

						// We're close enough - open the bay
						distance_open_door = math::max(10.0f, 3.0f * fabsf(t_door * groundspeed_body));

						if (isfinite(distance_real) && distance_real < distance_open_door &&
							fabsf(approach_error) < math::radians(20.0f)) {
							open_bay();
							_drop_state = DROP_STATE_BAY_OPEN;
							mavlink_log_info(_mavlink_fd, "#audio: opening bay");
						}
					}
				}
				break;

				case DROP_STATE_BAY_OPEN:
					{
						if (_drop_approval) {
							map_projection_project(&ref, _global_pos.lat, _global_pos.lon, &x_l, &y_l);
							x_f = x_l + _global_pos.vel_n * dt_runs;
							y_f = y_l + _global_pos.vel_e * dt_runs;
							map_projection_reproject(&ref, x_f, y_f, &x_f_NED, &y_f_NED);
							future_distance = get_distance_to_next_waypoint(x_f_NED, y_f_NED, _drop_position.lat, _drop_position.lon);

							if (isfinite(distance_real) &&
								(distance_real < precision) && ((distance_real < future_distance))) {
									drop();
									_drop_state = DROP_STATE_DROPPED;
									mavlink_log_info(_mavlink_fd, "#audio: payload dropped");
							} else {

								float distance_wp2 = get_distance_to_next_waypoint(_global_pos.lat, _global_pos.lon, flight_vector_e.lat, flight_vector_e.lon);

								if (distance_wp2 < distance_real) {
									_onboard_mission.current_seq = 0;
									orb_publish(ORB_ID(onboard_mission), _onboard_mission_pub, &_onboard_mission);
								}
							}
						}
					}
					break;

				case DROP_STATE_DROPPED:
					/* 2s after drop, reset and close everything again */
					if ((hrt_elapsed_time(&_doors_opened) > 2 * 1000 * 1000)) {
						_drop_state = DROP_STATE_INIT;
						_drop_approval = false;
						lock_release();
						close_bay();
						mavlink_log_info(_mavlink_fd, "#audio: closing bay");

						// remove onboard mission
						_onboard_mission.current_seq = -1;
						_onboard_mission.count = 0;
						orb_publish(ORB_ID(onboard_mission), _onboard_mission_pub, &_onboard_mission);
					}
					break;

				case DROP_STATE_BAY_CLOSED:
					// do nothing
					break;
			}

			counter++;

			// update_actuators();

			// run at roughly 100 Hz
			usleep(sleeptime_us);

			dt_runs = hrt_elapsed_time(&last_run) / 1e6f;
			last_run = hrt_absolute_time();
		}
	}

	warnx("exiting.");

	_main_task = -1;
	_exit(0);
}
Exemplo n.º 11
0
void MulticopterPositionControl::control_auto(float dt)
{
	if (!_mode_auto) {
		_mode_auto = true;
		/* reset position setpoint on AUTO mode activation */
		reset_pos_sp();
		reset_alt_sp();
	}

	//Poll position setpoint
	bool updated;
	orb_check(_pos_sp_triplet_sub, &updated);
	if (updated) {
		orb_copy(ORB_ID(position_setpoint_triplet), _pos_sp_triplet_sub, &_pos_sp_triplet);

		//Make sure that the position setpoint is valid
		if (!isfinite(_pos_sp_triplet.current.lat) ||
			!isfinite(_pos_sp_triplet.current.lon) ||
			!isfinite(_pos_sp_triplet.current.alt)) {
			_pos_sp_triplet.current.valid = false;
		}
	}

	if (_pos_sp_triplet.current.valid) {
		/* in case of interrupted mission don't go to waypoint but stay at current position */
		_reset_pos_sp = true;
		_reset_alt_sp = true;

		/* project setpoint to local frame */
		math::Vector<3> curr_sp;
		map_projection_project(&_ref_pos,
				       _pos_sp_triplet.current.lat, _pos_sp_triplet.current.lon,
				       &curr_sp.data[0], &curr_sp.data[1]);
		curr_sp(2) = -(_pos_sp_triplet.current.alt - _ref_alt);

		/* scaled space: 1 == position error resulting max allowed speed, L1 = 1 in this space */
		math::Vector<3> scale = _params.pos_p.edivide(_params.vel_max);	// TODO add mult param here

		/* convert current setpoint to scaled space */
		math::Vector<3> curr_sp_s = curr_sp.emult(scale);

		/* by default use current setpoint as is */
		math::Vector<3> pos_sp_s = curr_sp_s;

		if (_pos_sp_triplet.current.type == position_setpoint_s::SETPOINT_TYPE_POSITION && _pos_sp_triplet.previous.valid) {
			/* follow "previous - current" line */
			math::Vector<3> prev_sp;
			map_projection_project(&_ref_pos,
						   _pos_sp_triplet.previous.lat, _pos_sp_triplet.previous.lon,
						   &prev_sp.data[0], &prev_sp.data[1]);
			prev_sp(2) = -(_pos_sp_triplet.previous.alt - _ref_alt);

			if ((curr_sp - prev_sp).length() > MIN_DIST) {

				/* find X - cross point of L1 sphere and trajectory */
				math::Vector<3> pos_s = _pos.emult(scale);
				math::Vector<3> prev_sp_s = prev_sp.emult(scale);
				math::Vector<3> prev_curr_s = curr_sp_s - prev_sp_s;
				math::Vector<3> curr_pos_s = pos_s - curr_sp_s;
				float curr_pos_s_len = curr_pos_s.length();
				if (curr_pos_s_len < 1.0f) {
					/* copter is closer to waypoint than L1 radius */
					/* check next waypoint and use it to avoid slowing down when passing via waypoint */
					if (_pos_sp_triplet.next.valid) {
						math::Vector<3> next_sp;
						map_projection_project(&_ref_pos,
									   _pos_sp_triplet.next.lat, _pos_sp_triplet.next.lon,
									   &next_sp.data[0], &next_sp.data[1]);
						next_sp(2) = -(_pos_sp_triplet.next.alt - _ref_alt);

						if ((next_sp - curr_sp).length() > MIN_DIST) {
							math::Vector<3> next_sp_s = next_sp.emult(scale);

							/* calculate angle prev - curr - next */
							math::Vector<3> curr_next_s = next_sp_s - curr_sp_s;
							math::Vector<3> prev_curr_s_norm = prev_curr_s.normalized();

							/* cos(a) * curr_next, a = angle between current and next trajectory segments */
							float cos_a_curr_next = prev_curr_s_norm * curr_next_s;

							/* cos(b), b = angle pos - curr_sp - prev_sp */
							float cos_b = -curr_pos_s * prev_curr_s_norm / curr_pos_s_len;

							if (cos_a_curr_next > 0.0f && cos_b > 0.0f) {
								float curr_next_s_len = curr_next_s.length();
								/* if curr - next distance is larger than L1 radius, limit it */
								if (curr_next_s_len > 1.0f) {
									cos_a_curr_next /= curr_next_s_len;
								}

								/* feed forward position setpoint offset */
								math::Vector<3> pos_ff = prev_curr_s_norm *
										cos_a_curr_next * cos_b * cos_b * (1.0f - curr_pos_s_len) *
										(1.0f - expf(-curr_pos_s_len * curr_pos_s_len * 20.0f));
								pos_sp_s += pos_ff;
							}
						}
					}

				} else {
					bool near = cross_sphere_line(pos_s, 1.0f, prev_sp_s, curr_sp_s, pos_sp_s);
					if (near) {
						/* L1 sphere crosses trajectory */

					} else {
						/* copter is too far from trajectory */
						/* if copter is behind prev waypoint, go directly to prev waypoint */
						if ((pos_sp_s - prev_sp_s) * prev_curr_s < 0.0f) {
							pos_sp_s = prev_sp_s;
						}

						/* if copter is in front of curr waypoint, go directly to curr waypoint */
						if ((pos_sp_s - curr_sp_s) * prev_curr_s > 0.0f) {
							pos_sp_s = curr_sp_s;
						}

						pos_sp_s = pos_s + (pos_sp_s - pos_s).normalized();
					}
				}
			}
		}

		/* move setpoint not faster than max allowed speed */
		math::Vector<3> pos_sp_old_s = _pos_sp.emult(scale);

		/* difference between current and desired position setpoints, 1 = max speed */
		math::Vector<3> d_pos_m = (pos_sp_s - pos_sp_old_s).edivide(_params.pos_p);
		float d_pos_m_len = d_pos_m.length();
		if (d_pos_m_len > dt) {
			pos_sp_s = pos_sp_old_s + (d_pos_m / d_pos_m_len * dt).emult(_params.pos_p);
		}

		/* scale result back to normal space */
		_pos_sp = pos_sp_s.edivide(scale);

		/* update yaw setpoint if needed */
		if (isfinite(_pos_sp_triplet.current.yaw)) {
			_att_sp.yaw_body = _pos_sp_triplet.current.yaw;
		}

	} else {
		/* no waypoint, do nothing, setpoint was already reset */
	}
}
/****************************************************************************
 * main
 ****************************************************************************/
int position_estimator_inav_thread_main(int argc, char *argv[])
{
	orb_advert_t mavlink_log_pub = nullptr;

	float x_est[2] = { 0.0f, 0.0f };	// pos, vel
	float y_est[2] = { 0.0f, 0.0f };	// pos, vel
	float z_est[2] = { 0.0f, 0.0f };	// pos, vel

	float est_buf[EST_BUF_SIZE][3][2];	// estimated position buffer
	float R_buf[EST_BUF_SIZE][3][3];	// rotation matrix buffer
	float R_gps[3][3];					// rotation matrix for GPS correction moment
	memset(est_buf, 0, sizeof(est_buf));
	memset(R_buf, 0, sizeof(R_buf));
	memset(R_gps, 0, sizeof(R_gps));
	int buf_ptr = 0;

	static const float min_eph_epv = 2.0f;	// min EPH/EPV, used for weight calculation
	static const float max_eph_epv = 20.0f;	// max EPH/EPV acceptable for estimation

	float eph = max_eph_epv;
	float epv = 1.0f;

	float eph_flow = 1.0f;

	float eph_vision = 0.2f;
	float epv_vision = 0.2f;

	float eph_mocap = 0.05f;
	float epv_mocap = 0.05f;

	float x_est_prev[2], y_est_prev[2], z_est_prev[2];
	memset(x_est_prev, 0, sizeof(x_est_prev));
	memset(y_est_prev, 0, sizeof(y_est_prev));
	memset(z_est_prev, 0, sizeof(z_est_prev));

	int baro_init_cnt = 0;
	int baro_init_num = 200;
	float baro_offset = 0.0f;		// baro offset for reference altitude, initialized on start, then adjusted

	hrt_abstime accel_timestamp = 0;
	hrt_abstime baro_timestamp = 0;

	bool ref_inited = false;
	hrt_abstime ref_init_start = 0;
	const hrt_abstime ref_init_delay = 1000000;	// wait for 1s after 3D fix
	struct map_projection_reference_s ref;
	memset(&ref, 0, sizeof(ref));

	uint16_t accel_updates = 0;
	uint16_t baro_updates = 0;
	uint16_t gps_updates = 0;
	uint16_t attitude_updates = 0;
	uint16_t flow_updates = 0;
	uint16_t vision_updates = 0;
	uint16_t mocap_updates = 0;

	hrt_abstime updates_counter_start = hrt_absolute_time();
	hrt_abstime pub_last = hrt_absolute_time();

	hrt_abstime t_prev = 0;

	/* store error when sensor updates, but correct on each time step to avoid jumps in estimated value */
	float acc[] = { 0.0f, 0.0f, 0.0f };	// N E D
	float acc_bias[] = { 0.0f, 0.0f, 0.0f };	// body frame
	float corr_baro = 0.0f;		// D
	float corr_gps[3][2] = {
		{ 0.0f, 0.0f },		// N (pos, vel)
		{ 0.0f, 0.0f },		// E (pos, vel)
		{ 0.0f, 0.0f },		// D (pos, vel)
	};
	float w_gps_xy = 1.0f;
	float w_gps_z = 1.0f;

	float corr_vision[3][2] = {
		{ 0.0f, 0.0f },		// N (pos, vel)
		{ 0.0f, 0.0f },		// E (pos, vel)
		{ 0.0f, 0.0f },		// D (pos, vel)
	};

	float corr_mocap[3][1] = {
		{ 0.0f },		// N (pos)
		{ 0.0f },		// E (pos)
		{ 0.0f },		// D (pos)
	};
	const int mocap_heading = 2;

	float dist_ground = 0.0f;		//variables for lidar altitude estimation
	float corr_lidar = 0.0f;
	float lidar_offset = 0.0f;
	int lidar_offset_count = 0;
	bool lidar_first = true;
	bool use_lidar = false;
	bool use_lidar_prev = false;

	float corr_flow[] = { 0.0f, 0.0f };	// N E
	float w_flow = 0.0f;

	hrt_abstime lidar_time = 0;			// time of last lidar measurement (not filtered)
	hrt_abstime lidar_valid_time = 0;	// time of last lidar measurement used for correction (filtered)

	int n_flow = 0;
	float gyro_offset_filtered[] = { 0.0f, 0.0f, 0.0f };
	float flow_gyrospeed[] = { 0.0f, 0.0f, 0.0f };
	float flow_gyrospeed_filtered[] = { 0.0f, 0.0f, 0.0f };
	float att_gyrospeed_filtered[] = { 0.0f, 0.0f, 0.0f };
	float yaw_comp[] = { 0.0f, 0.0f };
	hrt_abstime flow_time = 0;
	float flow_min_dist = 0.2f;

	bool gps_valid = false;			// GPS is valid
	bool lidar_valid = false;		// lidar is valid
	bool flow_valid = false;		// flow is valid
	bool flow_accurate = false;		// flow should be accurate (this flag not updated if flow_valid == false)
	bool vision_valid = false;		// vision is valid
	bool mocap_valid = false;		// mocap is valid

	/* declare and safely initialize all structs */
	struct actuator_controls_s actuator;
	memset(&actuator, 0, sizeof(actuator));
	struct actuator_armed_s armed;
	memset(&armed, 0, sizeof(armed));
	struct sensor_combined_s sensor;
	memset(&sensor, 0, sizeof(sensor));
	struct vehicle_gps_position_s gps;
	memset(&gps, 0, sizeof(gps));
	struct vehicle_attitude_s att;
	memset(&att, 0, sizeof(att));
	struct vehicle_local_position_s local_pos;
	memset(&local_pos, 0, sizeof(local_pos));
	struct optical_flow_s flow;
	memset(&flow, 0, sizeof(flow));
	struct vision_position_estimate_s vision;
	memset(&vision, 0, sizeof(vision));
	struct att_pos_mocap_s mocap;
	memset(&mocap, 0, sizeof(mocap));
	struct vehicle_global_position_s global_pos;
	memset(&global_pos, 0, sizeof(global_pos));
	struct distance_sensor_s lidar;
	memset(&lidar, 0, sizeof(lidar));
	struct vehicle_rates_setpoint_s rates_setpoint;
	memset(&rates_setpoint, 0, sizeof(rates_setpoint));

	/* subscribe */
	int parameter_update_sub = orb_subscribe(ORB_ID(parameter_update));
	int actuator_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS);
	int armed_sub = orb_subscribe(ORB_ID(actuator_armed));
	int sensor_combined_sub = orb_subscribe(ORB_ID(sensor_combined));
	int vehicle_attitude_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	int optical_flow_sub = orb_subscribe(ORB_ID(optical_flow));
	int vehicle_gps_position_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
	int vision_position_estimate_sub = orb_subscribe(ORB_ID(vision_position_estimate));
	int att_pos_mocap_sub = orb_subscribe(ORB_ID(att_pos_mocap));
	int distance_sensor_sub = orb_subscribe(ORB_ID(distance_sensor));
	int vehicle_rate_sp_sub = orb_subscribe(ORB_ID(vehicle_rates_setpoint));

	/* advertise */
	orb_advert_t vehicle_local_position_pub = orb_advertise(ORB_ID(vehicle_local_position), &local_pos);
	orb_advert_t vehicle_global_position_pub = NULL;

	struct position_estimator_inav_params params;
	memset(&params, 0, sizeof(params));
	struct position_estimator_inav_param_handles pos_inav_param_handles;
	/* initialize parameter handles */
	inav_parameters_init(&pos_inav_param_handles);

	/* first parameters read at start up */
	struct parameter_update_s param_update;
	orb_copy(ORB_ID(parameter_update), parameter_update_sub,
		 &param_update); /* read from param topic to clear updated flag */
	/* first parameters update */
	inav_parameters_update(&pos_inav_param_handles, &params);

	px4_pollfd_struct_t fds_init[1] = {};
	fds_init[0].fd = sensor_combined_sub;
	fds_init[0].events = POLLIN;

	/* wait for initial baro value */
	bool wait_baro = true;
	TerrainEstimator *terrain_estimator = new TerrainEstimator();

	thread_running = true;
	hrt_abstime baro_wait_for_sample_time = hrt_absolute_time();

	while (wait_baro && !thread_should_exit) {
		int ret = px4_poll(&fds_init[0], 1, 1000);

		if (ret < 0) {
			/* poll error */
			mavlink_log_info(&mavlink_log_pub, "[inav] poll error on init");
		} else if (hrt_absolute_time() - baro_wait_for_sample_time > MAX_WAIT_FOR_BARO_SAMPLE) {
			wait_baro = false;
			mavlink_log_info(&mavlink_log_pub, "[inav] timed out waiting for a baro sample");
		}
		else if (ret > 0) {
			if (fds_init[0].revents & POLLIN) {
				orb_copy(ORB_ID(sensor_combined), sensor_combined_sub, &sensor);

				if (wait_baro && sensor.baro_timestamp[0] != baro_timestamp) {
					baro_timestamp = sensor.baro_timestamp[0];
					baro_wait_for_sample_time = hrt_absolute_time();

					/* mean calculation over several measurements */
					if (baro_init_cnt < baro_init_num) {
						if (PX4_ISFINITE(sensor.baro_alt_meter[0])) {
							baro_offset += sensor.baro_alt_meter[0];
							baro_init_cnt++;
						}

					} else {
						wait_baro = false;
						baro_offset /= (float) baro_init_cnt;
						local_pos.z_valid = true;
						local_pos.v_z_valid = true;
					}
				}
			}

		} else {
			PX4_WARN("INAV poll timeout");
		}
	}

	/* main loop */
	px4_pollfd_struct_t fds[1];
	fds[0].fd = vehicle_attitude_sub;
	fds[0].events = POLLIN;

	while (!thread_should_exit) {
		int ret = px4_poll(fds, 1, 20); // wait maximal 20 ms = 50 Hz minimum rate
		hrt_abstime t = hrt_absolute_time();

		if (ret < 0) {
			/* poll error */
			mavlink_log_info(&mavlink_log_pub, "[inav] poll error on init");
			continue;

		} else if (ret > 0) {
			/* act on attitude updates */

			/* vehicle attitude */
			orb_copy(ORB_ID(vehicle_attitude), vehicle_attitude_sub, &att);
			attitude_updates++;

			bool updated;

			/* parameter update */
			orb_check(parameter_update_sub, &updated);

			if (updated) {
				struct parameter_update_s update;
				orb_copy(ORB_ID(parameter_update), parameter_update_sub, &update);
				inav_parameters_update(&pos_inav_param_handles, &params);
			}

			/* actuator */
			orb_check(actuator_sub, &updated);

			if (updated) {
				orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_sub, &actuator);
			}

			/* armed */
			orb_check(armed_sub, &updated);

			if (updated) {
				orb_copy(ORB_ID(actuator_armed), armed_sub, &armed);
			}

			/* sensor combined */
			orb_check(sensor_combined_sub, &updated);

			if (updated) {
				orb_copy(ORB_ID(sensor_combined), sensor_combined_sub, &sensor);

				if (sensor.accelerometer_timestamp[0] != accel_timestamp) {
					if (att.R_valid) {
						/* correct accel bias */
						sensor.accelerometer_m_s2[0] -= acc_bias[0];
						sensor.accelerometer_m_s2[1] -= acc_bias[1];
						sensor.accelerometer_m_s2[2] -= acc_bias[2];

						/* transform acceleration vector from body frame to NED frame */
						for (int i = 0; i < 3; i++) {
							acc[i] = 0.0f;

							for (int j = 0; j < 3; j++) {
								acc[i] += PX4_R(att.R, i, j) * sensor.accelerometer_m_s2[j];
							}
						}

						acc[2] += CONSTANTS_ONE_G;

					} else {
						memset(acc, 0, sizeof(acc));
					}

					accel_timestamp = sensor.accelerometer_timestamp[0];
					accel_updates++;
				}

				if (sensor.baro_timestamp[0] != baro_timestamp) {
					corr_baro = baro_offset - sensor.baro_alt_meter[0] - z_est[0];
					baro_timestamp = sensor.baro_timestamp[0];
					baro_updates++;
				}
			}


			/* lidar alt estimation */
			orb_check(distance_sensor_sub, &updated);

			/* update lidar separately, needed by terrain estimator */
			if (updated) {
				orb_copy(ORB_ID(distance_sensor), distance_sensor_sub, &lidar);
				lidar.current_distance += params.lidar_calibration_offset;
			}

			if (updated) { //check if altitude estimation for lidar is enabled and new sensor data

				if (params.enable_lidar_alt_est && lidar.current_distance > lidar.min_distance && lidar.current_distance < lidar.max_distance
			    		&& (PX4_R(att.R, 2, 2) > 0.7f)) {

					if (!use_lidar_prev && use_lidar) {
						lidar_first = true;
					}

					use_lidar_prev = use_lidar;

					lidar_time = t;
					dist_ground = lidar.current_distance * PX4_R(att.R, 2, 2); //vertical distance

					if (lidar_first) {
						lidar_first = false;
						lidar_offset = dist_ground + z_est[0];
						mavlink_log_info(&mavlink_log_pub, "[inav] LIDAR: new ground offset");
						warnx("[inav] LIDAR: new ground offset");
					}

					corr_lidar = lidar_offset - dist_ground - z_est[0];

					if (fabsf(corr_lidar) > params.lidar_err) { //check for spike
						corr_lidar = 0;
						lidar_valid = false;
						lidar_offset_count++;

						if (lidar_offset_count > 3) { //if consecutive bigger/smaller measurements -> new ground offset -> reinit
							lidar_first = true;
							lidar_offset_count = 0;
						}

					} else {
						corr_lidar = lidar_offset - dist_ground - z_est[0];
						lidar_valid = true;
						lidar_offset_count = 0;
						lidar_valid_time = t;
					}
				} else {
					lidar_valid = false;
				}
			}

			/* optical flow */
			orb_check(optical_flow_sub, &updated);

			if (updated && lidar_valid) {
				orb_copy(ORB_ID(optical_flow), optical_flow_sub, &flow);

				flow_time = t;
				float flow_q = flow.quality / 255.0f;
				float dist_bottom = lidar.current_distance;

				if (dist_bottom > flow_min_dist && flow_q > params.flow_q_min && PX4_R(att.R, 2, 2) > 0.7f) {
					/* distance to surface */
					//float flow_dist = dist_bottom / PX4_R(att.R, 2, 2); //use this if using sonar
					float flow_dist = dist_bottom; //use this if using lidar

					/* check if flow if too large for accurate measurements */
					/* calculate estimated velocity in body frame */
					float body_v_est[2] = { 0.0f, 0.0f };

					for (int i = 0; i < 2; i++) {
						body_v_est[i] = PX4_R(att.R, 0, i) * x_est[1] + PX4_R(att.R, 1, i) * y_est[1] + PX4_R(att.R, 2, i) * z_est[1];
					}

					/* set this flag if flow should be accurate according to current velocity and attitude rate estimate */
					flow_accurate = fabsf(body_v_est[1] / flow_dist - att.rollspeed) < max_flow &&
							fabsf(body_v_est[0] / flow_dist + att.pitchspeed) < max_flow;

					/*calculate offset of flow-gyro using already calibrated gyro from autopilot*/
					flow_gyrospeed[0] = flow.gyro_x_rate_integral / (float)flow.integration_timespan * 1000000.0f;
					flow_gyrospeed[1] = flow.gyro_y_rate_integral / (float)flow.integration_timespan * 1000000.0f;
					flow_gyrospeed[2] = flow.gyro_z_rate_integral / (float)flow.integration_timespan * 1000000.0f;

					//moving average
					if (n_flow >= 100) {
						gyro_offset_filtered[0] = flow_gyrospeed_filtered[0] - att_gyrospeed_filtered[0];
						gyro_offset_filtered[1] = flow_gyrospeed_filtered[1] - att_gyrospeed_filtered[1];
						gyro_offset_filtered[2] = flow_gyrospeed_filtered[2] - att_gyrospeed_filtered[2];
						n_flow = 0;
						flow_gyrospeed_filtered[0] = 0.0f;
						flow_gyrospeed_filtered[1] = 0.0f;
						flow_gyrospeed_filtered[2] = 0.0f;
						att_gyrospeed_filtered[0] = 0.0f;
						att_gyrospeed_filtered[1] = 0.0f;
						att_gyrospeed_filtered[2] = 0.0f;

					} else {
						flow_gyrospeed_filtered[0] = (flow_gyrospeed[0] + n_flow * flow_gyrospeed_filtered[0]) / (n_flow + 1);
						flow_gyrospeed_filtered[1] = (flow_gyrospeed[1] + n_flow * flow_gyrospeed_filtered[1]) / (n_flow + 1);
						flow_gyrospeed_filtered[2] = (flow_gyrospeed[2] + n_flow * flow_gyrospeed_filtered[2]) / (n_flow + 1);
						att_gyrospeed_filtered[0] = (att.pitchspeed + n_flow * att_gyrospeed_filtered[0]) / (n_flow + 1);
						att_gyrospeed_filtered[1] = (att.rollspeed + n_flow * att_gyrospeed_filtered[1]) / (n_flow + 1);
						att_gyrospeed_filtered[2] = (att.yawspeed + n_flow * att_gyrospeed_filtered[2]) / (n_flow + 1);
						n_flow++;
					}


					/*yaw compensation (flow sensor is not in center of rotation) -> params in QGC*/
					yaw_comp[0] = - params.flow_module_offset_y * (flow_gyrospeed[2] - gyro_offset_filtered[2]);
					yaw_comp[1] = params.flow_module_offset_x * (flow_gyrospeed[2] - gyro_offset_filtered[2]);

					/* convert raw flow to angular flow (rad/s) */
					float flow_ang[2];

					/* check for vehicle rates setpoint - it below threshold -> dont subtract -> better hover */
					orb_check(vehicle_rate_sp_sub, &updated);
					if (updated)
						orb_copy(ORB_ID(vehicle_rates_setpoint), vehicle_rate_sp_sub, &rates_setpoint);

					double rate_threshold = 0.15f;

					if (fabs(rates_setpoint.pitch) < rate_threshold) {
						//warnx("[inav] test ohne comp");
						flow_ang[0] = (flow.pixel_flow_x_integral / (float)flow.integration_timespan * 1000000.0f) * params.flow_k;//for now the flow has to be scaled (to small)
					}
					else {
						//warnx("[inav] test mit comp");
						//calculate flow [rad/s] and compensate for rotations (and offset of flow-gyro)
						flow_ang[0] = ((flow.pixel_flow_x_integral - flow.gyro_x_rate_integral) / (float)flow.integration_timespan * 1000000.0f
							       + gyro_offset_filtered[0]) * params.flow_k;//for now the flow has to be scaled (to small)
					}

					if (fabs(rates_setpoint.roll) < rate_threshold) {
						flow_ang[1] = (flow.pixel_flow_y_integral / (float)flow.integration_timespan * 1000000.0f) * params.flow_k;//for now the flow has to be scaled (to small)
					}
					else {
						//calculate flow [rad/s] and compensate for rotations (and offset of flow-gyro)
						flow_ang[1] = ((flow.pixel_flow_y_integral - flow.gyro_y_rate_integral) / (float)flow.integration_timespan * 1000000.0f
							       + gyro_offset_filtered[1]) * params.flow_k;//for now the flow has to be scaled (to small)
					}

					/* flow measurements vector */
					float flow_m[3];
					if (fabs(rates_setpoint.yaw) < rate_threshold) {
						flow_m[0] = -flow_ang[0] * flow_dist;
						flow_m[1] = -flow_ang[1] * flow_dist;
					} else {
						flow_m[0] = -flow_ang[0] * flow_dist - yaw_comp[0] * params.flow_k;
						flow_m[1] = -flow_ang[1] * flow_dist - yaw_comp[1] * params.flow_k;
					}
					flow_m[2] = z_est[1];

					/* velocity in NED */
					float flow_v[2] = { 0.0f, 0.0f };

					/* project measurements vector to NED basis, skip Z component */
					for (int i = 0; i < 2; i++) {
						for (int j = 0; j < 3; j++) {
							flow_v[i] += PX4_R(att.R, i, j) * flow_m[j];
						}
					}

					/* velocity correction */
					corr_flow[0] = flow_v[0] - x_est[1];
					corr_flow[1] = flow_v[1] - y_est[1];
					/* adjust correction weight */
					float flow_q_weight = (flow_q - params.flow_q_min) / (1.0f - params.flow_q_min);
					w_flow = PX4_R(att.R, 2, 2) * flow_q_weight / fmaxf(1.0f, flow_dist);


					/* if flow is not accurate, reduce weight for it */
					// TODO make this more fuzzy
					if (!flow_accurate) {
						w_flow *= 0.05f;
					}

					/* under ideal conditions, on 1m distance assume EPH = 10cm */
					eph_flow = 0.1f / w_flow;

					flow_valid = true;

				} else {
					w_flow = 0.0f;
					flow_valid = false;
				}

				flow_updates++;
			}

			/* check no vision circuit breaker is set */
			if (params.no_vision != CBRK_NO_VISION_KEY) {
				/* vehicle vision position */
				orb_check(vision_position_estimate_sub, &updated);

				if (updated) {
					orb_copy(ORB_ID(vision_position_estimate), vision_position_estimate_sub, &vision);

					static float last_vision_x = 0.0f;
					static float last_vision_y = 0.0f;
					static float last_vision_z = 0.0f;

					/* reset position estimate on first vision update */
					if (!vision_valid) {
						x_est[0] = vision.x;
						x_est[1] = vision.vx;
						y_est[0] = vision.y;
						y_est[1] = vision.vy;

						/* only reset the z estimate if the z weight parameter is not zero */
						if (params.w_z_vision_p > MIN_VALID_W) {
							z_est[0] = vision.z;
							z_est[1] = vision.vz;
						}

						vision_valid = true;

						last_vision_x = vision.x;
						last_vision_y = vision.y;
						last_vision_z = vision.z;

						warnx("VISION estimate valid");
						mavlink_log_info(&mavlink_log_pub, "[inav] VISION estimate valid");
					}

					/* calculate correction for position */
					corr_vision[0][0] = vision.x - x_est[0];
					corr_vision[1][0] = vision.y - y_est[0];
					corr_vision[2][0] = vision.z - z_est[0];

					static hrt_abstime last_vision_time = 0;

					float vision_dt = (vision.timestamp_boot - last_vision_time) / 1e6f;
					last_vision_time = vision.timestamp_boot;

					if (vision_dt > 0.000001f && vision_dt < 0.2f) {
						vision.vx = (vision.x - last_vision_x) / vision_dt;
						vision.vy = (vision.y - last_vision_y) / vision_dt;
						vision.vz = (vision.z - last_vision_z) / vision_dt;

						last_vision_x = vision.x;
						last_vision_y = vision.y;
						last_vision_z = vision.z;

						/* calculate correction for velocity */
						corr_vision[0][1] = vision.vx - x_est[1];
						corr_vision[1][1] = vision.vy - y_est[1];
						corr_vision[2][1] = vision.vz - z_est[1];

					} else {
						/* assume zero motion */
						corr_vision[0][1] = 0.0f - x_est[1];
						corr_vision[1][1] = 0.0f - y_est[1];
						corr_vision[2][1] = 0.0f - z_est[1];
					}

					vision_updates++;
				}
			}

			/* vehicle mocap position */
			orb_check(att_pos_mocap_sub, &updated);

			if (updated) {
				orb_copy(ORB_ID(att_pos_mocap), att_pos_mocap_sub, &mocap);

				if (!params.disable_mocap) {
					/* reset position estimate on first mocap update */
					if (!mocap_valid) {
						x_est[0] = mocap.x;
						y_est[0] = mocap.y;
						z_est[0] = mocap.z;

						mocap_valid = true;

						warnx("MOCAP data valid");
						mavlink_log_info(&mavlink_log_pub, "[inav] MOCAP data valid");
					}

					/* calculate correction for position */
					corr_mocap[0][0] = mocap.x - x_est[0];
					corr_mocap[1][0] = mocap.y - y_est[0];
					corr_mocap[2][0] = mocap.z - z_est[0];

					mocap_updates++;
				}
			}

			/* vehicle GPS position */
			orb_check(vehicle_gps_position_sub, &updated);

			if (updated) {
				orb_copy(ORB_ID(vehicle_gps_position), vehicle_gps_position_sub, &gps);

				bool reset_est = false;

				/* hysteresis for GPS quality */
				if (gps_valid) {
					if (gps.eph > max_eph_epv || gps.epv > max_eph_epv || gps.fix_type < 3) {
						gps_valid = false;
						mavlink_log_info(&mavlink_log_pub, "[inav] GPS signal lost");
						warnx("[inav] GPS signal lost");
					}

				} else {
					if (gps.eph < max_eph_epv * 0.7f && gps.epv < max_eph_epv * 0.7f && gps.fix_type >= 3) {
						gps_valid = true;
						reset_est = true;
						mavlink_log_info(&mavlink_log_pub, "[inav] GPS signal found");
						warnx("[inav] GPS signal found");
					}
				}

				if (gps_valid) {
					double lat = gps.lat * 1e-7;
					double lon = gps.lon * 1e-7;
					float alt = gps.alt * 1e-3;

					/* initialize reference position if needed */
					if (!ref_inited) {
						if (ref_init_start == 0) {
							ref_init_start = t;

						} else if (t > ref_init_start + ref_init_delay) {
							ref_inited = true;

							/* set position estimate to (0, 0, 0), use GPS velocity for XY */
							x_est[0] = 0.0f;
							x_est[1] = gps.vel_n_m_s;
							y_est[0] = 0.0f;
							y_est[1] = gps.vel_e_m_s;

							local_pos.ref_lat = lat;
							local_pos.ref_lon = lon;
							local_pos.ref_alt = alt + z_est[0];
							local_pos.ref_timestamp = t;

							/* initialize projection */
							map_projection_init(&ref, lat, lon);
							// XXX replace this print
							warnx("init ref: lat=%.7f, lon=%.7f, alt=%8.4f", (double)lat, (double)lon, (double)alt);
							mavlink_log_info(&mavlink_log_pub, "[inav] init ref: %.7f, %.7f, %8.4f", (double)lat, (double)lon, (double)alt);
						}
					}

					if (ref_inited) {
						/* project GPS lat lon to plane */
						float gps_proj[2];
						map_projection_project(&ref, lat, lon, &(gps_proj[0]), &(gps_proj[1]));

						/* reset position estimate when GPS becomes good */
						if (reset_est) {
							x_est[0] = gps_proj[0];
							x_est[1] = gps.vel_n_m_s;
							y_est[0] = gps_proj[1];
							y_est[1] = gps.vel_e_m_s;
						}

						/* calculate index of estimated values in buffer */
						int est_i = buf_ptr - 1 - min(EST_BUF_SIZE - 1, max(0, (int)(params.delay_gps * 1000000.0f / PUB_INTERVAL)));

						if (est_i < 0) {
							est_i += EST_BUF_SIZE;
						}

						/* calculate correction for position */
						corr_gps[0][0] = gps_proj[0] - est_buf[est_i][0][0];
						corr_gps[1][0] = gps_proj[1] - est_buf[est_i][1][0];
						corr_gps[2][0] = local_pos.ref_alt - alt - est_buf[est_i][2][0];

						/* calculate correction for velocity */
						if (gps.vel_ned_valid) {
							corr_gps[0][1] = gps.vel_n_m_s - est_buf[est_i][0][1];
							corr_gps[1][1] = gps.vel_e_m_s - est_buf[est_i][1][1];
							corr_gps[2][1] = gps.vel_d_m_s - est_buf[est_i][2][1];

						} else {
							corr_gps[0][1] = 0.0f;
							corr_gps[1][1] = 0.0f;
							corr_gps[2][1] = 0.0f;
						}

						/* save rotation matrix at this moment */
						memcpy(R_gps, R_buf[est_i], sizeof(R_gps));

						w_gps_xy = min_eph_epv / fmaxf(min_eph_epv, gps.eph);
						w_gps_z = min_eph_epv / fmaxf(min_eph_epv, gps.epv);
					}

				} else {
					/* no GPS lock */
					memset(corr_gps, 0, sizeof(corr_gps));
					ref_init_start = 0;
				}

				gps_updates++;
			}
		}

		/* check for timeout on FLOW topic */
		if ((flow_valid || lidar_valid) && t > (flow_time + flow_topic_timeout)) {
			flow_valid = false;
			warnx("FLOW timeout");
			mavlink_log_info(&mavlink_log_pub, "[inav] FLOW timeout");
		}

		/* check for timeout on GPS topic */
		if (gps_valid && (t > (gps.timestamp_position + gps_topic_timeout))) {
			gps_valid = false;
			warnx("GPS timeout");
			mavlink_log_info(&mavlink_log_pub, "[inav] GPS timeout");
		}

		/* check for timeout on vision topic */
		if (vision_valid && (t > (vision.timestamp_boot + vision_topic_timeout))) {
			vision_valid = false;
			warnx("VISION timeout");
			mavlink_log_info(&mavlink_log_pub, "[inav] VISION timeout");
		}

		/* check for timeout on mocap topic */
		if (mocap_valid && (t > (mocap.timestamp_boot + mocap_topic_timeout))) {
			mocap_valid = false;
			warnx("MOCAP timeout");
			mavlink_log_info(&mavlink_log_pub, "[inav] MOCAP timeout");
		}

		/* check for lidar measurement timeout */
		if (lidar_valid && (t > (lidar_time + lidar_timeout))) {
			lidar_valid = false;
			warnx("LIDAR timeout");
			mavlink_log_info(&mavlink_log_pub, "[inav] LIDAR timeout");
		}

		float dt = t_prev > 0 ? (t - t_prev) / 1000000.0f : 0.0f;
		dt = fmaxf(fminf(0.02, dt), 0.0002);		// constrain dt from 0.2 to 20 ms
		t_prev = t;

		/* increase EPH/EPV on each step */
		if (eph < 0.000001f) { //get case where eph is 0 -> would stay 0
			eph = 0.001;
		}

		if (eph < max_eph_epv) {
			eph *= 1.0f + dt;
		}

		if (epv < 0.000001f) { //get case where epv is 0 -> would stay 0
			epv = 0.001;
		}

		if (epv < max_eph_epv) {
			epv += 0.005f * dt;	// add 1m to EPV each 200s (baro drift)
		}

		/* use GPS if it's valid and reference position initialized */
        //bool use_gps_xy = ref_inited && gps_valid && params.w_xy_gps_p > MIN_VALID_W;
        //bool use_gps_z = ref_inited && gps_valid && params.w_z_gps_p > MIN_VALID_W;
        bool use_gps_xy = false;
        bool use_gps_z = false;

		/* use VISION if it's valid and has a valid weight parameter */
		bool use_vision_xy = vision_valid && params.w_xy_vision_p > MIN_VALID_W;
		bool use_vision_z = vision_valid && params.w_z_vision_p > MIN_VALID_W;
		/* use MOCAP if it's valid and has a valid weight parameter */
		bool use_mocap = mocap_valid && params.w_mocap_p > MIN_VALID_W && params.att_ext_hdg_m == mocap_heading; //check if external heading is mocap

		if (params.disable_mocap) { //disable mocap if fake gps is used
			use_mocap = false;
		}

		/* use flow if it's valid and (accurate or no GPS available) */
        bool use_flow = flow_valid && (flow_accurate || !use_gps_xy);

		/* use LIDAR if it's valid and lidar altitude estimation is enabled */
		use_lidar = lidar_valid && params.enable_lidar_alt_est;

		bool can_estimate_xy = (eph < max_eph_epv) || use_gps_xy || use_flow || use_vision_xy || use_mocap;

		bool dist_bottom_valid = (t < lidar_valid_time + lidar_valid_timeout);

		float w_xy_gps_p = params.w_xy_gps_p * w_gps_xy;
		float w_xy_gps_v = params.w_xy_gps_v * w_gps_xy;
		float w_z_gps_p = params.w_z_gps_p * w_gps_z;
		float w_z_gps_v = params.w_z_gps_v * w_gps_z;

		float w_xy_vision_p = params.w_xy_vision_p;
		float w_xy_vision_v = params.w_xy_vision_v;
		float w_z_vision_p = params.w_z_vision_p;

		float w_mocap_p = params.w_mocap_p;

		/* reduce GPS weight if optical flow is good */
		if (use_flow && flow_accurate) {
			w_xy_gps_p *= params.w_gps_flow;
			w_xy_gps_v *= params.w_gps_flow;
		}

		/* baro offset correction */
		if (use_gps_z) {
			float offs_corr = corr_gps[2][0] * w_z_gps_p * dt;
			baro_offset += offs_corr;
			corr_baro += offs_corr;
		}

		/* accelerometer bias correction for GPS (use buffered rotation matrix) */
		float accel_bias_corr[3] = { 0.0f, 0.0f, 0.0f };

		if (use_gps_xy) {
			accel_bias_corr[0] -= corr_gps[0][0] * w_xy_gps_p * w_xy_gps_p;
			accel_bias_corr[0] -= corr_gps[0][1] * w_xy_gps_v;
			accel_bias_corr[1] -= corr_gps[1][0] * w_xy_gps_p * w_xy_gps_p;
			accel_bias_corr[1] -= corr_gps[1][1] * w_xy_gps_v;
		}

		if (use_gps_z) {
			accel_bias_corr[2] -= corr_gps[2][0] * w_z_gps_p * w_z_gps_p;
			accel_bias_corr[2] -= corr_gps[2][1] * w_z_gps_v;
		}

		/* transform error vector from NED frame to body frame */
		for (int i = 0; i < 3; i++) {
			float c = 0.0f;

			for (int j = 0; j < 3; j++) {
				c += R_gps[j][i] * accel_bias_corr[j];
			}

			if (PX4_ISFINITE(c)) {
				acc_bias[i] += c * params.w_acc_bias * dt;
			}
		}

		/* accelerometer bias correction for VISION (use buffered rotation matrix) */
		accel_bias_corr[0] = 0.0f;
		accel_bias_corr[1] = 0.0f;
		accel_bias_corr[2] = 0.0f;

		if (use_vision_xy) {
			accel_bias_corr[0] -= corr_vision[0][0] * w_xy_vision_p * w_xy_vision_p;
			accel_bias_corr[0] -= corr_vision[0][1] * w_xy_vision_v;
			accel_bias_corr[1] -= corr_vision[1][0] * w_xy_vision_p * w_xy_vision_p;
			accel_bias_corr[1] -= corr_vision[1][1] * w_xy_vision_v;
		}

		if (use_vision_z) {
			accel_bias_corr[2] -= corr_vision[2][0] * w_z_vision_p * w_z_vision_p;
		}

		/* accelerometer bias correction for MOCAP (use buffered rotation matrix) */
		accel_bias_corr[0] = 0.0f;
		accel_bias_corr[1] = 0.0f;
		accel_bias_corr[2] = 0.0f;

		if (use_mocap) {
			accel_bias_corr[0] -= corr_mocap[0][0] * w_mocap_p * w_mocap_p;
			accel_bias_corr[1] -= corr_mocap[1][0] * w_mocap_p * w_mocap_p;
			accel_bias_corr[2] -= corr_mocap[2][0] * w_mocap_p * w_mocap_p;
		}

		/* transform error vector from NED frame to body frame */
		for (int i = 0; i < 3; i++) {
			float c = 0.0f;

			for (int j = 0; j < 3; j++) {
				c += PX4_R(att.R, j, i) * accel_bias_corr[j];
			}

			if (PX4_ISFINITE(c)) {
				acc_bias[i] += c * params.w_acc_bias * dt;
			}
		}

		/* accelerometer bias correction for flow and baro (assume that there is no delay) */
		accel_bias_corr[0] = 0.0f;
		accel_bias_corr[1] = 0.0f;
		accel_bias_corr[2] = 0.0f;

		if (use_flow) {
			accel_bias_corr[0] -= corr_flow[0] * params.w_xy_flow;
			accel_bias_corr[1] -= corr_flow[1] * params.w_xy_flow;
		}

		if (use_lidar) {
			accel_bias_corr[2] -= corr_lidar * params.w_z_lidar * params.w_z_lidar;
		} else {
			accel_bias_corr[2] -= corr_baro * params.w_z_baro * params.w_z_baro;
		}

		/* transform error vector from NED frame to body frame */
		for (int i = 0; i < 3; i++) {
			float c = 0.0f;

			for (int j = 0; j < 3; j++) {
				c += PX4_R(att.R, j, i) * accel_bias_corr[j];
			}

			if (PX4_ISFINITE(c)) {
				acc_bias[i] += c * params.w_acc_bias * dt;
			}
		}

		/* inertial filter prediction for altitude */
		inertial_filter_predict(dt, z_est, acc[2]);

		if (!(PX4_ISFINITE(z_est[0]) && PX4_ISFINITE(z_est[1]))) {
			write_debug_log("BAD ESTIMATE AFTER Z PREDICTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev,
					acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p,
					corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v);
			memcpy(z_est, z_est_prev, sizeof(z_est));
		}

		/* inertial filter correction for altitude */
		if (use_lidar) {
			inertial_filter_correct(corr_lidar, dt, z_est, 0, params.w_z_lidar);

		} else {
			inertial_filter_correct(corr_baro, dt, z_est, 0, params.w_z_baro);
		}

		if (use_gps_z) {
			epv = fminf(epv, gps.epv);

			inertial_filter_correct(corr_gps[2][0], dt, z_est, 0, w_z_gps_p);
			inertial_filter_correct(corr_gps[2][1], dt, z_est, 1, w_z_gps_v);
		}

		if (use_vision_z) {
			epv = fminf(epv, epv_vision);
			inertial_filter_correct(corr_vision[2][0], dt, z_est, 0, w_z_vision_p);
		}

		if (use_mocap) {
			epv = fminf(epv, epv_mocap);
			inertial_filter_correct(corr_mocap[2][0], dt, z_est, 0, w_mocap_p);
		}

		if (!(PX4_ISFINITE(z_est[0]) && PX4_ISFINITE(z_est[1]))) {
			write_debug_log("BAD ESTIMATE AFTER Z CORRECTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev,
					acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p,
					corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v);
			memcpy(z_est, z_est_prev, sizeof(z_est));
			memset(corr_gps, 0, sizeof(corr_gps));
			memset(corr_vision, 0, sizeof(corr_vision));
			memset(corr_mocap, 0, sizeof(corr_mocap));
			corr_baro = 0;

		} else {
			memcpy(z_est_prev, z_est, sizeof(z_est));
		}

		if (can_estimate_xy) {
			/* inertial filter prediction for position */
			inertial_filter_predict(dt, x_est, acc[0]);
			inertial_filter_predict(dt, y_est, acc[1]);

			if (!(PX4_ISFINITE(x_est[0]) && PX4_ISFINITE(x_est[1]) && PX4_ISFINITE(y_est[0]) && PX4_ISFINITE(y_est[1]))) {
				write_debug_log("BAD ESTIMATE AFTER PREDICTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev,
						acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p,
						corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v);
				memcpy(x_est, x_est_prev, sizeof(x_est));
				memcpy(y_est, y_est_prev, sizeof(y_est));
			}

			/* inertial filter correction for position */
			if (use_flow) {
				eph = fminf(eph, eph_flow);

				inertial_filter_correct(corr_flow[0], dt, x_est, 1, params.w_xy_flow * w_flow);
				inertial_filter_correct(corr_flow[1], dt, y_est, 1, params.w_xy_flow * w_flow);
			}

			if (use_gps_xy) {
				eph = fminf(eph, gps.eph);

				inertial_filter_correct(corr_gps[0][0], dt, x_est, 0, w_xy_gps_p);
				inertial_filter_correct(corr_gps[1][0], dt, y_est, 0, w_xy_gps_p);

				if (gps.vel_ned_valid && t < gps.timestamp_velocity + gps_topic_timeout) {
					inertial_filter_correct(corr_gps[0][1], dt, x_est, 1, w_xy_gps_v);
					inertial_filter_correct(corr_gps[1][1], dt, y_est, 1, w_xy_gps_v);
				}
			}

			if (use_vision_xy) {
				eph = fminf(eph, eph_vision);

				inertial_filter_correct(corr_vision[0][0], dt, x_est, 0, w_xy_vision_p);
				inertial_filter_correct(corr_vision[1][0], dt, y_est, 0, w_xy_vision_p);

				if (w_xy_vision_v > MIN_VALID_W) {
					inertial_filter_correct(corr_vision[0][1], dt, x_est, 1, w_xy_vision_v);
					inertial_filter_correct(corr_vision[1][1], dt, y_est, 1, w_xy_vision_v);
				}
			}

			if (use_mocap) {
				eph = fminf(eph, eph_mocap);

				inertial_filter_correct(corr_mocap[0][0], dt, x_est, 0, w_mocap_p);
				inertial_filter_correct(corr_mocap[1][0], dt, y_est, 0, w_mocap_p);
			}

			if (!(PX4_ISFINITE(x_est[0]) && PX4_ISFINITE(x_est[1]) && PX4_ISFINITE(y_est[0]) && PX4_ISFINITE(y_est[1]))) {
				write_debug_log("BAD ESTIMATE AFTER CORRECTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev,
						acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p,
						corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v);
				memcpy(x_est, x_est_prev, sizeof(x_est));
				memcpy(y_est, y_est_prev, sizeof(y_est));
				memset(corr_gps, 0, sizeof(corr_gps));
				memset(corr_vision, 0, sizeof(corr_vision));
				memset(corr_mocap, 0, sizeof(corr_mocap));
				memset(corr_flow, 0, sizeof(corr_flow));

			} else {
				memcpy(x_est_prev, x_est, sizeof(x_est));
				memcpy(y_est_prev, y_est, sizeof(y_est));
			}

		} else {
			/* gradually reset xy velocity estimates */
			inertial_filter_correct(-x_est[1], dt, x_est, 1, params.w_xy_res_v);
			inertial_filter_correct(-y_est[1], dt, y_est, 1, params.w_xy_res_v);
		}

		/* run terrain estimator */
		terrain_estimator->predict(dt, &att, &sensor, &lidar);
		terrain_estimator->measurement_update(hrt_absolute_time(), &gps, &lidar, &att);

		if (inav_verbose_mode) {
			/* print updates rate */
			if (t > updates_counter_start + updates_counter_len) {
				float updates_dt = (t - updates_counter_start) * 0.000001f;
				warnx(
					"updates rate: accelerometer = %.1f/s, baro = %.1f/s, gps = %.1f/s, attitude = %.1f/s, flow = %.1f/s, vision = %.1f/s, mocap = %.1f/s",
					(double)(accel_updates / updates_dt),
					(double)(baro_updates / updates_dt),
					(double)(gps_updates / updates_dt),
					(double)(attitude_updates / updates_dt),
					(double)(flow_updates / updates_dt),
					(double)(vision_updates / updates_dt),
					(double)(mocap_updates / updates_dt));
				updates_counter_start = t;
				accel_updates = 0;
				baro_updates = 0;
				gps_updates = 0;
				attitude_updates = 0;
				flow_updates = 0;
				vision_updates = 0;
				mocap_updates = 0;
			}
		}

		if (t > pub_last + PUB_INTERVAL) {
			pub_last = t;

			/* push current estimate to buffer */
			est_buf[buf_ptr][0][0] = x_est[0];
			est_buf[buf_ptr][0][1] = x_est[1];
			est_buf[buf_ptr][1][0] = y_est[0];
			est_buf[buf_ptr][1][1] = y_est[1];
			est_buf[buf_ptr][2][0] = z_est[0];
			est_buf[buf_ptr][2][1] = z_est[1];

			/* push current rotation matrix to buffer */
			memcpy(R_buf[buf_ptr], att.R, sizeof(att.R));

			buf_ptr++;

			if (buf_ptr >= EST_BUF_SIZE) {
				buf_ptr = 0;
			}


			/* publish local position */
			local_pos.xy_valid = can_estimate_xy;
			local_pos.v_xy_valid = can_estimate_xy;
            //local_pos.xy_global = local_pos.xy_valid && use_gps_xy;
            //local_pos.z_global = local_pos.z_valid && use_gps_z;
            local_pos.xy_global = true;
            local_pos.z_global = true;
			local_pos.x = x_est[0];
			local_pos.vx = x_est[1];
			local_pos.y = y_est[0];
			local_pos.vy = y_est[1];
			local_pos.z = z_est[0];
			local_pos.vz = z_est[1];
			local_pos.yaw = att.yaw;
			local_pos.dist_bottom_valid = dist_bottom_valid;
			local_pos.eph = eph;
			local_pos.epv = epv;

			if (local_pos.dist_bottom_valid) {
				local_pos.dist_bottom = dist_ground;
				local_pos.dist_bottom_rate = - z_est[1];
			}

			local_pos.timestamp = t;

			orb_publish(ORB_ID(vehicle_local_position), vehicle_local_position_pub, &local_pos);

			if (local_pos.xy_global && local_pos.z_global) {
				/* publish global position */
				global_pos.timestamp = t;
				global_pos.time_utc_usec = gps.time_utc_usec;

				double est_lat, est_lon;
				map_projection_reproject(&ref, local_pos.x, local_pos.y, &est_lat, &est_lon);

				global_pos.lat = est_lat;
				global_pos.lon = est_lon;
				global_pos.alt = local_pos.ref_alt - local_pos.z;

				global_pos.vel_n = local_pos.vx;
				global_pos.vel_e = local_pos.vy;
				global_pos.vel_d = local_pos.vz;

				global_pos.yaw = local_pos.yaw;

				global_pos.eph = eph;
				global_pos.epv = epv;

				if (terrain_estimator->is_valid()) {
					global_pos.terrain_alt = global_pos.alt - terrain_estimator->get_distance_to_ground();
					global_pos.terrain_alt_valid = true;

				} else {
					global_pos.terrain_alt_valid = false;
				}

				global_pos.pressure_alt = sensor.baro_alt_meter[0];

				if (vehicle_global_position_pub == NULL) {
					vehicle_global_position_pub = orb_advertise(ORB_ID(vehicle_global_position), &global_pos);

				} else {
					orb_publish(ORB_ID(vehicle_global_position), vehicle_global_position_pub, &global_pos);
				}
			}
		}
	}

	warnx("stopped");
	mavlink_log_info(&mavlink_log_pub, "[inav] stopped");
	thread_running = false;
	return 0;
}
void *multirotor_position_control_thread_main()
{
	/* welcome user */
	fprintf (stdout, "Multirotor position controller started\n");
	fflush(stdout);

	int i;
	bool_t updated;
	bool_t reset_mission_sp = 0 /* false */;
	bool_t global_pos_sp_valid = 0 /* false */;
	bool_t reset_man_sp_z = 1 /* true */;
	bool_t reset_man_sp_xy = 1 /* true */;
	bool_t reset_int_z = 1 /* true */;
	bool_t reset_int_z_manual = 0 /* false */;
	bool_t reset_int_xy = 1 /* true */;
	bool_t was_armed = 0 /* false */;
	bool_t reset_auto_sp_xy = 1 /* true */;
	bool_t reset_auto_sp_z = 1 /* true */;
	bool_t reset_takeoff_sp = 1 /* true */;

	absolute_time t_prev = 0;
	const float alt_ctl_dz = 0.2f;
	const float pos_ctl_dz = 0.05f;

	float i_limit;	/* use integral_limit_out = tilt_max / 2 */
	float ref_alt = 0.0f;
	absolute_time ref_alt_t = 0;
	absolute_time local_ref_timestamp = 0;

	PID_t xy_pos_pids[2];
	PID_t xy_vel_pids[2];
	PID_t z_pos_pid;
	thrust_pid_t z_vel_pid;

	float thrust_sp[3] = { 0.0f, 0.0f, 0.0f };


	/* structures */
	struct parameter_update_s ps;
	struct vehicle_control_flags_s control_flags;
	memset(&control_flags, 0, sizeof(control_flags));
	struct vehicle_attitude_s att;
	memset(&att, 0, sizeof(att));
	struct vehicle_attitude_setpoint_s att_sp;
	memset(&att_sp, 0, sizeof(att_sp));
	struct manual_control_setpoint_s manual;
	memset(&manual, 0, sizeof(manual));
	struct vehicle_local_position_s local_pos;
	memset(&local_pos, 0, sizeof(local_pos));
	struct vehicle_local_position_setpoint_s local_pos_sp;
	memset(&local_pos_sp, 0, sizeof(local_pos_sp));
	struct vehicle_global_position_setpoint_s global_pos_sp;
	memset(&global_pos_sp, 0, sizeof(global_pos_sp));
	struct vehicle_global_velocity_setpoint_s global_vel_sp;
	memset(&global_vel_sp, 0, sizeof(global_vel_sp));


	/* subscribe to attitude, motor setpoints and system state */
	orb_subscr_t param_sub = orb_subscribe(ORB_ID(parameter_update));
	if (param_sub < 0)
	{
		fprintf (stderr, "Position controller thread failed to subscribe to parameter_update topic\n");
		exit(-1);
	}

	orb_subscr_t control_flags_sub = orb_subscribe(ORB_ID(vehicle_control_flags));
	if (control_flags_sub < 0)
	{
		fprintf (stderr, "Position controller thread failed to subscribe to vehicle_control_flags topic\n");
		exit(-1);
	}


	orb_subscr_t att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	if (att_sub < 0)
	{
		fprintf (stderr, "Position controller thread failed to subscribe to vehicle_attitude topic\n");
		exit(-1);
	}


	orb_subscr_t att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	if (att_sp_sub < 0)
	{
		fprintf (stderr, "Position controller thread failed to subscribe to vehicle_attitude_setpoint topic\n");
		exit(-1);
	}


	orb_subscr_t manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
	if (manual_sub < 0)
	{
		fprintf (stderr, "Position controller thread failed to subscribe to manual_control_setpoint topic\n");
		exit(-1);
	}


	orb_subscr_t local_pos_sp_sub = orb_subscribe(ORB_ID(vehicle_local_position_setpoint));
	if (local_pos_sp_sub < 0)
	{
		fprintf (stderr, "Position controller thread failed to subscribe to vehicle_local_position_setpoint topic\n");
		exit(-1);
	}


	orb_subscr_t local_pos_sub = orb_subscribe(ORB_ID(vehicle_local_position));
	if (local_pos_sub < 0)
	{
		fprintf (stderr, "Position controller thread failed to subscribe to vehicle_local_position topic\n");
		exit(-1);
	}


	orb_subscr_t global_pos_sp_sub = orb_subscribe(ORB_ID(vehicle_global_position_setpoint));
	if (global_pos_sp_sub < 0)
	{
		fprintf (stderr, "Position controller thread failed to subscribe to vehicle_global_position_setpoint topic\n");
		exit(-1);
	}

	/* publish setpoint */
	orb_advert_t local_pos_sp_pub = orb_advertise(ORB_ID(vehicle_local_position_setpoint));
	if (local_pos_sp_pub == -1)
	{
		fprintf (stderr, "Comunicator thread failed to advertise the vehicle_local_position_setpoint topic\n");
		exit (-1);
	}
	orb_publish(ORB_ID(vehicle_local_position_setpoint), local_pos_sp_pub, &local_pos_sp);

	orb_advert_t global_vel_sp_pub = orb_advertise(ORB_ID(vehicle_global_velocity_setpoint));
	if (global_vel_sp_pub == -1)
	{
		fprintf (stderr, "Comunicator thread failed to advertise the vehicle_global_velocity_setpoint topic\n");
		exit (-1);
	}
	orb_publish(ORB_ID(vehicle_global_velocity_setpoint), global_vel_sp_pub, &global_vel_sp);

	orb_advert_t att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint));
	if (att_sp_pub == -1)
	{
		fprintf (stderr, "Comunicator thread failed to advertise the vehicle_attitude_setpoint topic\n");
		exit (-1);
	}
	orb_publish(ORB_ID(vehicle_attitude_setpoint), att_sp_pub, &att_sp);



	/* abort on a nonzero return value from the parameter init */
	if (multirotor_position_control_params_init() != 0) {
		/* parameter setup went wrong, abort */
		fprintf (stderr, "Multirotor position controller aborting on startup due to an error\n");
		exit(-1);
	}

	for (i = 0; i < 2; i++) {
		pid_init(&(xy_pos_pids[i]), multirotor_position_control_parameters.xy_p, 0.0f,
				multirotor_position_control_parameters.xy_d, 1.0f, 0.0f, PID_MODE_DERIVATIV_SET, 0.02f);
		pid_init(&(xy_vel_pids[i]), multirotor_position_control_parameters.xy_vel_p, multirotor_position_control_parameters.xy_vel_i,
				multirotor_position_control_parameters.xy_vel_d, 1.0f, multirotor_position_control_parameters.tilt_max, PID_MODE_DERIVATIV_CALC_NO_SP, 0.02f);
	}

	pid_init(&z_pos_pid, multirotor_position_control_parameters.z_p, 0.0f,
			multirotor_position_control_parameters.z_d, 1.0f, multirotor_position_control_parameters.z_vel_max, PID_MODE_DERIVATIV_SET, 0.02f);
	thrust_pid_init(&z_vel_pid, multirotor_position_control_parameters.z_vel_p, multirotor_position_control_parameters.z_vel_i,
			multirotor_position_control_parameters.z_vel_d, -multirotor_position_control_parameters.thr_max, -multirotor_position_control_parameters.thr_min, PID_MODE_DERIVATIV_CALC_NO_SP, 0.02f);


	while (!_shutdown_all_systems) {

		updated = orb_check (ORB_ID(parameter_update), param_sub);
		if (updated) {
			/* clear updated flag */
			orb_copy(ORB_ID(parameter_update), param_sub, &ps);

			/* update multirotor_position_control_parameters */
			multirotor_position_control_params_update();

			for (i = 0; i < 2; i++) {
				pid_set_parameters(&(xy_pos_pids[i]), multirotor_position_control_parameters.xy_p,
						0.0f, multirotor_position_control_parameters.xy_d, 1.0f, 0.0f);

				if (multirotor_position_control_parameters.xy_vel_i > 0.0f) {
					i_limit = multirotor_position_control_parameters.tilt_max / multirotor_position_control_parameters.xy_vel_i / 2.0f;

				} else {
					i_limit = 0.0f;	// not used
				}

				pid_set_parameters(&(xy_vel_pids[i]), multirotor_position_control_parameters.xy_vel_p,
						multirotor_position_control_parameters.xy_vel_i, multirotor_position_control_parameters.xy_vel_d, i_limit, multirotor_position_control_parameters.tilt_max);
			}

			pid_set_parameters(&z_pos_pid, multirotor_position_control_parameters.z_p, 0.0f,
					multirotor_position_control_parameters.z_d, 1.0f, multirotor_position_control_parameters.z_vel_max);
			thrust_pid_set_parameters(&z_vel_pid, multirotor_position_control_parameters.z_vel_p, multirotor_position_control_parameters.z_vel_i,
					multirotor_position_control_parameters.z_vel_d, -multirotor_position_control_parameters.thr_max, -multirotor_position_control_parameters.thr_min);
		}

		updated = orb_check (ORB_ID(vehicle_control_flags), control_flags_sub);
		if (updated) {
			orb_copy(ORB_ID(vehicle_control_flags), control_flags_sub, &control_flags);
		}

		updated = orb_check (ORB_ID(vehicle_global_position_setpoint), global_pos_sp_sub);
		if (updated) {
			orb_copy(ORB_ID(vehicle_global_position_setpoint), global_pos_sp_sub, &global_pos_sp);
			global_pos_sp_valid = 1 /* true */;
			reset_mission_sp = 1 /* true */;
		}

		absolute_time t = get_absolute_time();
		float dt;

		if (t_prev != 0) {
			dt = (t - t_prev) * 0.000001f;

		} else {
			dt = 0.0f;
		}

		if (control_flags.flag_armed && !was_armed) {
			/* reset setpoints and integrals on arming */
			reset_man_sp_z = 1 /* true */;
			reset_man_sp_xy = 1 /* true */;
			reset_auto_sp_z = 1 /* true */;
			reset_auto_sp_xy = 1 /* true */;
			reset_takeoff_sp = 1 /* true */;
			reset_int_z = 1 /* true */;
			reset_int_xy = 1 /* true */;
		}

		was_armed = control_flags.flag_armed;

		t_prev = t;

		if (control_flags.flag_control_altitude_enabled || control_flags.flag_control_velocity_enabled || control_flags.flag_control_position_enabled) {
			orb_copy(ORB_ID(manual_control_setpoint), manual_sub, &manual);
			orb_copy(ORB_ID(vehicle_attitude), att_sub, &att);
			orb_copy(ORB_ID(vehicle_attitude_setpoint), att_sp_sub, &att_sp);
			orb_copy(ORB_ID(vehicle_local_position), local_pos_sub, &local_pos);

			float z_sp_offs_max = multirotor_position_control_parameters.z_vel_max / multirotor_position_control_parameters.z_p * 2.0f;
			float xy_sp_offs_max = multirotor_position_control_parameters.xy_vel_max / multirotor_position_control_parameters.xy_p * 2.0f;
			float sp_move_rate[3] = { 0.0f, 0.0f, 0.0f };

			if (control_flags.flag_control_manual_enabled) {
				/* manual control */
				/* check for reference point updates and correct setpoint */
				if (local_pos.ref_timestamp != ref_alt_t) {
					if (ref_alt_t != 0) {
						/* home alt changed, don't follow large ground level changes in manual flight */
						local_pos_sp.z += local_pos.ref_alt - ref_alt;
					}

					ref_alt_t = local_pos.ref_timestamp;
					ref_alt = local_pos.ref_alt;
					// TODO also correct XY setpoint
				}

				/* reset setpoints to current position if needed */
				if (control_flags.flag_control_altitude_enabled) {
					if (reset_man_sp_z) {
						reset_man_sp_z = 0 /* false */;
						local_pos_sp.z = local_pos.z;

						//mavlink_log_info(mavlink_fd, "[mpc] reset alt sp: %.2f", (double) - local_pos_sp.z);
					}

					/* move altitude setpoint with throttle stick */
					float z_sp_ctl = scale_control(manual.thrust - 0.5f, 0.5f, alt_ctl_dz);

					if (z_sp_ctl != 0.0f) {
						sp_move_rate[2] = -z_sp_ctl * multirotor_position_control_parameters.z_vel_max;
						local_pos_sp.z += sp_move_rate[2] * dt;

						if (local_pos_sp.z > local_pos.z + z_sp_offs_max) {
							local_pos_sp.z = local_pos.z + z_sp_offs_max;

						} else if (local_pos_sp.z < local_pos.z - z_sp_offs_max) {
							local_pos_sp.z = local_pos.z - z_sp_offs_max;
						}
					}
				}

				if (control_flags.flag_control_position_enabled) {
					if (reset_man_sp_xy) {
						reset_man_sp_xy = 0 /* false */;
						local_pos_sp.x = local_pos.x;
						local_pos_sp.y = local_pos.y;
						pid_reset_integral(&xy_vel_pids[0]);
						pid_reset_integral(&xy_vel_pids[1]);

						//mavlink_log_info(mavlink_fd, "[mpc] reset pos sp: %.2f, %.2f", (double)local_pos_sp.x, (double)local_pos_sp.y);
					}

					/* move position setpoint with roll/pitch stick */
					float pos_pitch_sp_ctl = scale_control(-manual.pitch / multirotor_position_control_parameters.rc_scale_pitch, 1.0f, pos_ctl_dz);
					float pos_roll_sp_ctl = scale_control(manual.roll / multirotor_position_control_parameters.rc_scale_roll, 1.0f, pos_ctl_dz);

					if (pos_pitch_sp_ctl != 0.0f || pos_roll_sp_ctl != 0.0f) {
						/* calculate direction and increment of control in NED frame */
						float xy_sp_ctl_dir = att.yaw + atan2f(pos_roll_sp_ctl, pos_pitch_sp_ctl);
						float xy_sp_ctl_speed = norm(pos_pitch_sp_ctl, pos_roll_sp_ctl) * multirotor_position_control_parameters.xy_vel_max;
						sp_move_rate[0] = cosf(xy_sp_ctl_dir) * xy_sp_ctl_speed;
						sp_move_rate[1] = sinf(xy_sp_ctl_dir) * xy_sp_ctl_speed;
						local_pos_sp.x += sp_move_rate[0] * dt;
						local_pos_sp.y += sp_move_rate[1] * dt;
						/* limit maximum setpoint from position offset and preserve direction
						 * fail safe, should not happen in normal operation */
						float pos_vec_x = local_pos_sp.x - local_pos.x;
						float pos_vec_y = local_pos_sp.y - local_pos.y;
						float pos_vec_norm = norm(pos_vec_x, pos_vec_y) / xy_sp_offs_max;

						if (pos_vec_norm > 1.0f) {
							local_pos_sp.x = local_pos.x + pos_vec_x / pos_vec_norm;
							local_pos_sp.y = local_pos.y + pos_vec_y / pos_vec_norm;
						}
					}
				}

				/* copy yaw setpoint to vehicle_local_position_setpoint topic */
				local_pos_sp.yaw = att_sp.yaw_body;

				/* local position setpoint is valid and can be used for auto loiter after position controlled mode */
				reset_auto_sp_xy = !control_flags.flag_control_position_enabled;
				reset_auto_sp_z = !control_flags.flag_control_altitude_enabled;
				reset_takeoff_sp = 1 /* true */;

				/* force reprojection of global setpoint after manual mode */
				reset_mission_sp = 1 /* true */;

			} else if (control_flags.flag_control_auto_enabled) {
				/* AUTO mode, use global setpoint */
				if (control_flags.auto_state == navigation_state_auto_ready) {
					reset_auto_sp_xy = 1 /* true */;
					reset_auto_sp_z = 1 /* true */;

				} else if (control_flags.auto_state == navigation_state_auto_takeoff) {
					if (reset_takeoff_sp) {
						reset_takeoff_sp = 0 /* false */;
						local_pos_sp.x = local_pos.x;
						local_pos_sp.y = local_pos.y;
						local_pos_sp.z = - multirotor_position_control_parameters.takeoff_alt - multirotor_position_control_parameters.takeoff_gap;
						att_sp.yaw_body = att.yaw;

						//mavlink_log_info(mavlink_fd, "[mpc] takeoff sp: %.2f %.2f %.2f", (double)local_pos_sp.x, (double)local_pos_sp.y, (double) - local_pos_sp.z);
					}

					reset_auto_sp_xy = 0 /* false */;
					reset_auto_sp_z = 1 /* true */;

				} else if (control_flags.auto_state == navigation_state_auto_rtl) {
					// TODO
					reset_auto_sp_xy = 1 /* true */;
					reset_auto_sp_z = 1 /* true */;

				} else if (control_flags.auto_state == navigation_state_auto_mission) {
					/* init local projection using local position ref */
					if (local_pos.ref_timestamp != local_ref_timestamp) {
						reset_mission_sp = 1 /* true */;
						local_ref_timestamp = local_pos.ref_timestamp;
						double lat_home = local_pos.ref_lat * 1e-7;
						double lon_home = local_pos.ref_lon * 1e-7;
						map_projection_init(lat_home, lon_home);

						//mavlink_log_info(mavlink_fd, "[mpc] local pos ref: %.7f, %.7f", (double)lat_home, (double)lon_home);
					}

					if (reset_mission_sp) {
						reset_mission_sp = 0 /* false */;
						/* update global setpoint projection */

						if (global_pos_sp_valid) {
							/* global position setpoint valid, use it */
							double sp_lat = global_pos_sp.latitude * 1e-7;
							double sp_lon = global_pos_sp.longitude * 1e-7;
							/* project global setpoint to local setpoint */
							map_projection_project(sp_lat, sp_lon, &(local_pos_sp.x), &(local_pos_sp.y));

							if (global_pos_sp.altitude_is_relative) {
								local_pos_sp.z = -global_pos_sp.altitude;

							} else {
								local_pos_sp.z = local_pos.ref_alt - global_pos_sp.altitude;
							}
							att_sp.yaw_body = global_pos_sp.yaw;

							//mavlink_log_info(mavlink_fd, "[mpc] new sp: %.7f, %.7f (%.2f, %.2f)", (double)sp_lat, sp_lon, (double)local_pos_sp.x, (double)local_pos_sp.y);

						} else {
							if (reset_auto_sp_xy) {
								reset_auto_sp_xy = 0 /* false */;
								/* local position setpoint is invalid,
								 * use current position as setpoint for loiter */
								local_pos_sp.x = local_pos.x;
								local_pos_sp.y = local_pos.y;
								local_pos_sp.yaw = att.yaw;
							}

							if (reset_auto_sp_z) {
								reset_auto_sp_z = 0 /* false */;
								local_pos_sp.z = local_pos.z;
							}

							//mavlink_log_info(mavlink_fd, "[mpc] no global pos sp, loiter: %.2f, %.2f", (double)local_pos_sp.x, (double)local_pos_sp.y);
						}
					}

					reset_auto_sp_xy = 1 /* true */;
					reset_auto_sp_z = 1 /* true */;
				}

				if (control_flags.auto_state != navigation_state_auto_takeoff) {
					reset_takeoff_sp = 1 /* true */;
				}

				if (control_flags.auto_state != navigation_state_auto_mission) {
					reset_mission_sp = 1 /* true */;
				}

				/* copy yaw setpoint to vehicle_local_position_setpoint topic */
				local_pos_sp.yaw = att_sp.yaw_body;

				/* reset setpoints after AUTO mode */
				reset_man_sp_xy = 1 /* true */;
				reset_man_sp_z = 1 /* true */;

			} else {
				/* no control (failsafe), loiter or stay on ground */
				if (local_pos.landed) {
					/* landed: move setpoint down */
					/* in air: hold altitude */
					if (local_pos_sp.z < 5.0f) {
						/* set altitude setpoint to 5m under ground,
						 * don't set it too deep to avoid unexpected landing in case of false "landed" signal */
						local_pos_sp.z = 5.0f;

						//mavlink_log_info(mavlink_fd, "[mpc] landed, set alt: %.2f", (double) - local_pos_sp.z);
					}

					reset_man_sp_z = 1 /* true */;

				} else {
					/* in air: hold altitude */
					if (reset_man_sp_z) {
						reset_man_sp_z = 0 /* false */;
						local_pos_sp.z = local_pos.z;

						//mavlink_log_info(mavlink_fd, "[mpc] set loiter alt: %.2f", (double) - local_pos_sp.z);
					}

					reset_auto_sp_z = 0 /* false */;
				}

				if (control_flags.flag_control_position_enabled) {
					if (reset_man_sp_xy) {
						reset_man_sp_xy = 0 /* false */;
						local_pos_sp.x = local_pos.x;
						local_pos_sp.y = local_pos.y;
						local_pos_sp.yaw = att.yaw;
						att_sp.yaw_body = att.yaw;

						//mavlink_log_info(mavlink_fd, "[mpc] set loiter pos: %.2f %.2f", (double)local_pos_sp.x, (double)local_pos_sp.y);
					}

					reset_auto_sp_xy = 0 /* false */;
				}
			}

			/* publish local position setpoint */
			orb_publish(ORB_ID(vehicle_local_position_setpoint), local_pos_sp_pub, &local_pos_sp);

			/* run position & altitude controllers, calculate velocity setpoint */
			if (control_flags.flag_control_altitude_enabled) {
				global_vel_sp.vz = pid_calculate(&z_pos_pid, local_pos_sp.z, local_pos.z, local_pos.vz - sp_move_rate[2], dt) + sp_move_rate[2];

			} else {
				reset_man_sp_z = 1 /* true */;
				global_vel_sp.vz = 0.0f;
			}

			if (control_flags.flag_control_position_enabled) {
				/* calculate velocity set point in NED frame */
				global_vel_sp.vx = pid_calculate(&xy_pos_pids[0], local_pos_sp.x, local_pos.x, local_pos.vx - sp_move_rate[0], dt) + sp_move_rate[0];
				global_vel_sp.vy = pid_calculate(&xy_pos_pids[1], local_pos_sp.y, local_pos.y, local_pos.vy - sp_move_rate[1], dt) + sp_move_rate[1];

				/* limit horizontal speed */
				float xy_vel_sp_norm = norm(global_vel_sp.vx, global_vel_sp.vy) / multirotor_position_control_parameters.xy_vel_max;

				if (xy_vel_sp_norm > 1.0f) {
					global_vel_sp.vx /= xy_vel_sp_norm;
					global_vel_sp.vy /= xy_vel_sp_norm;
				}

			} else {
				reset_man_sp_xy = 1 /* true */;
				global_vel_sp.vx = 0.0f;
				global_vel_sp.vy = 0.0f;
			}

			//fprintf (stderr, "global_vel_sp.vx:%.3f\tglobal_vel_sp.vy:%.3f\tglobal_vel_sp.vz:%.3f\n", global_vel_sp.vx, global_vel_sp.vy, global_vel_sp.vz);

			/* publish new velocity setpoint */
			orb_publish(ORB_ID(vehicle_global_velocity_setpoint), global_vel_sp_pub, &global_vel_sp);
			// TODO subscribe to velocity setpoint if altitude/position control disabled

			if (control_flags.flag_control_climb_rate_enabled || control_flags.flag_control_velocity_enabled) {
				/* run velocity controllers, calculate thrust vector with attitude-thrust compensation */

				if (control_flags.flag_control_climb_rate_enabled) {
					if (reset_int_z) {
						reset_int_z = 0 /* false */;
						float i = multirotor_position_control_parameters.thr_min;

						if (reset_int_z_manual) {
							i = manual.thrust;

							if (i < multirotor_position_control_parameters.thr_min) {
								i = multirotor_position_control_parameters.thr_min;

							} else if (i > multirotor_position_control_parameters.thr_max) {
								i = multirotor_position_control_parameters.thr_max;
							}
						}

						thrust_pid_set_integral(&z_vel_pid, -i);

						//mavlink_log_info(mavlink_fd, "[mpc] reset hovering thrust: %.2f", (double)i);
					}

					thrust_sp[2] = thrust_pid_calculate(&z_vel_pid, global_vel_sp.vz, local_pos.vz, dt, att.R[2][2]);
					att_sp.thrust = -thrust_sp[2];

				} else {
					/* reset thrust integral when altitude control enabled */
					reset_int_z = 1 /* true */;
				}

				if (control_flags.flag_control_velocity_enabled) {
					/* calculate thrust set point in NED frame */
					if (reset_int_xy) {
						reset_int_xy = 0 /* false */;
						pid_reset_integral(&xy_vel_pids[0]);
						pid_reset_integral(&xy_vel_pids[1]);

						//mavlink_log_info(mavlink_fd, "[mpc] reset pos integral");
					}

					thrust_sp[0] = pid_calculate(&xy_vel_pids[0], global_vel_sp.vx, local_pos.vx, 0.0f, dt);
					thrust_sp[1] = pid_calculate(&xy_vel_pids[1], global_vel_sp.vy, local_pos.vy, 0.0f, dt);

					/* thrust_vector now contains desired acceleration (but not in m/s^2) in NED frame */
					/* limit horizontal part of thrust */
					float thrust_xy_dir = atan2f(thrust_sp[1], thrust_sp[0]);
					/* assuming that vertical component of thrust is g,
					 * horizontal component = g * tan(alpha) */
					float tilt = atanf(norm(thrust_sp[0], thrust_sp[1]));

					if (tilt > multirotor_position_control_parameters.tilt_max) {
						tilt = multirotor_position_control_parameters.tilt_max;
					}

					/* convert direction to body frame */
					thrust_xy_dir -= att.yaw;
					/* calculate roll and pitch */
					att_sp.roll_body = sinf(thrust_xy_dir) * tilt;
					att_sp.pitch_body = -cosf(thrust_xy_dir) * tilt / cosf(att_sp.roll_body);

				} else {
					reset_int_xy = 1 /* true */;
				}

				att_sp.timestamp = get_absolute_time();
				//fprintf (stderr, "att_sp.roll:%.3f\tatt_sp.pitch:%.3f\tatt_sp.yaw:%.3f\tatt_sp.thrust:%.3f\n", att_sp.roll_body, att_sp.pitch_body, att_sp.yaw_body, att_sp.thrust);

				/* publish new attitude setpoint */
				orb_publish(ORB_ID(vehicle_attitude_setpoint), att_sp_pub, &att_sp);
			}

		} else {
			/* position controller disabled, reset setpoints */
			reset_man_sp_z = 1 /* true */;
			reset_man_sp_xy = 1 /* true */;
			reset_int_z = 1 /* true */;
			reset_int_xy = 1 /* true */;
			reset_mission_sp = 1 /* true */;
			reset_auto_sp_xy = 1 /* true */;
			reset_auto_sp_z = 1 /* true */;
		}

		/* reset altitude controller integral (hovering throttle) to manual throttle after manual throttle control */
		reset_int_z_manual = control_flags.flag_armed && control_flags.flag_control_manual_enabled && !control_flags.flag_control_climb_rate_enabled;

		/* run at approximately 50 Hz */
		usleep(20000);
	}


	/*
	 * do unsubscriptions
	 */
	orb_unsubscribe(ORB_ID(parameter_update), param_sub, pthread_self());
	orb_unsubscribe(ORB_ID(vehicle_control_flags), control_flags_sub, pthread_self());
	orb_unsubscribe(ORB_ID(vehicle_attitude), att_sub, pthread_self());
	orb_unsubscribe(ORB_ID(vehicle_attitude_setpoint), att_sp_sub, pthread_self());
	orb_unsubscribe(ORB_ID(manual_control_setpoint), manual_sub, pthread_self());
	orb_unsubscribe(ORB_ID(vehicle_local_position_setpoint), local_pos_sp_sub, pthread_self());
	orb_unsubscribe(ORB_ID(vehicle_local_position), local_pos_sub, pthread_self());
	orb_unsubscribe(ORB_ID(vehicle_global_position_setpoint), global_pos_sp_sub, pthread_self());

	/*
	 * do unadvertises
	 */
	orb_unadvertise(ORB_ID(vehicle_local_position_setpoint), local_pos_sp_pub, pthread_self());
	orb_unadvertise(ORB_ID(vehicle_global_velocity_setpoint), global_vel_sp_pub, pthread_self());
	orb_unadvertise(ORB_ID(vehicle_attitude_setpoint), att_sp_pub, pthread_self());

	return 0;
}
Exemplo n.º 14
0
static int multirotor_pos_control_thread_main(int argc, char *argv[])
{
	/* welcome user */
	warnx("started");
	static int mavlink_fd;
	mavlink_fd = open(MAVLINK_LOG_DEVICE, 0);
	mavlink_log_info(mavlink_fd, "[mpc] started");

	/* structures */
	struct vehicle_control_mode_s control_mode;
	memset(&control_mode, 0, sizeof(control_mode));
	struct vehicle_attitude_s att;
	memset(&att, 0, sizeof(att));
	struct vehicle_attitude_setpoint_s att_sp;
	memset(&att_sp, 0, sizeof(att_sp));
	struct manual_control_setpoint_s manual;
	memset(&manual, 0, sizeof(manual));
	struct vehicle_local_position_s local_pos;
	memset(&local_pos, 0, sizeof(local_pos));
	struct vehicle_local_position_setpoint_s local_pos_sp;
	memset(&local_pos_sp, 0, sizeof(local_pos_sp));
	struct vehicle_global_position_setpoint_s global_pos_sp;
	memset(&global_pos_sp, 0, sizeof(global_pos_sp));
	struct vehicle_global_velocity_setpoint_s global_vel_sp;
	memset(&global_vel_sp, 0, sizeof(global_vel_sp));

	/* subscribe to attitude, motor setpoints and system state */
	int param_sub = orb_subscribe(ORB_ID(parameter_update));
	int control_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode));
	int att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	int att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	int manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
	int local_pos_sp_sub = orb_subscribe(ORB_ID(vehicle_local_position_setpoint));
	int local_pos_sub = orb_subscribe(ORB_ID(vehicle_local_position));
	int global_pos_sp_sub = orb_subscribe(ORB_ID(vehicle_global_position_setpoint));

	/* publish setpoint */
	orb_advert_t local_pos_sp_pub = orb_advertise(ORB_ID(vehicle_local_position_setpoint), &local_pos_sp);
	orb_advert_t global_vel_sp_pub = orb_advertise(ORB_ID(vehicle_global_velocity_setpoint), &global_vel_sp);
	orb_advert_t att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &att_sp);

	bool reset_mission_sp = false;
	bool global_pos_sp_valid = false;
	bool reset_man_sp_z = true;
	bool reset_man_sp_xy = true;
	bool reset_int_z = true;
	bool reset_int_z_manual = false;
	bool reset_int_xy = true;
	bool was_armed = false;
	bool reset_auto_sp_xy = true;
	bool reset_auto_sp_z = true;
	bool reset_takeoff_sp = true;

	hrt_abstime t_prev = 0;
	const float alt_ctl_dz = 0.2f;
	const float pos_ctl_dz = 0.05f;

	float ref_alt = 0.0f;
	hrt_abstime ref_alt_t = 0;
	uint64_t local_ref_timestamp = 0;

	PID_t xy_pos_pids[2];
	PID_t xy_vel_pids[2];
	PID_t z_pos_pid;
	thrust_pid_t z_vel_pid;

	thread_running = true;

	struct multirotor_position_control_params params;
	struct multirotor_position_control_param_handles params_h;
	parameters_init(&params_h);
	parameters_update(&params_h, &params);


	for (int i = 0; i < 2; i++) {
		pid_init(&(xy_pos_pids[i]), params.xy_p, 0.0f, params.xy_d, 1.0f, 0.0f, PID_MODE_DERIVATIV_SET, 0.02f);
		pid_init(&(xy_vel_pids[i]), params.xy_vel_p, params.xy_vel_i, params.xy_vel_d, 1.0f, params.tilt_max, PID_MODE_DERIVATIV_CALC_NO_SP, 0.02f);
	}

	pid_init(&z_pos_pid, params.z_p, 0.0f, params.z_d, 1.0f, params.z_vel_max, PID_MODE_DERIVATIV_SET, 0.02f);
	thrust_pid_init(&z_vel_pid, params.z_vel_p, params.z_vel_i, params.z_vel_d, -params.thr_max, -params.thr_min, PID_MODE_DERIVATIV_CALC_NO_SP, 0.02f);

	while (!thread_should_exit) {

		bool param_updated;
		orb_check(param_sub, &param_updated);

		if (param_updated) {
			/* clear updated flag */
			struct parameter_update_s ps;
			orb_copy(ORB_ID(parameter_update), param_sub, &ps);
			/* update params */
			parameters_update(&params_h, &params);

			for (int i = 0; i < 2; i++) {
				pid_set_parameters(&(xy_pos_pids[i]), params.xy_p, 0.0f, params.xy_d, 1.0f, 0.0f);
				/* use integral_limit_out = tilt_max / 2 */
				float i_limit;

				if (params.xy_vel_i > 0.0f) {
					i_limit = params.tilt_max / params.xy_vel_i / 2.0f;

				} else {
					i_limit = 0.0f;	// not used
				}

				pid_set_parameters(&(xy_vel_pids[i]), params.xy_vel_p, params.xy_vel_i, params.xy_vel_d, i_limit, params.tilt_max);
			}

			pid_set_parameters(&z_pos_pid, params.z_p, 0.0f, params.z_d, 1.0f, params.z_vel_max);
			thrust_pid_set_parameters(&z_vel_pid, params.z_vel_p, params.z_vel_i, params.z_vel_d, -params.thr_max, -params.thr_min);
		}

		bool updated;

		orb_check(control_mode_sub, &updated);

		if (updated) {
			orb_copy(ORB_ID(vehicle_control_mode), control_mode_sub, &control_mode);
		}

		orb_check(global_pos_sp_sub, &updated);

		if (updated) {
			orb_copy(ORB_ID(vehicle_global_position_setpoint), global_pos_sp_sub, &global_pos_sp);
			global_pos_sp_valid = true;
			reset_mission_sp = true;
		}

		hrt_abstime t = hrt_absolute_time();
		float dt;

		if (t_prev != 0) {
			dt = (t - t_prev) * 0.000001f;

		} else {
			dt = 0.0f;
		}

		if (control_mode.flag_armed && !was_armed) {
			/* reset setpoints and integrals on arming */
			reset_man_sp_z = true;
			reset_man_sp_xy = true;
			reset_auto_sp_z = true;
			reset_auto_sp_xy = true;
			reset_takeoff_sp = true;
			reset_int_z = true;
			reset_int_xy = true;
		}

		was_armed = control_mode.flag_armed;

		t_prev = t;

		if (control_mode.flag_control_altitude_enabled || control_mode.flag_control_velocity_enabled || control_mode.flag_control_position_enabled) {
			orb_copy(ORB_ID(manual_control_setpoint), manual_sub, &manual);
			orb_copy(ORB_ID(vehicle_attitude), att_sub, &att);
			orb_copy(ORB_ID(vehicle_attitude_setpoint), att_sp_sub, &att_sp);
			orb_copy(ORB_ID(vehicle_local_position), local_pos_sub, &local_pos);

			float z_sp_offs_max = params.z_vel_max / params.z_p * 2.0f;
			float xy_sp_offs_max = params.xy_vel_max / params.xy_p * 2.0f;
			float sp_move_rate[3] = { 0.0f, 0.0f, 0.0f };

			if (control_mode.flag_control_manual_enabled) {
				/* manual control */
				/* check for reference point updates and correct setpoint */
				if (local_pos.ref_timestamp != ref_alt_t) {
					if (ref_alt_t != 0) {
						/* home alt changed, don't follow large ground level changes in manual flight */
						local_pos_sp.z += local_pos.ref_alt - ref_alt;
					}

					ref_alt_t = local_pos.ref_timestamp;
					ref_alt = local_pos.ref_alt;
					// TODO also correct XY setpoint
				}

				/* reset setpoints to current position if needed */
				if (control_mode.flag_control_altitude_enabled) {
					if (reset_man_sp_z) {
						reset_man_sp_z = false;
						local_pos_sp.z = local_pos.z;
						mavlink_log_info(mavlink_fd, "[mpc] reset alt sp: %.2f", (double) - local_pos_sp.z);
					}

					/* move altitude setpoint with throttle stick */
					float z_sp_ctl = scale_control(manual.throttle - 0.5f, 0.5f, alt_ctl_dz);

					if (z_sp_ctl != 0.0f) {
						sp_move_rate[2] = -z_sp_ctl * params.z_vel_max;
						local_pos_sp.z += sp_move_rate[2] * dt;

						if (local_pos_sp.z > local_pos.z + z_sp_offs_max) {
							local_pos_sp.z = local_pos.z + z_sp_offs_max;

						} else if (local_pos_sp.z < local_pos.z - z_sp_offs_max) {
							local_pos_sp.z = local_pos.z - z_sp_offs_max;
						}
					}
				}

				if (control_mode.flag_control_position_enabled) {
					if (reset_man_sp_xy) {
						reset_man_sp_xy = false;
						local_pos_sp.x = local_pos.x;
						local_pos_sp.y = local_pos.y;
						pid_reset_integral(&xy_vel_pids[0]);
						pid_reset_integral(&xy_vel_pids[1]);
						mavlink_log_info(mavlink_fd, "[mpc] reset pos sp: %.2f, %.2f", (double)local_pos_sp.x, (double)local_pos_sp.y);
					}

					/* move position setpoint with roll/pitch stick */
					float pos_pitch_sp_ctl = scale_control(-manual.pitch / params.rc_scale_pitch, 1.0f, pos_ctl_dz);
					float pos_roll_sp_ctl = scale_control(manual.roll / params.rc_scale_roll, 1.0f, pos_ctl_dz);

					if (pos_pitch_sp_ctl != 0.0f || pos_roll_sp_ctl != 0.0f) {
						/* calculate direction and increment of control in NED frame */
						float xy_sp_ctl_dir = att.yaw + atan2f(pos_roll_sp_ctl, pos_pitch_sp_ctl);
						float xy_sp_ctl_speed = norm(pos_pitch_sp_ctl, pos_roll_sp_ctl) * params.xy_vel_max;
						sp_move_rate[0] = cosf(xy_sp_ctl_dir) * xy_sp_ctl_speed;
						sp_move_rate[1] = sinf(xy_sp_ctl_dir) * xy_sp_ctl_speed;
						local_pos_sp.x += sp_move_rate[0] * dt;
						local_pos_sp.y += sp_move_rate[1] * dt;
						/* limit maximum setpoint from position offset and preserve direction
						 * fail safe, should not happen in normal operation */
						float pos_vec_x = local_pos_sp.x - local_pos.x;
						float pos_vec_y = local_pos_sp.y - local_pos.y;
						float pos_vec_norm = norm(pos_vec_x, pos_vec_y) / xy_sp_offs_max;

						if (pos_vec_norm > 1.0f) {
							local_pos_sp.x = local_pos.x + pos_vec_x / pos_vec_norm;
							local_pos_sp.y = local_pos.y + pos_vec_y / pos_vec_norm;
						}
					}
				}

				/* copy yaw setpoint to vehicle_local_position_setpoint topic */
				local_pos_sp.yaw = att_sp.yaw_body;

				/* local position setpoint is valid and can be used for auto loiter after position controlled mode */
				reset_auto_sp_xy = !control_mode.flag_control_position_enabled;
				reset_auto_sp_z = !control_mode.flag_control_altitude_enabled;
				reset_takeoff_sp = true;

				/* force reprojection of global setpoint after manual mode */
				reset_mission_sp = true;

			} else if (control_mode.flag_control_auto_enabled) {
				/* AUTO mode, use global setpoint */
				if (control_mode.auto_state == NAVIGATION_STATE_AUTO_READY) {
					reset_auto_sp_xy = true;
					reset_auto_sp_z = true;

				} else if (control_mode.auto_state == NAVIGATION_STATE_AUTO_TAKEOFF) {
					if (reset_takeoff_sp) {
						reset_takeoff_sp = false;
						local_pos_sp.x = local_pos.x;
						local_pos_sp.y = local_pos.y;
						local_pos_sp.z = - params.takeoff_alt - params.takeoff_gap;
						att_sp.yaw_body = att.yaw;
						mavlink_log_info(mavlink_fd, "[mpc] takeoff sp: %.2f %.2f %.2f", (double)local_pos_sp.x, (double)local_pos_sp.y, (double) - local_pos_sp.z);
					}

					reset_auto_sp_xy = false;
					reset_auto_sp_z = true;

				} else if (control_mode.auto_state == NAVIGATION_STATE_AUTO_RTL) {
					// TODO
					reset_auto_sp_xy = true;
					reset_auto_sp_z = true;

				} else if (control_mode.auto_state == NAVIGATION_STATE_AUTO_MISSION) {
					/* init local projection using local position ref */
					if (local_pos.ref_timestamp != local_ref_timestamp) {
						reset_mission_sp = true;
						local_ref_timestamp = local_pos.ref_timestamp;
						double lat_home = local_pos.ref_lat * 1e-7;
						double lon_home = local_pos.ref_lon * 1e-7;
						map_projection_init(lat_home, lon_home);
						mavlink_log_info(mavlink_fd, "[mpc] local pos ref: %.7f, %.7f", (double)lat_home, (double)lon_home);
					}

					if (reset_mission_sp) {
						reset_mission_sp = false;
						/* update global setpoint projection */

						if (global_pos_sp_valid) {
							/* global position setpoint valid, use it */
							double sp_lat = global_pos_sp.lat * 1e-7;
							double sp_lon = global_pos_sp.lon * 1e-7;
							/* project global setpoint to local setpoint */
							map_projection_project(sp_lat, sp_lon, &(local_pos_sp.x), &(local_pos_sp.y));

							if (global_pos_sp.altitude_is_relative) {
								local_pos_sp.z = -global_pos_sp.altitude;

							} else {
								local_pos_sp.z = local_pos.ref_alt - global_pos_sp.altitude;
							}
							/* update yaw setpoint only if value is valid */
							if (isfinite(global_pos_sp.yaw) && fabsf(global_pos_sp.yaw) < M_TWOPI) {
								att_sp.yaw_body = global_pos_sp.yaw;
							}

							mavlink_log_info(mavlink_fd, "[mpc] new sp: %.7f, %.7f (%.2f, %.2f)", (double)sp_lat, sp_lon, (double)local_pos_sp.x, (double)local_pos_sp.y);

						} else {
							if (reset_auto_sp_xy) {
								reset_auto_sp_xy = false;
								/* local position setpoint is invalid,
								 * use current position as setpoint for loiter */
								local_pos_sp.x = local_pos.x;
								local_pos_sp.y = local_pos.y;
								local_pos_sp.yaw = att.yaw;
							}

							if (reset_auto_sp_z) {
								reset_auto_sp_z = false;
								local_pos_sp.z = local_pos.z;
							}

							mavlink_log_info(mavlink_fd, "[mpc] no global pos sp, loiter: %.2f, %.2f", (double)local_pos_sp.x, (double)local_pos_sp.y);
						}
					}

					reset_auto_sp_xy = true;
					reset_auto_sp_z = true;
				}

				if (control_mode.auto_state != NAVIGATION_STATE_AUTO_TAKEOFF) {
					reset_takeoff_sp = true;
				}

				if (control_mode.auto_state != NAVIGATION_STATE_AUTO_MISSION) {
					reset_mission_sp = true;
				}

				/* copy yaw setpoint to vehicle_local_position_setpoint topic */
				local_pos_sp.yaw = att_sp.yaw_body;

				/* reset setpoints after AUTO mode */
				reset_man_sp_xy = true;
				reset_man_sp_z = true;

			} else {
				/* no control (failsafe), loiter or stay on ground */
				if (local_pos.landed) {
					/* landed: move setpoint down */
					/* in air: hold altitude */
					if (local_pos_sp.z < 5.0f) {
						/* set altitude setpoint to 5m under ground,
						 * don't set it too deep to avoid unexpected landing in case of false "landed" signal */
						local_pos_sp.z = 5.0f;
						mavlink_log_info(mavlink_fd, "[mpc] landed, set alt: %.2f", (double) - local_pos_sp.z);
					}

					reset_man_sp_z = true;

				} else {
					/* in air: hold altitude */
					if (reset_man_sp_z) {
						reset_man_sp_z = false;
						local_pos_sp.z = local_pos.z;
						mavlink_log_info(mavlink_fd, "[mpc] set loiter alt: %.2f", (double) - local_pos_sp.z);
					}

					reset_auto_sp_z = false;
				}

				if (control_mode.flag_control_position_enabled) {
					if (reset_man_sp_xy) {
						reset_man_sp_xy = false;
						local_pos_sp.x = local_pos.x;
						local_pos_sp.y = local_pos.y;
						local_pos_sp.yaw = att.yaw;
						att_sp.yaw_body = att.yaw;
						mavlink_log_info(mavlink_fd, "[mpc] set loiter pos: %.2f %.2f", (double)local_pos_sp.x, (double)local_pos_sp.y);
					}

					reset_auto_sp_xy = false;
				}
			}

			/* publish local position setpoint */
			orb_publish(ORB_ID(vehicle_local_position_setpoint), local_pos_sp_pub, &local_pos_sp);

			/* run position & altitude controllers, calculate velocity setpoint */
			if (control_mode.flag_control_altitude_enabled) {
				global_vel_sp.vz = pid_calculate(&z_pos_pid, local_pos_sp.z, local_pos.z, local_pos.vz - sp_move_rate[2], dt) + sp_move_rate[2];

			} else {
				reset_man_sp_z = true;
				global_vel_sp.vz = 0.0f;
			}

			if (control_mode.flag_control_position_enabled) {
				/* calculate velocity set point in NED frame */
				global_vel_sp.vx = pid_calculate(&xy_pos_pids[0], local_pos_sp.x, local_pos.x, local_pos.vx - sp_move_rate[0], dt) + sp_move_rate[0];
				global_vel_sp.vy = pid_calculate(&xy_pos_pids[1], local_pos_sp.y, local_pos.y, local_pos.vy - sp_move_rate[1], dt) + sp_move_rate[1];

				/* limit horizontal speed */
				float xy_vel_sp_norm = norm(global_vel_sp.vx, global_vel_sp.vy) / params.xy_vel_max;

				if (xy_vel_sp_norm > 1.0f) {
					global_vel_sp.vx /= xy_vel_sp_norm;
					global_vel_sp.vy /= xy_vel_sp_norm;
				}

			} else {
				reset_man_sp_xy = true;
				global_vel_sp.vx = 0.0f;
				global_vel_sp.vy = 0.0f;
			}

			/* publish new velocity setpoint */
			orb_publish(ORB_ID(vehicle_global_velocity_setpoint), global_vel_sp_pub, &global_vel_sp);
			// TODO subscribe to velocity setpoint if altitude/position control disabled

			if (control_mode.flag_control_climb_rate_enabled || control_mode.flag_control_velocity_enabled) {
				/* run velocity controllers, calculate thrust vector with attitude-thrust compensation */
				float thrust_sp[3] = { 0.0f, 0.0f, 0.0f };

				if (control_mode.flag_control_climb_rate_enabled) {
					if (reset_int_z) {
						reset_int_z = false;
						float i = params.thr_min;

						if (reset_int_z_manual) {
							i = manual.throttle;

							if (i < params.thr_min) {
								i = params.thr_min;

							} else if (i > params.thr_max) {
								i = params.thr_max;
							}
						}

						thrust_pid_set_integral(&z_vel_pid, -i);
						mavlink_log_info(mavlink_fd, "[mpc] reset hovering thrust: %.2f", (double)i);
					}

					thrust_sp[2] = thrust_pid_calculate(&z_vel_pid, global_vel_sp.vz, local_pos.vz, dt, att.R[2][2]);
					att_sp.thrust = -thrust_sp[2];

				} else {
					/* reset thrust integral when altitude control enabled */
					reset_int_z = true;
				}

				if (control_mode.flag_control_velocity_enabled) {
					/* calculate thrust set point in NED frame */
					if (reset_int_xy) {
						reset_int_xy = false;
						pid_reset_integral(&xy_vel_pids[0]);
						pid_reset_integral(&xy_vel_pids[1]);
						mavlink_log_info(mavlink_fd, "[mpc] reset pos integral");
					}

					thrust_sp[0] = pid_calculate(&xy_vel_pids[0], global_vel_sp.vx, local_pos.vx, 0.0f, dt);
					thrust_sp[1] = pid_calculate(&xy_vel_pids[1], global_vel_sp.vy, local_pos.vy, 0.0f, dt);

					/* thrust_vector now contains desired acceleration (but not in m/s^2) in NED frame */
					/* limit horizontal part of thrust */
					float thrust_xy_dir = atan2f(thrust_sp[1], thrust_sp[0]);
					/* assuming that vertical component of thrust is g,
					 * horizontal component = g * tan(alpha) */
					float tilt = atanf(norm(thrust_sp[0], thrust_sp[1]));

					if (tilt > params.tilt_max) {
						tilt = params.tilt_max;
					}

					/* convert direction to body frame */
					thrust_xy_dir -= att.yaw;
					/* calculate roll and pitch */
					att_sp.roll_body = sinf(thrust_xy_dir) * tilt;
					att_sp.pitch_body = -cosf(thrust_xy_dir) * tilt / cosf(att_sp.roll_body);

				} else {
					reset_int_xy = true;
				}

				att_sp.timestamp = hrt_absolute_time();

				/* publish new attitude setpoint */
				orb_publish(ORB_ID(vehicle_attitude_setpoint), att_sp_pub, &att_sp);
			}

		} else {
			/* position controller disabled, reset setpoints */
			reset_man_sp_z = true;
			reset_man_sp_xy = true;
			reset_int_z = true;
			reset_int_xy = true;
			reset_mission_sp = true;
			reset_auto_sp_xy = true;
			reset_auto_sp_z = true;
		}

		/* reset altitude controller integral (hovering throttle) to manual throttle after manual throttle control */
		reset_int_z_manual = control_mode.flag_armed && control_mode.flag_control_manual_enabled && !control_mode.flag_control_climb_rate_enabled;

		/* run at approximately 50 Hz */
		usleep(20000);
	}

	warnx("stopped");
	mavlink_log_info(mavlink_fd, "[mpc] stopped");

	thread_running = false;

	fflush(stdout);
	return 0;
}
Exemplo n.º 15
0
__EXPORT int map_projection_global_project(double lat, double lon, float *x, float *y)
{
	return map_projection_project(&mp_ref, lat, lon, x, y);

}
Exemplo n.º 16
0
void FollowTarget::on_active()
{
	struct map_projection_reference_s target_ref;
	math::Vector<3> target_reported_velocity(0, 0, 0);
	follow_target_s target_motion_with_offset = {};
	uint64_t current_time = hrt_absolute_time();
	bool _radius_entered = false;
	bool _radius_exited = false;
	bool updated = false;
	float dt_ms = 0;

	orb_check(_follow_target_sub, &updated);

	if (updated) {
		follow_target_s target_motion;

		_target_updates++;

		// save last known motion topic

		_previous_target_motion = _current_target_motion;

		orb_copy(ORB_ID(follow_target), _follow_target_sub, &target_motion);

		if (_current_target_motion.timestamp == 0) {
			_current_target_motion = target_motion;
		}

		_current_target_motion.timestamp = target_motion.timestamp;
		_current_target_motion.lat = (_current_target_motion.lat * (double)_responsiveness) + target_motion.lat * (double)(
						     1 - _responsiveness);
		_current_target_motion.lon = (_current_target_motion.lon * (double)_responsiveness) + target_motion.lon * (double)(
						     1 - _responsiveness);

		target_reported_velocity(0) = _current_target_motion.vx;
		target_reported_velocity(1) = _current_target_motion.vy;

	} else if (((current_time - _current_target_motion.timestamp) / 1000) > TARGET_TIMEOUT_MS && target_velocity_valid()) {
		reset_target_validity();
	}

	// update distance to target

	if (target_position_valid()) {

		// get distance to target

		map_projection_init(&target_ref, _navigator->get_global_position()->lat, _navigator->get_global_position()->lon);
		map_projection_project(&target_ref, _current_target_motion.lat, _current_target_motion.lon, &_target_distance(0),
				       &_target_distance(1));

	}

	// update target velocity

	if (target_velocity_valid() && updated) {

		dt_ms = ((_current_target_motion.timestamp - _previous_target_motion.timestamp) / 1000);

		// ignore a small dt
		if (dt_ms > 10.0F) {
			// get last gps known reference for target
			map_projection_init(&target_ref, _previous_target_motion.lat, _previous_target_motion.lon);

			// calculate distance the target has moved
			map_projection_project(&target_ref, _current_target_motion.lat, _current_target_motion.lon,
					       &(_target_position_delta(0)), &(_target_position_delta(1)));

			// update the average velocity of the target based on the position
			_est_target_vel = _target_position_delta / (dt_ms / 1000.0f);

			// if the target is moving add an offset and rotation
			if (_est_target_vel.length() > .5F) {
				_target_position_offset = _rot_matrix * _est_target_vel.normalized() * _follow_offset;
			}

			// are we within the target acceptance radius?
			// give a buffer to exit/enter the radius to give the velocity controller
			// a chance to catch up

			_radius_exited = ((_target_position_offset + _target_distance).length() > (float) TARGET_ACCEPTANCE_RADIUS_M * 1.5f);
			_radius_entered = ((_target_position_offset + _target_distance).length() < (float) TARGET_ACCEPTANCE_RADIUS_M);

			// to keep the velocity increase/decrease smooth
			// calculate how many velocity increments/decrements
			// it will take to reach the targets velocity
			// with the given amount of steps also add a feed forward input that adjusts the
			// velocity as the position gap increases since
			// just traveling at the exact velocity of the target will not
			// get any closer or farther from the target

			_step_vel = (_est_target_vel - _current_vel) + (_target_position_offset + _target_distance) * FF_K;
			_step_vel /= (dt_ms / 1000.0F * (float) INTERPOLATION_PNTS);
			_step_time_in_ms = (dt_ms / (float) INTERPOLATION_PNTS);

			// if we are less than 1 meter from the target don't worry about trying to yaw
			// lock the yaw until we are at a distance that makes sense

			if ((_target_distance).length() > 1.0F) {

				// yaw rate smoothing

				// this really needs to control the yaw rate directly in the attitude pid controller
				// but seems to work ok for now since the yaw rate cannot be controlled directly in auto mode

				_yaw_angle = get_bearing_to_next_waypoint(_navigator->get_global_position()->lat,
						_navigator->get_global_position()->lon,
						_current_target_motion.lat,
						_current_target_motion.lon);

				_yaw_rate = (_yaw_angle - _navigator->get_global_position()->yaw) / (dt_ms / 1000.0F);

				_yaw_rate = _wrap_pi(_yaw_rate);

				_yaw_rate = math::constrain(_yaw_rate, -1.0F * _yaw_auto_max, _yaw_auto_max);

			} else {
				_yaw_angle = _yaw_rate = NAN;
			}
		}

//		warnx(" _step_vel x %3.6f y %3.6f cur vel %3.6f %3.6f tar vel %3.6f %3.6f dist = %3.6f (%3.6f) mode = %d con ratio = %3.6f yaw rate = %3.6f",
//				(double) _step_vel(0),
//				(double) _step_vel(1),
//				(double) _current_vel(0),
//				(double) _current_vel(1),
//				(double) _est_target_vel(0),
//				(double) _est_target_vel(1),
//				(double) (_target_distance).length(),
//				(double) (_target_position_offset + _target_distance).length(),
//				_follow_target_state,
//				(double)_avg_cos_ratio, (double) _yaw_rate);
	}

	if (target_position_valid()) {

		// get the target position using the calculated offset

		map_projection_init(&target_ref,  _current_target_motion.lat, _current_target_motion.lon);
		map_projection_reproject(&target_ref, _target_position_offset(0), _target_position_offset(1),
					 &target_motion_with_offset.lat, &target_motion_with_offset.lon);
	}

	// clamp yaw rate smoothing if we are with in
	// 3 degrees of facing target

	if (PX4_ISFINITE(_yaw_rate)) {
		if (fabsf(fabsf(_yaw_angle) - fabsf(_navigator->get_global_position()->yaw)) < math::radians(3.0F)) {
			_yaw_rate = NAN;
		}
	}

	// update state machine

	switch (_follow_target_state) {

	case TRACK_POSITION: {

			if (_radius_entered == true) {
				_follow_target_state = TRACK_VELOCITY;

			} else if (target_velocity_valid()) {
				set_follow_target_item(&_mission_item, _param_min_alt.get(), target_motion_with_offset, _yaw_angle);
				// keep the current velocity updated with the target velocity for when it's needed
				_current_vel = _est_target_vel;

				update_position_sp(true, true, _yaw_rate);

			} else {
				_follow_target_state = SET_WAIT_FOR_TARGET_POSITION;
			}

			break;
		}

	case TRACK_VELOCITY: {

			if (_radius_exited == true) {
				_follow_target_state = TRACK_POSITION;

			} else if (target_velocity_valid()) {

				if ((float)(current_time - _last_update_time) / 1000.0f >= _step_time_in_ms) {
					_current_vel += _step_vel;
					_last_update_time = current_time;
				}

				set_follow_target_item(&_mission_item, _param_min_alt.get(), target_motion_with_offset, _yaw_angle);

				update_position_sp(true, false, _yaw_rate);

			} else {
				_follow_target_state = SET_WAIT_FOR_TARGET_POSITION;
			}

			break;
		}

	case SET_WAIT_FOR_TARGET_POSITION: {

			// Climb to the minimum altitude
			// and wait until a position is received

			follow_target_s target = {};

			// for now set the target at the minimum height above the uav

			target.lat = _navigator->get_global_position()->lat;
			target.lon = _navigator->get_global_position()->lon;
			target.alt = 0.0F;

			set_follow_target_item(&_mission_item, _param_min_alt.get(), target, _yaw_angle);

			update_position_sp(false, false, _yaw_rate);

			_follow_target_state = WAIT_FOR_TARGET_POSITION;
		}

	/* FALLTHROUGH */

	case WAIT_FOR_TARGET_POSITION: {

			if (is_mission_item_reached() && target_velocity_valid()) {
				_target_position_offset(0) = _follow_offset;
				_follow_target_state = TRACK_POSITION;
			}

			break;
		}
	}
}
Exemplo n.º 17
0
void BlockLocalPositionEstimator::gpsCorrect()
{
	// measure
	Vector<double, n_y_gps> y_global;

	if (gpsMeasure(y_global) != OK) { return; }

	// gps measurement in local frame
	double lat = y_global(Y_gps_x);
	double lon = y_global(Y_gps_y);
	float alt = y_global(Y_gps_z);
	float px = 0;
	float py = 0;
	float pz = -(alt - _gpsAltOrigin);
	map_projection_project(&_map_ref, lat, lon, &px, &py);
	Vector<float, n_y_gps> y;
	y.setZero();
	y(Y_gps_x) = px;
	y(Y_gps_y) = py;
	y(Y_gps_z) = pz;
	y(Y_gps_vx) = y_global(Y_gps_vx);
	y(Y_gps_vy) = y_global(Y_gps_vy);
	y(Y_gps_vz) = y_global(Y_gps_vz);

	// gps measurement matrix, measures position and velocity
	Matrix<float, n_y_gps, n_x> C;
	C.setZero();
	C(Y_gps_x, X_x) = 1;
	C(Y_gps_y, X_y) = 1;
	C(Y_gps_z, X_z) = 1;
	C(Y_gps_vx, X_vx) = 1;
	C(Y_gps_vy, X_vy) = 1;
	C(Y_gps_vz, X_vz) = 1;

	// gps covariance matrix
	SquareMatrix<float, n_y_gps> R;
	R.setZero();

	// default to parameter, use gps cov if provided
	float var_xy = _param_lpe_gps_xy.get() * _param_lpe_gps_xy.get();
	float var_z = _param_lpe_gps_z.get() * _param_lpe_gps_z.get();
	float var_vxy = _param_lpe_gps_vxy.get() * _param_lpe_gps_vxy.get();
	float var_vz = _param_lpe_gps_vz.get() * _param_lpe_gps_vz.get();

	// if field is not below minimum, set it to the value provided
	if (_sub_gps.get().eph > _param_lpe_gps_xy.get()) {
		var_xy = _sub_gps.get().eph * _sub_gps.get().eph;
	}

	if (_sub_gps.get().epv > _param_lpe_gps_z.get()) {
		var_z = _sub_gps.get().epv * _sub_gps.get().epv;
	}

	float gps_s_stddev =  _sub_gps.get().s_variance_m_s;

	if (gps_s_stddev > _param_lpe_gps_vxy.get()) {
		var_vxy = gps_s_stddev * gps_s_stddev;
	}

	if (gps_s_stddev > _param_lpe_gps_vz.get()) {
		var_vz = gps_s_stddev * gps_s_stddev;
	}

	R(0, 0) = var_xy;
	R(1, 1) = var_xy;
	R(2, 2) = var_z;
	R(3, 3) = var_vxy;
	R(4, 4) = var_vxy;
	R(5, 5) = var_vz;

	// get delayed x
	uint8_t i_hist = 0;

	if (getDelayPeriods(_param_lpe_gps_delay.get(), &i_hist)  < 0) { return; }

	Vector<float, n_x> x0 = _xDelay.get(i_hist);

	// residual
	Vector<float, n_y_gps> r = y - C * x0;

	// residual covariance
	Matrix<float, n_y_gps, n_y_gps> S = C * _P * C.transpose() + R;

	// publish innovations
	for (size_t i = 0; i < 6; i++) {
		_pub_innov.get().vel_pos_innov[i] = r(i);
		_pub_innov.get().vel_pos_innov_var[i] = S(i, i);
	}

	// residual covariance, (inverse)
	Matrix<float, n_y_gps, n_y_gps> S_I = inv<float, n_y_gps>(S);

	// fault detection
	float beta = (r.transpose() * (S_I * r))(0, 0);

	// artifically increase beta threshhold to prevent fault during landing
	float beta_thresh = 1e2f;

	if (beta / BETA_TABLE[n_y_gps] > beta_thresh) {
		if (!(_sensorFault & SENSOR_GPS)) {
			mavlink_log_critical(&mavlink_log_pub, "[lpe] gps fault %3g %3g %3g %3g %3g %3g",
					     double(r(0) * r(0) / S_I(0, 0)),  double(r(1) * r(1) / S_I(1, 1)), double(r(2) * r(2) / S_I(2, 2)),
					     double(r(3) * r(3) / S_I(3, 3)),  double(r(4) * r(4) / S_I(4, 4)), double(r(5) * r(5) / S_I(5, 5)));
			_sensorFault |= SENSOR_GPS;
		}

	} else if (_sensorFault & SENSOR_GPS) {
		_sensorFault &= ~SENSOR_GPS;
		mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] GPS OK");
	}

	// kalman filter correction always for GPS
	Matrix<float, n_x, n_y_gps> K = _P * C.transpose() * S_I;
	Vector<float, n_x> dx = K * r;
	_x += dx;
	_P -= K * C * _P;
}
Exemplo n.º 18
0
int BlockLocalPositionEstimator::flowMeasure(Vector<float, n_y_flow> &y)
{
	// check for agl
	if (agl() < flow_min_agl) {
		return -1;
	}

	// check quality
	float qual = _sub_flow.get().quality;

	if (qual < _flow_min_q.get()) {
		return -1;
	}

	// calculate range to center of image for flow
	if (!_validTZ) {
		return -1;
	}

	float d = agl() * cosf(_sub_att.get().roll) * cosf(_sub_att.get().pitch);

	// check for global accuracy
	if (_gpsInitialized) {
		double  lat = _sub_gps.get().lat * 1.0e-7;
		double  lon = _sub_gps.get().lon * 1.0e-7;
		float px = 0;
		float py = 0;
		map_projection_project(&_map_ref, lat, lon, &px, &py);
		Vector2f delta(px - _flowX, py - _flowY);

		if (delta.norm() > 3) {
			mavlink_and_console_log_info(&mavlink_log_pub,
						     "[lpe] flow too far from GPS, resetting position");
			_flowX = px;
			_flowY = py;
			return -1;
		}
	}

	// optical flow in x, y axis
	float flow_x_rad = _sub_flow.get().pixel_flow_x_integral;
	float flow_y_rad = _sub_flow.get().pixel_flow_y_integral;

	// angular rotation in x, y axis
	float gyro_x_rad = _flow_gyro_x_high_pass.update(
				   _sub_flow.get().gyro_x_rate_integral);
	float gyro_y_rad = _flow_gyro_y_high_pass.update(
				   _sub_flow.get().gyro_y_rate_integral);

	//warnx("flow x: %10.4f y: %10.4f gyro_x: %10.4f gyro_y: %10.4f d: %10.4f",
	//double(flow_x_rad), double(flow_y_rad), double(gyro_x_rad), double(gyro_y_rad), double(d));

	// compute velocities in camera frame using ground distance
	// assume camera frame is body frame
	Vector3f delta_b(
		-(flow_x_rad - gyro_x_rad)*d,
		-(flow_y_rad - gyro_y_rad)*d,
		0);

	// rotation of flow from body to nav frame
	Matrix3f R_nb(_sub_att.get().R);
	Vector3f delta_n = R_nb * delta_b;

	// flow integration
	_flowX += delta_n(0);
	_flowY += delta_n(1);

	// measurement
	y(Y_flow_x) = _flowX;
	y(Y_flow_y) = _flowY;

	_flowQStats.update(Scalarf(_sub_flow.get().quality));

	// imporant to timestamp flow even if distance is bad
	_time_last_flow = _timeStamp;

	return OK;
}
Exemplo n.º 19
0
void PrecLand::slewrate(float &sp_x, float &sp_y)
{
	matrix::Vector2f sp_curr(sp_x, sp_y);
	uint64_t now = hrt_absolute_time();

	float dt = (now - _last_slewrate_time);

	if (dt < 1) {
		// bad dt, can't divide by it
		return;
	}

	dt /= SEC2USEC;

	if (!_last_slewrate_time) {
		// running the first time since switching to precland

		// assume dt will be about 50000us
		dt = 50000 / SEC2USEC;

		// set a best guess for previous setpoints for smooth transition
		map_projection_project(&_map_ref, _navigator->get_position_setpoint_triplet()->current.lat,
				       _navigator->get_position_setpoint_triplet()->current.lon, &_sp_pev(0), &_sp_pev(1));
		_sp_pev_prev(0) = _sp_pev(0) - _navigator->get_local_position()->vx * dt;
		_sp_pev_prev(1) = _sp_pev(1) - _navigator->get_local_position()->vy * dt;
	}

	_last_slewrate_time = now;

	// limit the setpoint speed to the maximum cruise speed
	matrix::Vector2f sp_vel = (sp_curr - _sp_pev) / dt; // velocity of the setpoints

	if (sp_vel.length() > _param_xy_vel_cruise.get()) {
		sp_vel = sp_vel.normalized() * _param_xy_vel_cruise.get();
		sp_curr = _sp_pev + sp_vel * dt;
	}

	// limit the setpoint acceleration to the maximum acceleration
	matrix::Vector2f sp_acc = (sp_curr - _sp_pev * 2 + _sp_pev_prev) / (dt * dt); // acceleration of the setpoints

	if (sp_acc.length() > _param_acceleration_hor.get()) {
		sp_acc = sp_acc.normalized() * _param_acceleration_hor.get();
		sp_curr = _sp_pev * 2 - _sp_pev_prev + sp_acc * (dt * dt);
	}

	// limit the setpoint speed such that we can stop at the setpoint given the maximum acceleration/deceleration
	float max_spd = sqrtf(_param_acceleration_hor.get() * ((matrix::Vector2f)(_sp_pev - matrix::Vector2f(sp_x,
			      sp_y))).length());
	sp_vel = (sp_curr - _sp_pev) / dt; // velocity of the setpoints

	if (sp_vel.length() > max_spd) {
		sp_vel = sp_vel.normalized() * max_spd;
		sp_curr = _sp_pev + sp_vel * dt;
	}

	_sp_pev_prev = _sp_pev;
	_sp_pev = sp_curr;

	sp_x = sp_curr(0);
	sp_y = sp_curr(1);
}
void AttitudePositionEstimatorEKF::pollData()
{
	//Update arming status
	bool armedUpdate;
	orb_check(_armedSub, &armedUpdate);

	if (armedUpdate) {
		orb_copy(ORB_ID(actuator_armed), _armedSub, &_armed);
	}

	//Update Gyro and Accelerometer
	static Vector3f lastAngRate;
	static Vector3f lastAccel;
	bool accel_updated = false;

	orb_copy(ORB_ID(sensor_combined), _sensor_combined_sub, &_sensor_combined);

	static hrt_abstime last_accel = 0;
	static hrt_abstime last_mag = 0;

	if (last_accel != _sensor_combined.accelerometer_timestamp) {
		accel_updated = true;

	} else {
		accel_updated = false;
	}

	last_accel = _sensor_combined.accelerometer_timestamp;


	// Copy gyro and accel
	_last_sensor_timestamp = _sensor_combined.timestamp;
	IMUmsec = _sensor_combined.timestamp / 1e3;
	IMUusec = _sensor_combined.timestamp;

	float deltaT = (_sensor_combined.timestamp - _last_run) / 1e6f;

	/* guard against too large deltaT's */
	if (!PX4_ISFINITE(deltaT) || deltaT > 1.0f || deltaT < 0.000001f) {
		deltaT = 0.01f;
	}

	_last_run = _sensor_combined.timestamp;

	// Always store data, independent of init status
	/* fill in last data set */
	_ekf->dtIMU = deltaT;

	int last_gyro_main = _gyro_main;

	if (PX4_ISFINITE(_sensor_combined.gyro_rad_s[0]) &&
	    PX4_ISFINITE(_sensor_combined.gyro_rad_s[1]) &&
	    PX4_ISFINITE(_sensor_combined.gyro_rad_s[2]) &&
	    (_sensor_combined.gyro_errcount <= _sensor_combined.gyro1_errcount)) {

		_ekf->angRate.x = _sensor_combined.gyro_rad_s[0];
		_ekf->angRate.y = _sensor_combined.gyro_rad_s[1];
		_ekf->angRate.z = _sensor_combined.gyro_rad_s[2];
		_gyro_main = 0;
		_gyro_valid = true;

	} else if (PX4_ISFINITE(_sensor_combined.gyro1_rad_s[0]) &&
		   PX4_ISFINITE(_sensor_combined.gyro1_rad_s[1]) &&
		   PX4_ISFINITE(_sensor_combined.gyro1_rad_s[2])) {

		_ekf->angRate.x = _sensor_combined.gyro1_rad_s[0];
		_ekf->angRate.y = _sensor_combined.gyro1_rad_s[1];
		_ekf->angRate.z = _sensor_combined.gyro1_rad_s[2];
		_gyro_main = 1;
		_gyro_valid = true;

	} else {
		_gyro_valid = false;
	}

	if (last_gyro_main != _gyro_main) {
		mavlink_and_console_log_emergency(_mavlink_fd, "GYRO FAILED! Switched from #%d to %d", last_gyro_main, _gyro_main);
	}

	if (!_gyro_valid) {
		/* keep last value if he hit an out of band value */
		lastAngRate = _ekf->angRate;

	} else {
		perf_count(_perf_gyro);
	}

	if (accel_updated) {

		int last_accel_main = _accel_main;

		/* fail over to the 2nd accel if we know the first is down */
		if (_sensor_combined.accelerometer_errcount <= _sensor_combined.accelerometer1_errcount) {
			_ekf->accel.x = _sensor_combined.accelerometer_m_s2[0];
			_ekf->accel.y = _sensor_combined.accelerometer_m_s2[1];
			_ekf->accel.z = _sensor_combined.accelerometer_m_s2[2];
			_accel_main = 0;

		} else {
			_ekf->accel.x = _sensor_combined.accelerometer1_m_s2[0];
			_ekf->accel.y = _sensor_combined.accelerometer1_m_s2[1];
			_ekf->accel.z = _sensor_combined.accelerometer1_m_s2[2];
			_accel_main = 1;
		}

		if (!_accel_valid) {
			lastAccel = _ekf->accel;
		}

		if (last_accel_main != _accel_main) {
			mavlink_and_console_log_emergency(_mavlink_fd, "ACCEL FAILED! Switched from #%d to %d", last_accel_main, _accel_main);
		}

		_accel_valid = true;
	}

	_ekf->dAngIMU = 0.5f * (_ekf->angRate + lastAngRate) * _ekf->dtIMU;
	lastAngRate = _ekf->angRate;
	_ekf->dVelIMU = 0.5f * (_ekf->accel + lastAccel) * _ekf->dtIMU;
	lastAccel = _ekf->accel;

	if (last_mag != _sensor_combined.magnetometer_timestamp) {
		_newDataMag = true;

	} else {
		_newDataMag = false;
	}

	last_mag = _sensor_combined.magnetometer_timestamp;

	//warnx("dang: %8.4f %8.4f dvel: %8.4f %8.4f", _ekf->dAngIMU.x, _ekf->dAngIMU.z, _ekf->dVelIMU.x, _ekf->dVelIMU.z);

	//Update Land Detector
	bool newLandData;
	orb_check(_landDetectorSub, &newLandData);

	if (newLandData) {
		orb_copy(ORB_ID(vehicle_land_detected), _landDetectorSub, &_landDetector);
	}

	//Update AirSpeed
	orb_check(_airspeed_sub, &_newAdsData);

	if (_newAdsData) {
		orb_copy(ORB_ID(airspeed), _airspeed_sub, &_airspeed);
		perf_count(_perf_airspeed);

		_ekf->VtasMeas = _airspeed.true_airspeed_m_s;
	}


	bool gps_update;
	orb_check(_gps_sub, &gps_update);

	if (gps_update) {
		orb_copy(ORB_ID(vehicle_gps_position), _gps_sub, &_gps);
		perf_count(_perf_gps);

		//We are more strict for our first fix
		float requiredAccuracy = _parameters.pos_stddev_threshold;

		if (_gpsIsGood) {
			requiredAccuracy = _parameters.pos_stddev_threshold * 2.0f;
		}

		//Check if the GPS fix is good enough for us to use
		if (_gps.fix_type >= 3 && _gps.eph < requiredAccuracy && _gps.epv < requiredAccuracy) {
			_gpsIsGood = true;

		} else {
			_gpsIsGood = false;
		}

		if (_gpsIsGood) {

			//Calculate time since last good GPS fix
			const float dtLastGoodGPS = static_cast<float>(_gps.timestamp_position - _previousGPSTimestamp) / 1e6f;

			//Stop dead-reckoning mode
			if (_global_pos.dead_reckoning) {
				mavlink_log_info(_mavlink_fd, "[ekf] stop dead-reckoning");
			}

			_global_pos.dead_reckoning = false;

			//Fetch new GPS data
			_ekf->GPSstatus = _gps.fix_type;
			_ekf->velNED[0] = _gps.vel_n_m_s;
			_ekf->velNED[1] = _gps.vel_e_m_s;
			_ekf->velNED[2] = _gps.vel_d_m_s;

			_ekf->gpsLat = math::radians(_gps.lat / (double)1e7);
			_ekf->gpsLon = math::radians(_gps.lon / (double)1e7) - M_PI;
			_ekf->gpsHgt = _gps.alt / 1e3f;

			if (_previousGPSTimestamp != 0) {
				//Calculate average time between GPS updates
				_ekf->updateDtGpsFilt(math::constrain(dtLastGoodGPS, 0.01f, POS_RESET_THRESHOLD));

				// update LPF
				_gps_alt_filt += (dtLastGoodGPS / (rc + dtLastGoodGPS)) * (_ekf->gpsHgt - _gps_alt_filt);
			}

			//check if we had a GPS outage for a long time
			if (_gps_initialized) {

				//Convert from global frame to local frame
				map_projection_project(&_pos_ref, (_gps.lat / 1.0e7), (_gps.lon / 1.0e7), &_ekf->posNE[0], &_ekf->posNE[1]);

				if (dtLastGoodGPS > POS_RESET_THRESHOLD) {
					_ekf->ResetPosition();
					_ekf->ResetVelocity();
				}
			}

			//warnx("gps alt: %6.1f, interval: %6.3f", (double)_ekf->gpsHgt, (double)dtGoodGPS);

			// if (_gps.s_variance_m_s > 0.25f && _gps.s_variance_m_s < 100.0f * 100.0f) {
			// 	_ekf->vneSigma = sqrtf(_gps.s_variance_m_s);
			// } else {
			// 	_ekf->vneSigma = _parameters.velne_noise;
			// }

			// if (_gps.p_variance_m > 0.25f && _gps.p_variance_m < 100.0f * 100.0f) {
			// 	_ekf->posNeSigma = sqrtf(_gps.p_variance_m);
			// } else {
			// 	_ekf->posNeSigma = _parameters.posne_noise;
			// }

			// warnx("vel: %8.4f pos: %8.4f", _gps.s_variance_m_s, _gps.p_variance_m);

			_previousGPSTimestamp = _gps.timestamp_position;

		}
	}

	// If it has gone more than POS_RESET_THRESHOLD amount of seconds since we received a GPS update,
	// then something is very wrong with the GPS (possibly a hardware failure or comlink error)
	const float dtLastGoodGPS = static_cast<float>(_gps.timestamp_position - _previousGPSTimestamp) / 1e6f;

	if (dtLastGoodGPS >= POS_RESET_THRESHOLD) {

		if (_global_pos.dead_reckoning) {
			mavlink_log_info(_mavlink_fd, "[ekf] gave up dead-reckoning after long timeout");
		}

		_gpsIsGood = false;
		_global_pos.dead_reckoning = false;
	}

	//If we have no good GPS fix for half a second, then enable dead-reckoning mode while armed (for up to POS_RESET_THRESHOLD seconds)
	else if (dtLastGoodGPS >= 0.5f) {
		if (_armed.armed) {
			if (!_global_pos.dead_reckoning) {
				mavlink_log_info(_mavlink_fd, "[ekf] dead-reckoning enabled");
			}

			_global_pos.dead_reckoning = true;

		} else {
			_global_pos.dead_reckoning = false;
		}
	}

	//Update barometer
	orb_check(_baro_sub, &_newHgtData);

	if (_newHgtData) {
		static hrt_abstime baro_last = 0;

		orb_copy(ORB_ID(sensor_baro), _baro_sub, &_baro);

		// init lowpass filters for baro and gps altitude
		float baro_elapsed;

		if (baro_last == 0) {
			baro_elapsed = 0.0f;

		} else {
			baro_elapsed = (_baro.timestamp - baro_last) / 1e6f;
		}

		baro_last = _baro.timestamp;
		if(!_baro_init) {
			_baro_init = true;
			_baroAltRef = _baro.altitude;
		}

		_ekf->updateDtHgtFilt(math::constrain(baro_elapsed, 0.001f, 0.1f));

		_ekf->baroHgt = _baro.altitude;
		_baro_alt_filt += (baro_elapsed / (rc + baro_elapsed)) * (_baro.altitude - _baro_alt_filt);

		perf_count(_perf_baro);
	}

	//Update Magnetometer
	if (_newDataMag) {

		_mag_valid = true;

		perf_count(_perf_mag);

		int last_mag_main = _mag_main;

		Vector3f mag0(_sensor_combined.magnetometer_ga[0], _sensor_combined.magnetometer_ga[1],
			_sensor_combined.magnetometer_ga[2]);

		Vector3f mag1(_sensor_combined.magnetometer1_ga[0], _sensor_combined.magnetometer1_ga[1],
			_sensor_combined.magnetometer1_ga[2]);

		const unsigned mag_timeout_us = 200000;

		/* fail over to the 2nd mag if we know the first is down */
		if (hrt_elapsed_time(&_sensor_combined.magnetometer_timestamp) < mag_timeout_us &&
			_sensor_combined.magnetometer_errcount <= _sensor_combined.magnetometer1_errcount &&
			mag0.length() > 0.1f) {
			_ekf->magData.x = mag0.x;
			_ekf->magBias.x = 0.000001f; // _mag_offsets.x_offset

			_ekf->magData.y = mag0.y;
			_ekf->magBias.y = 0.000001f; // _mag_offsets.y_offset

			_ekf->magData.z = mag0.z;
			_ekf->magBias.z = 0.000001f; // _mag_offsets.y_offset
			_mag_main = 0;

		} else if (hrt_elapsed_time(&_sensor_combined.magnetometer1_timestamp) < mag_timeout_us &&
			mag1.length() > 0.1f) {
			_ekf->magData.x = mag1.x;
			_ekf->magBias.x = 0.000001f; // _mag_offsets.x_offset

			_ekf->magData.y = mag1.y;
			_ekf->magBias.y = 0.000001f; // _mag_offsets.y_offset

			_ekf->magData.z = mag1.z;
			_ekf->magBias.z = 0.000001f; // _mag_offsets.y_offset
			_mag_main = 1;
		} else {
			_mag_valid = false;
		}

		if (last_mag_main != _mag_main) {
			mavlink_and_console_log_emergency(_mavlink_fd, "MAG FAILED! Switched from #%d to %d", last_mag_main, _mag_main);
		}
	}

	//Update range data
	orb_check(_distance_sub, &_newRangeData);

	if (_newRangeData) {
		orb_copy(ORB_ID(distance_sensor), _distance_sub, &_distance);
		if ((_distance.current_distance > _distance.min_distance)
				&& (_distance.current_distance < _distance.max_distance)) {
			_ekf->rngMea = _distance.current_distance;
			_distance_last_valid = _distance.timestamp;

		} else {
			_newRangeData = false;
		}
	}
}