Exemplo n.º 1
0
void hueMatrix(GLfloat mat[3][3], float angle)
{
#define SQRT_2      sqrt(2.0)
#define SQRT_3      sqrt(3.0)

	float mag, rot[3][3];
	float xrs, xrc;
	float yrs, yrc;
	float zrs, zrc;

	// Rotate the grey vector into positive Z
	mag = SQRT_2;
	xrs = 1.0/mag;
	xrc = 1.0/mag;
	xRotateMat(mat, xrs, xrc);
	mag = SQRT_3;
	yrs = -1.0/mag;
	yrc = SQRT_2/mag;
	yRotateMat(rot, yrs, yrc);
	matrixMult(rot, mat, mat);

	// Rotate the hue
	zrs = sin(angle);
	zrc = cos(angle);
	zRotateMat(rot, zrs, zrc);
	matrixMult(rot, mat, mat);

	// Rotate the grey vector back into place
	yRotateMat(rot, -yrs, yrc);
	matrixMult(rot,  mat, mat);
	xRotateMat(rot, -xrs, xrc);
	matrixMult(rot,  mat, mat);
}
Exemplo n.º 2
0
// ######################################################################
Image<float> TaskRelevanceMapTigs2::
getTDMap(Image<float> currGist)
{
  Image<float> currGistCut(34,1,NO_INIT);
  Image<float> currGistPCA(itsGistPCADims.getVal(), 1, NO_INIT);
  Image<float> currImgPCA(itsImgPCADims.getVal(), 1, NO_INIT);
  Image<float> tmp(300,1, NO_INIT); //300=20x15 (Rob's cvpr 2007 paper, 32x32 for 1 block)
  Image<float> tmp2;

  for(int i=0; i<34; i++)
    {
      currGistCut.setVal(i, 0, currGist.getVal(i*NUM_GIST_FEAT) );
    }
  currGistPCA = matrixMult(currGistCut, itsGistPCAMatrix);

  currImgPCA = matrixMult(itsCurrFrameVec, itsImgPCAMatrix);
  LINFO("the dim of gist is %d %d, of img is %d %d \n",
        currGistCut.getHeight(), currGistCut.getWidth(),
        itsCurrFrameVec.getHeight(), itsCurrFrameVec.getWidth());

  Image<float> combo = concatX(currGistPCA,currImgPCA);

  tmp = matrixMult(combo, itsTigsMatrix);

  tmp2 = decode(tmp); // tranfer the 20x15 dims vector to an image

  return tmp2;
}
Exemplo n.º 3
0
Arquivo: fem.cpp Projeto: mensik/Japet
/**
 @param[in] vetrices array of vetrices (so far only for 3)
 @param[in] E material constatn E
 @param[in] mi material constatn mi
 @param[in] fs volume force vector
 @param[out] stifMat stifness matrix (array 36 long)
 @param[out]
 */
void elastLoc(Point *vetrices[], PetscReal E, PetscReal mi, PetscReal *fs,
              PetscReal *stifMat, PetscReal *bL) {

    PetscReal
    T[] =
    { 1, 1, 1, vetrices[0]->x, vetrices[1]->x, vetrices[2]->x, vetrices[0]->y, vetrices[1]->y, vetrices[2]->y };

    PetscReal phiGrad[] = { vetrices[1]->y - vetrices[2]->y, vetrices[2]->x
                            - vetrices[1]->x, vetrices[2]->y - vetrices[0]->y, vetrices[0]->x
                            - vetrices[2]->x, vetrices[0]->y - vetrices[1]->y, vetrices[1]->x
                            - vetrices[0]->x
                          };

    //PetscPrintf(PETSC_COMM_SELF, "DET:%e \n", matrixDet(T, 3));

    PetscReal detT = fabs(matrixDet(T, 3));

    PetscReal phiGradT[6];
    matrixTranspose(phiGrad, 3, 2, phiGradT);

    double Cmu[] = { 2, 0, 0, 0, 2, 0, 0, 0, 1 };
    //double Clm[] = { 1, 1, 0, 1, 1, 0, 0, 0, 0 }; Why is this never used?
    PetscReal C[] = { 1 - mi, mi, 0, mi, 1 - mi, 0, 0, 0, (1 - 2 * mi) / 2 };

    matrixSum(C, E / ((1 + mi) * (1 - 2 * mi)), Cmu, 0, C, 3, 3);

    double R[18], RT[18];
    for (int i = 0; i < 18; i++)
        R[i] = 0;

    int idxR1[] = { 0, 2 };
    int idxC1[] = { 0, 2, 4 };
    int idxR2[] = { 2, 1 };
    int idxC2[] = { 1, 3, 5 };

    matrixSetSub(R, 3, 6, idxR1, 2, idxC1, 3, phiGradT);
    matrixSetSub(R, 3, 6, idxR2, 2, idxC2, 3, phiGradT);

    matrixTranspose(R, 3, 6, RT);

    PetscReal temp[18];

    matrixMult(C, 3, 3, R, 3, 6, temp);
    matrixMult(RT, 6, 3, temp, 3, 6, stifMat);

    matrixSum(stifMat, 1 / (2 * detT), stifMat, 0, stifMat, 6, 6);
    //PetscPrintf(PETSC_COMM_SELF, "%e %e \n", fs[0], fs[1]);

    //Volume Force
    for (int i = 0; i < 3; i++) {
        bL[i * 2] = detT / 6 * fs[0];
        bL[i * 2 + 1] = detT / 6 * fs[1];
    }

    //@TODO Edge Force!!!
}
Exemplo n.º 4
0
  LIBRARY_API bool matrixPseudoInv (matrix &in, matrix &out)
  {
    matrix in_T, inTin, inTinInv;
    bool state;

    state = matrixTrans (in, in_T);

    state = state ? matrixMult (in_T, in, inTin) : state;
    state = state ? matrixInv (inTin, inTinInv) : state;
    state = state ? matrixMult (inTinInv, in_T, out) : state;
    return state;
  }
Exemplo n.º 5
0
 vector<vector<int>> matrixExpo(const vector<vector<int>>& A, int pow) {
     vector<vector<int>> result(A.size(), vector<int>(A.size()));
     vector<vector<int>> A_exp(A);
     for (int i = 0; i < A.size(); ++i) {
         result[i][i] = 1;
     }
     while (pow) {
         if (pow % 2 == 1) {
             result = matrixMult(result, A_exp);
         }
         A_exp = matrixMult(A_exp, A_exp);
         pow /= 2;
     }
     return result;
 }
Exemplo n.º 6
0
Image<double> AffineTransform::computeTransform(const CalibrationTransform::Data& d)
{
//loop through calib pts work out the transform M = pInv(e) x S
//set itsTransform= new transform image

    const std::vector<CalPt>& itsCals = d.getItsCalPts();
    int numCalPts = (int)itsCals.size();
    Image<double> scr(3,numCalPts,ZEROS);
    Image<double> eye(3,numCalPts,ZEROS);
    Image<double> eyeInv;
    Image<double> M(3,3,ZEROS);

    Image<double>::iterator scrAptr = scr.beginw();
    Image<double>::iterator eyeAptr = eye.beginw();

    for(int i=0; i < numCalPts; i++)
    {
        *scrAptr++ = itsCals[i].scr_x;
        *scrAptr++ = itsCals[i].scr_y;
        *scrAptr++ = 1;

        *eyeAptr++ = itsCals[i].raw_x;
        *eyeAptr++ = itsCals[i].raw_y;
        *eyeAptr++ = 1;
    }

    int rank =0;
    eyeInv = svdPseudoInv(eye,SVD_LAPACK,&rank,0.0F);

    M = matrixMult(eyeInv,scr);
    itsTransform = M;

    return itsTransform;

}
Exemplo n.º 7
0
double computeLinearityIndex(const State &state, const Matd &stateCovarianceMatrix, const MapFeature *mapFeature)
{
    int invDepthErrorCovMatrixIndex = mapFeature->covarianceMatrixPos + mapFeature->positionDimension - 1;
    
    double invDepthError = sqrt(stateCovarianceMatrix[invDepthErrorCovMatrixIndex][invDepthErrorCovMatrixIndex]);
    double invDepthValue = mapFeature->position[mapFeature->positionDimension - 1];
    
    double sigmaMapFeaturePosError = invDepthError / (invDepthValue * invDepthValue);
    
    double currMapFeatureXYZPos[3] = {0};
    changeInverseDepthToDepth(mapFeature->position, currMapFeatureXYZPos);
    
    double currMapFeatureXYZToCamPos[3] = {0.0L};
    double currMapFeatureXYZToFirstSeenCamPos[3] = {0.0L};
    
    matrixSubs(currMapFeatureXYZPos, state.position, 1, 3, currMapFeatureXYZToCamPos);
    matrixSubs(currMapFeatureXYZPos, mapFeature->position, 1, 3, currMapFeatureXYZToFirstSeenCamPos);
    
    double dotProduct = 0.0L;
    
    matrixMult(currMapFeatureXYZToCamPos, 1, 3, currMapFeatureXYZToFirstSeenCamPos, 1, &dotProduct);
    
    double currMapFeatureXYZToFirstSeenCamPosDistance = euclideanNorm3(currMapFeatureXYZToFirstSeenCamPos);
    double currMapFeatureXYZToCamPosDistance = euclideanNorm3(currMapFeatureXYZToCamPos);
    double cosAlphaDivDistance = dotProduct / (currMapFeatureXYZToFirstSeenCamPosDistance * currMapFeatureXYZToCamPosDistance);
    
    double result = 4.0L * sigmaMapFeaturePosError * cosAlphaDivDistance / currMapFeatureXYZToCamPosDistance;
    return result;
}
Exemplo n.º 8
0
void ApplyHouse(Matrix A,Vector v, int start, int end)
{
  Matrix M,H;

  M = newMatrix();
  H = newMatrix();

  HouseMatrix(H,v,0,n-1);

	  /* Apply it A=H*A*H */
  matrixMult(M,A,H);
  matrixMult(A,H,M);

  freeMatrix(H);
  freeMatrix(M);
}
Exemplo n.º 9
0
void myRotatef(GLfloat *matrix,
	GLfloat angle, GLfloat x, GLfloat y, GLfloat z){
	// Remember the Rodrigues' rotation formula?
	// R = I + S * sin(theta) + Ssquared * (1 - cos(theta))
	GLfloat identity[16];
	GLfloat skewMatrix[16];
	GLfloat skewMatrixSqr[16];
	GLfloat skewXsin[16];
	GLfloat skewSqrXcos[16];
	GLfloat radAngle = DEG2RAD(angle);

	identity[0] = 1; identity[4] = 0; identity[8] = 0; identity[12] = 0;
	identity[1] = 0; identity[5] = 1; identity[9] = 0; identity[13] = 0;
	identity[2] = 0; identity[6] = 0; identity[10] = 1; identity[14] = 0;
	identity[3] = 0; identity[7] = 0; identity[11] = 0; identity[15] = 1;

	skewMatrix[0] = 0; skewMatrix[4] = z; skewMatrix[8] = -y; skewMatrix[12] = 0;
	skewMatrix[1] = -z; skewMatrix[5] = 0; skewMatrix[9] = x; skewMatrix[13] = 0;
	skewMatrix[2] = y; skewMatrix[6] = -x; skewMatrix[10] = 0; skewMatrix[14] = 0;
	skewMatrix[3] = 0; skewMatrix[7] = 0; skewMatrix[11] = 0; skewMatrix[15] = 0;

	matrixMult(skewMatrixSqr, skewMatrix, skewMatrix);

	for (int i = 0; i < 16; i++)
	{
		skewXsin[i] = skewMatrix[i] * sin(radAngle);
		skewSqrXcos[i] = skewMatrixSqr[i] * (1 - cos(radAngle));
	}

	for (int i = 0; i < 16; i++)
	{
		matrix[i] = identity[i] + skewXsin[i] + skewSqrXcos[i];
	}
}
Exemplo n.º 10
0
void object::applyTrans(float **result, float **vertex, long vertCnt, bool doProj, float **proj)
{
	long i;
	float **matrixA;
	float *tempA;

	if (doProj)
	{
		matrixA = matrixAlloc();
		tempA = new float[4];
		matrixMult(matrixA, mTrans, proj);
		for (i = 0; i < vertCnt; i++)
		{
			vectorMatrixMultEx(tempA, vertex[i], matrixA);
			result[i][0] = tempA[0] / tempA[3];
			result[i][1] = tempA[1] / tempA[3];
			result[i][2] = tempA[2] / tempA[3];
		}
		matrixFree(matrixA);
		delete []tempA;
	}
	else
		for (i = 0; i < vertCnt; i++)
			vectorMatrixMult(result[i], vertex[i], mTrans);
}
Exemplo n.º 11
0
Matrix
build_A(int m){
    Matrix K = build_K(2*m);
    Matrix L = build_L(2*m);
    Matrix A = matrixMult(K, L);
    freeMatrix(K);
    freeMatrix(L);
    return A;
}
Exemplo n.º 12
0
// ######################################################################
Image<float> TaskRelevanceMapTigs::
getTDMap(Image<float> currGist)
{
  Image<float> currGistCut(34,1,NO_INIT);
  Image<float> currGistPCA(itsPCADims.getVal(), 1, NO_INIT);
  Image<float> tmp(300,1, NO_INIT); //300=20x15 (Rob's cvpr 2007 paper, 32x32 for 1 block)
  Image<float> tmp2;

  for(int i=0; i<34; i++)
    {
      currGistCut.setVal(i, 0, currGist.getVal(i*NUM_GIST_FEAT) );
    }
  currGistPCA = matrixMult(currGistCut, itsPCAMatrix);

  tmp =  matrixMult(currGistPCA, itsTigsMatrix);
  tmp2 = decode(tmp); // tranfer the 20x15 dims vector to an image

  return tmp2;
}
Exemplo n.º 13
0
void object::buildTrans()
{
	matrixTransEx(mTrans, mOrigin, mAngle, mScale);
	mChanged = true;
	if (mParent != NULL)
	{
		if (!mParent->mChanged)
			mParent->buildTrans();
		matrixMult(mTrans, mTrans, mParent->mTrans);
	}
}
Exemplo n.º 14
0
void Camera::rotateY( double angle )
{
    double matrix[3][3];
    
    matrix[0][0] = cos( angle );  matrix[0][1] = 0.0; matrix[0][2] = sin( angle );
    matrix[1][0] = 0.0;           matrix[1][1] = 1.0; matrix[1][2] = 0.0;
    matrix[2][0] = -sin( angle ); matrix[2][1] = 0.0; matrix[2][2] = cos( angle );
    
    _eye = matrixMult( matrix, _eye );
    computeDerivedParameters();
}
Exemplo n.º 15
0
float *vectorFromAngles(float *angles)
{
	float *result;
	float **tempA;
	float **tempB;
	float **applyTrans;

	tempA = matrixRotation('x', angles[1]);
	tempB = matrixRotation('y', angles[2]);
	applyTrans = matrixIdent(4);
	applyTrans = matrixUpdate(applyTrans, matrixMult(applyTrans, tempA, 4), 4);
	applyTrans = matrixUpdate(applyTrans, matrixMult(applyTrans, tempB, 4), 4);
	result = vectorNull(4);
	result[2] = 1;
	result[3] = 1;
	result = vectorUpdate(result, vectorMatrixMult(result, applyTrans, 4));
	matrixFree(tempA, 4);
	matrixFree(tempB, 4);
	matrixFree(applyTrans, 4);
	return result;
}
Exemplo n.º 16
0
void myLookAt(GLfloat *matrix,
	GLdouble eyeX, GLdouble eyeY, GLdouble eyeZ,
	GLdouble centerX, GLdouble centerY, GLdouble centerZ,
	GLdouble upX, GLdouble upY, GLdouble upZ){
	// Please implement this function.

	GLdouble gaze[3] = { centerX - eyeX, centerY - eyeY, centerZ - eyeZ };
	GLdouble up[3] = { upX, upY, upZ };
	GLdouble normGaze[3];
	double gazeLength;
	GLdouble normUp[3];
	double upLength;
	GLdouble right[3];
	GLdouble normRight[3];
	double rightLength;
	GLfloat translate[16];
	GLfloat modelView[16];

	gazeLength = sqrt(SQR(gaze[0]) + SQR(gaze[1]) + SQR(gaze[2]));

	for (int i = 0; i < 3; i++)
	{
		normGaze[i] = gaze[i] / gazeLength;
	}

	upLength = sqrt(SQR(up[0]) + SQR(up[1]) + SQR(up[2]));

	for (int i = 0; i < 3; i++)
	{
		normUp[i] = up[i] / upLength;
	}

	right[0] = normGaze[1] * normUp[2] - normGaze[2] * normUp[1];
	right[1] = normGaze[2] * normUp[0] - normGaze[0] * normUp[2];
	right[2] = normGaze[0] * normUp[1] - normGaze[1] * normUp[0];

	rightLength = sqrt(SQR(right[0]) + SQR(right[1]) + SQR(right[2]));

	for (int i = 0; i < 3; i++)
	{
		normRight[i] = right[i] / rightLength;
	}

	modelView[0] = normRight[0]; modelView[4] = normRight[1]; modelView[8] = normRight[2]; modelView[12] = 0;
	modelView[1] = normUp[0];	 modelView[5] = normUp[1];	  modelView[9] = normUp[2];	   modelView[13] = 0;
	modelView[2] = -normGaze[0]; modelView[6] = -normGaze[1]; modelView[10] = -normGaze[2]; modelView[14] = 0;
	modelView[3] = 0;			 modelView[7] = 0;			  modelView[11] = 0;			modelView[15] = 1;

	myTranslatef(translate, -eyeX, -eyeY, -eyeZ);

	matrixMult(matrix, modelView, translate);
}
Exemplo n.º 17
0
// This function first generates a transformation matrix for the camera
// Then it multiplies it with all the transforms in the fractal tree leaves...
void generateOGLTransforms(float ftime)
{
	float quaternion[2][4];
	float distance[2];
	float finalTransform[4][4];
	randomQuaternion(quaternion[0], 0.0f);
	randomQuaternion(quaternion[1], 0.0f);

	// linear interpolation of the two quaternions
	float invQuatSize = 0.0f;
	for (int dim = 0; dim < 4; dim++)
	{
		quaternion[0][dim] = 0.5f*ftime * quaternion[1][dim] + 
			(1.0f - 0.5f*ftime) * quaternion[0][dim];
		invQuatSize += quaternion[0][dim] * quaternion[0][dim];
	}
	invQuatSize = 1.0f / sqrtf(invQuatSize);
	for (int dim = 0; dim < 4; dim++)
	{
		quaternion[0][dim] *= invQuatSize;
	}

	matrixFromQuaternion(quaternion[0], finalTransform);

	distance[0] = frand(&transformationSeed) - 0.2f;
	distance[1] = frand(&transformationSeed) + 0.2f;
	finalTransform[2][3] = ftime * distance[0] + (1.0f - ftime) * distance[1];

	// multiply camera transform with leaf matrices
	for (int draw = 0; draw < FRACTAL_NUM_PRE_LEAVES; draw++)
	{
		float tmpMatrix[4][4];
		matrixMult(finalTransform, fractalTree[firstPreLeaf+draw], tmpMatrix);
		for (int s = 0; s < 4; s++)
		{
			for (int t = 0; t < 4; t++)
			{
				fractalTree[firstPreLeaf+draw][s][t] = tmpMatrix[s][t];
			}
		}

		// encode the color in the matrix
		fractalTree[firstPreLeaf+draw][3][0] = fractalColorTree[firstPreLeaf+draw][0];
		fractalTree[firstPreLeaf+draw][3][1] = fractalColorTree[firstPreLeaf+draw][1];
		fractalTree[firstPreLeaf+draw][3][2] = fractalColorTree[firstPreLeaf+draw][2];
		int location = glGetUniformLocation(shaderPrograms[0], "t");
		glUniformMatrix4fv(location, 1, GL_FALSE, &(fractalTree[firstPreLeaf+draw][0][0]));
		glDrawArrays(GL_POINTS, 0, FRACTAL_NUM_LEAVES);
	}
}
Exemplo n.º 18
0
void buildTree(void)
{
	// Set the first entry in the tree to unity (assuming all zeroes)
	fractalTree[0][0][0] = 1.0f;
	fractalTree[0][1][1] = 1.0f;
	fractalTree[0][2][2] = 1.0f;
	fractalTree[0][3][3] = 1.0f;
	fractalColorTree[0][0] = 1.0f;
	fractalColorTree[0][1] = 1.0f;
	fractalColorTree[0][2] = 1.0f;

	int startEntry = 0;
	int endEntry = 1;
	for (int depth = 1; depth < FRACTAL_TREE_DEPTH; depth++)
	{
		firstPreLeaf = firstTreeLeaf;
		firstTreeLeaf = startEntry;

		// seed is stored...
		for (int entry = startEntry; entry < endEntry; entry++)
		{
			for (int transform = 0; transform < 4; transform++)
			{
				int destEntry = entry * 4 + 1 + transform;
				matrixMult(transformMat[transform], fractalTree[entry],
					       fractalTree[destEntry]);
				// Create the color:
				for (int col = 0; col < 3; col++)
				{
					fractalColorTree[destEntry][col] =
						0.625f * fractalColorTree[entry][col] +
						0.375f * transformColor[transform][col];
				}
				fractalColorTree[destEntry][3] = frand(&transformationSeed);
			}
		}

		startEntry = endEntry;
		endEntry += 1 << (2*depth);
	}
}
Exemplo n.º 19
0
Point2D<double> AffineTransform::getCalibrated(const Point2D<double>& raw)
{
    Image<double> rawIm(3,1,ZEROS);
    Image<double> resultIm(3,1,ZEROS);
    Point2D<double> calibPt;

    Image<double>::iterator Aptr = rawIm.beginw();

    *Aptr++ = raw.i;   //x_raw
    *Aptr++ = raw.j;   //y_raw
    *Aptr++ = 1;

    resultIm = matrixMult(rawIm,itsTransform);

    Aptr = resultIm.beginw();

    calibPt.i = *Aptr++;
    calibPt.j = *Aptr;

    return calibPt;
}
// gluLookAt() equivalent
void matrixLookAt(	float result[16],
                    const float eye[3],
                    const float target[3],
                    const float up[3])
{
    float forward[3] = {	target[0] - eye[0],
                            target[1] - eye[1],
                            target[2] - eye[2]
                       };
    vecNormalize(forward);

    float side[3];
    vecCross(side, forward, up);

    float up_after[3];
    vecCross(up_after, side, forward);

    float view_matrix[16] = MATRIX_IDENTITY;

    view_matrix[0] = side[0];
    view_matrix[4] = side[1];
    view_matrix[8] = side[2];

    view_matrix[1] = up_after[0];
    view_matrix[5] = up_after[1];
    view_matrix[9] = up_after[2];

    view_matrix[2]  = -forward[0];
    view_matrix[6]  = -forward[1];
    view_matrix[10] = -forward[2];

    // Final translation
    float trans_matrix[16];
    float minus_eye[3] = {-eye[0], -eye[1], -eye[2]};
    matrixTranslate(trans_matrix, minus_eye);

    matrixMult(result, view_matrix, trans_matrix);
}
Exemplo n.º 21
0
// QR Factorization
void QR(double* A, int m, int n, double* Q, double* R)
{
	// Not a very efficient approach, but simple and effective
	// Written by Nico van Duijn, 9/13/2015
	// Source of algorithm (adjusted by me):
	// http://www.keithlantz.net/2012/05/qr-decomposition-using-householder-transformations/
	// A is the (m*n) matrix to be factorized A=Q*R

	double mag, alpha;
	double u[m], v[m], vtrans[m];
	double P[m * m], I[m * m], vvtrans[m * m], Rbackup[m * m], Qbackup[m * m];
	matrixCopy(A, m, m, R); // Initialize R to A

	// Initialize Q, P, I to Identity
	for (int i = 0; i < m * m; i++)Q[i] = 0;
	for (int i = 0; i < m; i++)Q[i * n + i] = 1;
	for (int i = 0; i < m * m; i++)P[i] = 0;
	for (int i = 0; i < m; i++)P[i * n + i] = 1;
	for (int i = 0; i < m * m; i++)I[i] = 0;
	for (int i = 0; i < m; i++)I[i * n + i] = 1;

	for (int i = 0; i < n; i++)  //loop through all columns
	{
		for (int q = 0; q < m; q++)u[q] = 0; // set u and v to zero
		for (int q = 0; q < m; q++)v[q] = 0;

		mag = 0.0; //set mag to zero

		for (int j = i; j < m; j++)
		{
			u[j] = R[j * n + i];
			mag += u[j] * u[j];
		}
		mag = sqrt(mag);

		alpha = u[i] < 0 ? mag : -mag;

		mag = 0.0;
		for (int j = i; j < m; j++)
		{
			v[j] = j == i ? u[j] + alpha : u[j];
			mag += v[j] * v[j];
		}
		mag = sqrt(mag);

		if (mag < 0.0000000001) continue;

		for (int j = i; j < m; j++) v[j] /= mag;

		// P = I - (v * v.transpose()) * 2.0;
		matrixTranspose(v, m, 1, vtrans);
		matrixMult(v, vtrans, m, 1, m, vvtrans);
		matrixScale(vvtrans, m, m, 2.0);
		matrixSub(I, vvtrans, m, m, P);

		// R = P * R;
		matrixMult(P, R, m, m, m, Rbackup);
		matrixCopy(Rbackup, m, m, R);

		//Q = Q * P;
		matrixMult(Q, P, m, m, m, Qbackup);
		matrixCopy(Qbackup, m, m, Q);
	}

}
Exemplo n.º 22
0
// ######################################################################
Image<float> TaskRelevanceMapGistClassify::
computeGistDist(Image<float> currGist)
{
   FILE* itsFile = fopen(itsClusterCenterFileName.getVal().c_str(), "rb");
   ASSERT(itsFile != 0);

  if(fread(&itsNumOfCategory, sizeof(int), 1, itsFile) != 1) LFATAL("fread failed");
  if(fread(&itsUsedDims, sizeof(int),1,itsFile) != 1) LFATAL("fread failed");
  ASSERT(itsNumOfCategory > 0 && itsUsedDims == itsPCADims.getVal());

  LDEBUG("there are %4d categories, pca_dims: %4d",itsNumOfCategory, itsUsedDims);

  Image<float> currGistCut(currGist.getDims().sz()/NUM_GIST_FEAT, 1, NO_INIT);
  Image<float> currGistPCA(itsPCADims.getVal(), 1, NO_INIT);

  //! only use the whole image's gist feature to do the classification
  for(int i=0; i<currGistCut.getDims().sz(); i++)
    currGistCut.setVal(i,0, currGist.getVal(i*NUM_GIST_FEAT, 0));

  LDEBUG("currGistCut dim: %d, PCA matrix height: %4d",
        currGistCut.getWidth(), itsPCAMatrix.getHeight());

  ASSERT(currGistCut.getWidth() == itsPCAMatrix.getHeight());

  currGistPCA = matrixMult(currGistCut, itsPCAMatrix);

  LDEBUG("currGistPCA : %f, %f, %f", currGistPCA.getVal(0,0),
         currGistPCA.getVal(1,0), currGistPCA.getVal(2,0));

  Image<float> gistDist(itsNumOfCategory, 1,NO_INIT );
  Image<float> gistCenter(itsUsedDims, 1, NO_INIT);
  Image<float> gistCenterCovarMatrix(itsUsedDims,itsUsedDims, NO_INIT);
  Image<float> gistCenterCovarMatrixInv(itsUsedDims, itsUsedDims, NO_INIT);
  Image<float> gistDiff(itsUsedDims,1,NO_INIT);

  float meanClusterGistDist=0.0F;
  float det = 0.0F;
  float coef1 = pow(2*PI, itsUsedDims/2.0F);
  float coef2 = 0.0F, coef3=0.0F, coef4=0.0F;

  for(int i=0; i<itsNumOfCategory; i++)
    {
      if(fread(gistCenter.beginw(), sizeof(float), itsUsedDims, itsFile) != (size_t)itsUsedDims) LFATAL("fread failed");
      if(fread(&meanClusterGistDist, sizeof(float), 1, itsFile) != 1) LFATAL("fread failed");
      if(fread(&det, sizeof(float), 1, itsFile) != 1) LFATAL("fread failed");
      size_t sz = itsUsedDims*itsUsedDims;
      if(fread(gistCenterCovarMatrix.beginw(), sizeof(float), sz, itsFile) != sz) LFATAL("fread failed");

      gistCenterCovarMatrixInv = matrixInv(gistCenterCovarMatrix);

      gistDiff = gistCenter - currGistPCA;

      coef2 =1.0F /( coef1 * pow(det, 0.5)+0.0000001F );

      Image<float> tmp = matrixMult(matrixMult(gistDiff,  gistCenterCovarMatrixInv),
                                    transpose(gistDiff));

      coef3 = exp(-0.5F * tmp.getVal(0,0));
      coef4 = coef2 * coef3 / (meanClusterGistDist+0.5F);

      LDEBUG("%d's is %f,  %f, %f , mean is %f,sumDiff is%f\n", i+1, tmp.getVal(0,0),
            coef3, coef4, meanClusterGistDist, sum(gistDiff*gistDiff));
      gistDist.setVal(i, 0, coef4);

    }
  fclose(itsFile);

  return gistDist;
}
Exemplo n.º 23
0
double nuGibbs(double *nu,int Q,int G,const int *S,double gamma2,
	       const double *tau2Rho,const double *a,const double *rho,
	       const double *sigma2,const double *phi,
	       const int *psi,const double *x,
	       const int *delta,const double *Delta,Random &ran,int draw) {
  double pot = 0.0;

  int g;
  for (g = 0; g < G; g++) {
    //
    // compute prior covariance matrix
    //

    std::vector<std::vector<double> > var;
    makeSigma(g,G,var,Q,gamma2,tau2Rho,a,sigma2,rho);

    //
    // define prior mean
    //

    std::vector<double> Mean(Q,0.0);

    //
    // compute extra linear and quadratic terms
    //

    std::vector<double> lin(Q,0.0);
    std::vector<double> quad(Q,0.0);
    int s;
    int q;
    for (q = 0; q < Q; q++) {
      int kqg = qg2index(q,g,Q,G);
      double var0 = sigma2[kqg] * phi[kqg];
      double var1 = sigma2[kqg] / phi[kqg];
      for (s = 0; s < S[q]; s++) {
	int ksq = sq2index(s,q,S,Q);
	double variance = psi[ksq] == 0 ? var0 : var1;
	quad[q] += 1.0 / variance;
	int ksqg = sqg2index(s,q,g,S,Q,G);
	lin[q] += (x[ksqg] - delta[kqg] * (2.0 * psi[ksq] - 1.0) *
		   Delta[kqg]) / variance;
      }
    }

    //
    // Update parameters based on available observations
    //

    std::vector<std::vector<double> > varInv;
    double detPrior = inverse(var,varInv);

    for (q = 0; q < Q; q++) {
      varInv[q][q] += quad[q];
      Mean[q] += lin[q];
    }

    double detPosterior = 1.0 /inverse(varInv,var);
    std::vector<double> mean(Q,0.0);
    matrixMult(var,Mean,mean);

    //
    // Draw new values
    //

    std::vector<double> vv(Q,0.0);

    if (draw == 1)
      vv = ran.MultiGaussian(var,mean);
    else {
      for (q = 0; q < Q; q++) {
	int kqg = qg2index(q,g,Q,G);
	vv[q] = nu[kqg];
      }
    }

    pot += ran.PotentialMultiGaussian(var,mean,vv);

    if (draw == 1) {
      for (q = 0; q < Q; q++) {
	int kqg = qg2index(q,g,Q,G);
	nu[kqg] = vv[q];
      }
    }
  }

  return pot;
}
Exemplo n.º 24
0
void computeAddFeatureJacobian(const double *orientation,
                               const double *rotationMatrixWC,
                               const double *featureImagePos,
                               double *jacobianPositionAndOrientationSubmatrix,
                               double *jacobianHAndRhoSubmatrix)
{
    CameraCalibration *cameraCalib = ConfigurationManager::getInstance().cameraCalibration;

    double undistortedPoint[2] = {0};
    undistortPoint(featureImagePos, undistortedPoint);
    
    // Feature con respecto a la camara pasado al espacio proyectivo
    double x_c = -(cameraCalib->cx - undistortedPoint[0]) / cameraCalib->fx;
    double y_c = -(cameraCalib->cy - undistortedPoint[1]) / cameraCalib->fy;
    double z_c = 1.0L;
    
    double xyz_c[3] = {0};
    xyz_c[0] = x_c;
    xyz_c[1] = y_c;
    xyz_c[2] = z_c;
    
    double xyz_w[3] = {0};
    multiplyRotationMatrixByVector(rotationMatrixWC, xyz_c, xyz_w);
    
    double x_w = xyz_w[0];
    double y_w = xyz_w[1];
    double z_w = xyz_w[2];
    
    double xx_plus_zz = x_w*x_w + z_w*z_w;
    
    double dtheta_dgw[3] = {0};
    dtheta_dgw[0] = z_w / xx_plus_zz;
    dtheta_dgw[1] = 0;
    dtheta_dgw[2] = -x_w / xx_plus_zz;
    
    double sqrt_xx_plus_zz = sqrt(x_w*x_w + z_w*z_w);
    double norm_sq = xx_plus_zz + y_w*y_w;
    
    double dphi_dgw[3] = {0};
    dphi_dgw[0] = x_w * y_w / (norm_sq * sqrt_xx_plus_zz);
    dphi_dgw[1] = -sqrt_xx_plus_zz / norm_sq;
    dphi_dgw[2] = z_w * y_w / (norm_sq * sqrt_xx_plus_zz);
    
    double dgw_dqwr[12] = {0};
    makeJacobianOfQuaternionToRotationMatrix(orientation, xyz_c, dgw_dqwr);
    
    double dtheta_dqwr[4] = {0};
    matrixMult(dtheta_dgw, 1, 3, dgw_dqwr, 4, dtheta_dqwr);
    
    double dphi_dqwr[4] = {0};
    matrixMult(dphi_dgw, 1, 3, dgw_dqwr, 4, dphi_dqwr);
    
    //    int derivativeResultRows = 6;
    int derivativeResultCols = 7;
    
    for (int i = 0; i < 3; ++i)
    {
        jacobianPositionAndOrientationSubmatrix[i*derivativeResultCols + i] = 1.0L;
    }
    
    for (int i = 0; i < 4; ++i)
    {
        // 4ta fila, columnas 3, 4, 5 y 6
        jacobianPositionAndOrientationSubmatrix[3*derivativeResultCols + i+3] = dtheta_dqwr[i];
        
        // 5ta fila, columnas 3, 4, 5 y 6
        jacobianPositionAndOrientationSubmatrix[4*derivativeResultCols + i+3] = dphi_dqwr[i];
    }
    
    // Para las siguientes lineas de codigo conviene ver el archivo de MATLAB add_a_feature_covariance_inverse_depth.m
    // Multiplicacion de dyprima_dgw * dgw_dgc.
    // subresult_dgw_dgc: 2x3
    double subresult_dgw_dgc[6] = {0};
    matrixMult(dtheta_dgw, 1, 3, rotationMatrixWC, 3, &subresult_dgw_dgc[0]);
    matrixMult(dphi_dgw, 1, 3, rotationMatrixWC, 3, &subresult_dgw_dgc[3]);
    
    // multiplicacion de dyprima_dgw * dgw_dgc * dgc_dhu.
    double fku_inv = 1.0L / cameraCalib->fx;
    double fkv_inv = 1.0L / cameraCalib->fy;
    
    // dgc_dhu: 3x2
    double dgc_dhu[6] = {fku_inv, 0, 0, fkv_inv, 0, 0};
    // subresult_dgc_dhu: 2x2
    double subresult_dgc_dhu[4] = {0};
    matrixMult(subresult_dgw_dgc, 2, 3, dgc_dhu, 2, subresult_dgc_dhu);
    
    double dhu_dhd[4] = {0};
    computeUndistortPointJacobian(featureImagePos, dhu_dhd);
    
    // jacobianHAndRhoSubmatrix:6x3 de la forma
    // 0   0   0
    // 0   0   0
    // 0   0   0
    // a   b   0
    // c   d   0
    // 0   0   1
    
    // subresult_dhu_dhd: 2x2
    double subresult_dhu_dhd[4] = {0};
    
    matrixMult(subresult_dgc_dhu, 2, 2, dhu_dhd, 2, subresult_dhu_dhd);
    
    jacobianHAndRhoSubmatrix[9] = subresult_dhu_dhd[0];
    jacobianHAndRhoSubmatrix[10] = subresult_dhu_dhd[1];
    jacobianHAndRhoSubmatrix[12] = subresult_dhu_dhd[2];
    jacobianHAndRhoSubmatrix[13] = subresult_dhu_dhd[3];
    jacobianHAndRhoSubmatrix[17] = 1.0L;
}
Exemplo n.º 25
0
double DeltaGibbs(int g,double *Delta,int Q,int G,const int *S,double c2,
		  const double *tau2R,const double *b,const double *r,
		  const double *sigma2,const double *phi,
		  const int *psi,const double *x,
		  const int *delta,const double *nu,Random &ran,int draw) {
  double pot = 0.0;

  //
  // compute prior covariance matrix
  //

  int dim = 0;
  std::vector<int> on(Q,0);
  int q;
  for (q = 0; q < Q; q++) {
    int kqg = qg2index(q,g,Q,G);
    if (delta[kqg] == 1) {
      on[q] = 1;
      dim++;
    }
  }

  if (dim > 0) {
    std::vector<std::vector<double> > var;
    makeSigma(g,G,var,on,Q,c2,tau2R,b,sigma2,r);

    //
    // define prior mean
    //

    std::vector<double> Mean(dim,0.0);
    std::vector<double> meanPrior(Mean);

    //
    // compute extra linear and quadratic terms
    //

    std::vector<double> mean(dim,0.0);

    std::vector<double> lin(dim,0.0);
    std::vector<double> quad(dim,0.0);
    int s;
    int k = 0;
    for (q = 0; q < Q; q++) {
      if (on[q] == 1) {
	int kqg = qg2index(q,g,Q,G);
	double var0 = sigma2[kqg] * phi[kqg];
	double var1 = sigma2[kqg] / phi[kqg];
	int s;
	for (s = 0; s < S[q]; s++)
	  {
	    int ksq = sq2index(s,q,S,Q);
	    double variance = psi[ksq] == 0 ? var0 : var1;
	    quad[k] += 1.0 / variance;
	    int xIndex = sqg2index(s,q,g,S,Q,G);
	    lin[k] += (2.0 * psi[ksq] - 1.0) * (x[xIndex] - nu[kqg]) / variance;
	  }
	k++;
      }
    }

    //
    // Update parameters based on available observations
    //

    std::vector<std::vector<double> > varInv;
    double detPrior = inverse(var,varInv);
    std::vector<std::vector<double> > covInvPrior(varInv);
    for (k = 0; k < dim; k++) {
      Mean[k] += lin[k];
      varInv[k][k] += quad[k];
    }
    double detPosterior = 1.0 / inverse(varInv,var);
    matrixMult(var,Mean,mean);

    //
    // Draw new values
    //

    std::vector<double> vv(dim,0.0);
    if (draw == 1)
      vv = ran.MultiGaussian(var,mean);
    else {
      k = 0;
      for (q = 0; q < Q; q++) {
	if (on[q] == 1) {
	  int kqg = qg2index(q,g,Q,G);
	  vv[k] = Delta[kqg];
	  k++;
	}
      }
    }

    pot += ran.PotentialMultiGaussian(var,mean,vv);

    if (draw == 1) {
      k = 0;
      for (q = 0; q < Q; q++) {
	if (on[q] == 1) {
	  int kqg = qg2index(q,g,Q,G);
	  Delta[kqg] = vv[k];
	  k++;
	}
      }
    }
  }

  return pot;
}
Exemplo n.º 26
0
// ######################################################################
// open a testing file containing images and corresponding ground truth
void setupCases(std::string folder, std::string fname, bool equalize)
{
    char comment[200];
    FILE *fp;
    char inLine[100];

    // open a file that lists the sample with ground truth
    std::string name = folder + fname;
    if((fp = fopen(name.c_str(),"rb")) == NULL)
    {
        LINFO("samples file: %s not found", name.c_str());

        // input and output vector
        out.resize(0);
        in.resize(0);
        nSamples = 0;

        return;
    }
    LINFO("tName: %s",name.c_str());

    // get number of samples
    if (fgets(inLine, 1000, fp) == NULL) LFATAL("fgets failed");
    sscanf(inLine, "%d %s", &nSamples, comment);

    // the number of categories -> has to agree with the training file
    uint tNout;
    if (fgets(inLine, 1000, fp) == NULL) LFATAL("fgets failed");
    sscanf(inLine, "%d %s", &tNout, comment);
    if(tNout != info->nOutput)
        LFATAL("Num categories differ: %d != %d", tNout, info->nOutput);

    // get the type of ground truth
    char gtOpt[100];
    int gtType = -1;
    if (fgets(inLine, 1000, fp) == NULL) LFATAL("fgets failed");
    sscanf(inLine, "%s %s", gtOpt, comment);
    if(strcmp(gtOpt,"ABSOLUTE") == 0)
        gtType = ABSOLUTE;
    else if(strcmp(gtOpt,"MIXTURE" ) == 0)
        gtType = MIXTURE;
    else
        LFATAL("unknown ground truth type %s",gtOpt);

    // set up the size input and output vector
    out.resize(nSamples);
    in.resize(nSamples);

    // skip column headers
    if (fgets(inLine, 1000, fp) == NULL) LFATAL("fgets failed");

    char cName[100];
    char sName[100];
    char iName[100];
    char ext[100];
    int cStart, cNum;
    int gTruth;
    FILE *ifp;
    int count = 0;
    int tSamples = 0;
    std::vector<uint> nSamples;
    while(fgets(inLine, 1000, fp) != NULL)
    {
        if(gtType == ABSOLUTE)
        {
            // get the files in this category and ground truth
            sscanf(inLine, "%s %d %d %d %s", cName, &cStart, &cNum,  &gTruth, ext);
            sprintf(sName,"%s%s", folder.c_str(), cName);
            printf("    sName: %s %d %d %d %s\n",sName, cStart, cNum, gTruth, ext);
        }
        else if(gtType == MIXTURE)
        {
            // get the files in this category and ground truth
            //char tStr[300];
            //sscanf(inLine, "%s %d %d %s %s", cName, &cStart, &cNum,  tStr, ext);
            //sprintf(sName,"%s%s", folder, cName);
            //printf(" sName: %s %d %d %d %s\n",sName, cStart, cNum, gTruth, ext);

            // change to mixture values
            LFATAL("MIXTURE ground truth type not yet implemented");
        }
        else LFATAL("unknown ground truth type %s",gtOpt);

        nSamples.push_back(cNum);

        // go through every sample
        for(int j = cStart; j < cStart+cNum; j++)
        {
            tSamples++;
            // get the corresponding vector file (if exist)
            sprintf(iName,"%s%06d%s", sName,j,ext);

            // open the file
            if((ifp = fopen(iName,"rb")) != NULL)
            {
                Image<double> tData(1,info->oriFeatSize, NO_INIT);
                Image<double>::iterator aptr = tData.beginw();

                for(int i = 0; i < tData.getSize(); i++)
                {
                    double val;
                    if (fread(&val, sizeof(double), 1, ifp) != 1) LFATAL("fread failed");
                    *aptr++ = val;
                }

                LINFO("feature file found: %s (%d)",//%7.4f %7.4f %7.4f %7.4f\n",
                      iName,gTruth);//,tData[0], tData[21], tData[42], tData[63]);
                fclose(ifp);

                // calculate the reduced features
                if(info->isPCA) in[count] = matrixMult(pcaIcaMatrix, tData);
                else in[count] = tData;

                // load the ground truth
                if(gtType == ABSOLUTE)
                {
                    Image<double> res(1,info->nOutput, ZEROS);
                    res.setVal(0, gTruth, 1.0);
                    out[count] = res;
                }
                else if(gtType == MIXTURE)
                {
                    LFATAL("MIXTURE ground truth type not yet implemented");
                }
                else LFATAL("unknown ground truth type %s",gtOpt);

//             // just to test stuff
//             for(int k = 0; k < info->oriFeatSize; k++)
//                 printf("ori[%7d]: %f \n", k, tData.getVal(k));
//             printf("\n");

//             for(int k = 0; k < info->redFeatSize; k++)
//                 printf("red[%7d]: %f \n", k, in[count].getVal(k));
//             printf("\n");
//             //for(uint k = 0; k < info->nOutput; k++)
//             //    printf("%f \n",out[count].getVal(k));
//             Raster::waitForKey();

                count++;
            }
            else LFATAL("file: %s not found\n",iName);
        }
    }

    // equalize the number of samples if requested
    if(equalize)
    {
        // find the max
        uint max = 0;
//       for(uint i = 0; i < nSamples.size(); i++)
//         if(max < nSamples[i]) max = nSamples[i];
        max = *max_element(nSamples.begin(),nSamples.end());
        LINFO("max element: %d", max);

        uint offset = 0;
        for(uint i = 0; i < nSamples.size(); i++)
        {
            LINFO("extra samples for class[%3d]: %d - %d -> %d",
                  i, max,  nSamples[i], max - nSamples[i]);
            for(uint j = 0; j < max - nSamples[i]; j++)
            {
                // index to be copied
                uint index = rand()/(RAND_MAX + 1.0) * nSamples[i];
                LINFO("[%d] Duplicating class[%3d] sample[%3d]"
                      " -> actual ind: %3d",
                      j, i, index, index + offset);
                index = index + offset;

                in.push_back(in[index]);
                out.push_back(out[index]);
            }
            offset += nSamples[i];
        }
        LINFO("Total samples before equalized: %d \n",tSamples);
        tSamples = in.size();
    }

    LINFO("Actual total samples: %d \n",tSamples);
    fclose(fp);
}
Exemplo n.º 27
0
void loop()
{
	// Room for the two matricies
	int** a = (int**) malloc(ra*sizeof(int*));
    for(int i=0; i<ra; i++)
        a[i] = malloc(carb*sizeof(int));

	int** b = (int**) malloc(carb*sizeof(int*));
    for(int i=0; i<carb; i++)
        b[i] = malloc(ra*sizeof(int));

	// Show and randomly fill A
	printf("Matrix A:\n");
	for (int i=0; i<ra;i++) {
		for (int j=0; j<carb; j++) {
			a[i][j] = rand();
			printf("%i ", a[i][j]);
		}
		printf("\n");
	}
	
	// Show and randomly fill B
	printf("Matrix B:\n");
	for (int i=0; i<carb;i++) {
		for (int j=0; j<cb; j++) {
			b[i][j] = (int) rand();
			printf("%i ", b[i][j]);
		}
		printf("\n");
	}
	
	int startCalcTime = micros();
	int** result = matrixMult(a, b, ra, carb, cb);
	int endCalcTime = micros();
	
	// Show the mult result
	printf("Mult result:\n");
    int startTransTime = micros();
	for (int i=0; i<ra; i++) {
		for (int j=0; j<cb; j++) {
			printf("%i ", result[i][j]);
		}
		printf("\n");
	}
    int endTransTime = micros();

    printf("Calc time: %i\n", endCalcTime - startCalcTime);
    printf("With transmission: %i\n", endCalcTime - startCalcTime + endTransTime - startTransTime);

    for(int i=0; i<ra; i++)
        free(a[i]);
    free(a);

    for(int i=0; i<carb; i++) {
        free(result[i]);
        free(b[i]);
    }

    free(b);
    free(result);
}
Exemplo n.º 28
0
// LLSQ Approx. Trilateration
void locateLLSQ(int numantennas, double* antennas, double* distances, double* x)
{
	// function saves triangulated position in vector x
	// input *antennas holds
	// x1, y1, z1,
	// x2, y2, z2,
	// x3, y3, z3,
	// x4, y4, z4;
	// numantennas holds integer number of antennas (min 5)
	// double *distances holds pointer to array holding distances from each antenna
	// Theory used:
	// http://inside.mines.edu/~whereman/talks/TurgutOzal-11-Trilateration.pdf

	// define some locals
	int m = (numantennas - 1); // Number of rows in A
	int n = 3; // Number of columns in A (always three)
	if (m >= 4)n = 4; // Number of columns in A: three coordinates plus K
	double A[m * n];
	double b[m * 1];
	double r;
	double Atranspose[n * m];
	double AtAinA[n * m];
	double AtA[n * n];

	//Calculating b vector
	for (int i = 0; i < m; i++)
	{
		r = dist(antennas[0], antennas[1], antennas[2], antennas[(i + 1) * 3], antennas[(i + 1) * 3 + 1], antennas[(i + 1) * 3 + 2]);
		b[i] = 0.5*(distances[0] * distances[0] - distances[i + 1] * distances[i + 1] + r * r); // If given exact distances
		if (n == 4)b[i] = 0.5 * r*r; // For the case when we calculate K, overwrite b
	}

#ifdef VERBOSE
	matrixPrint(b, m, 1, "b");
#endif // DEBUG


	//Calculating A matrix
	for (int i = 0; i < m; i++)
	{
		A[i * n] = antennas[(i + 1) * 3] - antennas[0];         //xi-x1
		A[i * n + 1] = antennas[(i + 1) * 3 + 1] - antennas[1]; //yi-y1
		A[i * n + 2] = antennas[(i + 1) * 3 + 2] - antennas[2]; //zi-z1
		if (n == 4) A[i * n + 3] = -0.5 * (distances[0] * distances[0] - distances[i + 1] * distances[i + 1]); // for K
	}

#ifdef VERBOSE
	matrixPrint(A, m, n, "A");
#endif // DEBUG

	matrixTranspose(A, m, n, Atranspose);
	matrixMult(Atranspose, A, n, m, n, AtA);

	if (matrixInvert(AtA, n) == 1)   //well behaved
	{
		matrixMult(AtA, Atranspose, n, n, m, AtAinA);
		matrixMult(AtAinA, b, n, m, 1, x);

	}
	else      // Ill-behaved A
	{

		double Q[m * m], Qtranspose[m * m], Qtransposeb[m * 1];
		double R[m * m];
		QR(A, m, n, Q, R);
		matrixTranspose(Q, m, m, Qtranspose);
		matrixMult(Qtranspose, b, m, m, 1, Qtransposeb);
		matrixInvert(R, m);
		matrixMult(R, Qtransposeb, m, m, 1, x);
	}

	// Adding back the reference point
	x[0] = x[0] + antennas[0];
	x[1] = x[1] + antennas[1];
	x[2] = x[2] + antennas[2];
	if (n == 4)x[3] = 1 / sqrt(x[3]); // Calculate K
}
Exemplo n.º 29
0
void RunMatrixTest (struct MatrixMultInfo* info)
{
    int i, n, numRepeats;
    size_t numBytes;
    double *aMat, *bMat, *cMat, *dMat;
    
    
    /*************************************************************************************/
    /****************          INITIALIZATION AND SETUP          *************************/
    /*************************************************************************************/
    
    n = info->matrixSize;         /* change this to be what user inputs from APP */
    numRepeats = info->numberIterations;   /* change this to be what user inputs from APP */
    
    struct timeval totalStart;
    gettimeofday(&totalStart, NULL); 
    
    /* Allocate memory to store the matrices on the device */
    numBytes = n*n*sizeof(double);
    mallocOnDevice(numBytes, (void**)&aMat);
    mallocOnDevice(numBytes, (void**)&bMat);
    mallocOnDevice(numBytes, (void**)&cMat);
    mallocOnDevice(numBytes, (void**)&dMat);
    
    /* Fill matrices with some random values */
    for (i=0; i<n*n; i++) {
        aMat[i] = rand() / (double)RAND_MAX;
    }
    for (i=0; i<n*n; i++) {
        bMat[i] = rand() / (double)RAND_MAX;
    }
    
    /*************************************************************************************/
    /**********************    MATRIX MULTIPLY TESTING      ******************************/
    /*************************************************************************************/
    
    struct timeval multStart;
    gettimeofday(&multStart, NULL);   
    
    /* execute the matrix multiply */
    for (i=0; i<numRepeats; i++) {
        if (!info->useblas)
            matrixMult(n, aMat, bMat, cMat);
        else
            matrixMultBLAS(n, aMat, bMat, cMat);
    }
    
    /*    matrixMultBLAS (n, aMat, bMat, dMat);
     
     for (i=0; i<n*n; i++) {
     double diff = fabs(cMat[i] - dMat[i]);
     if (diff > .0000005)
     diff = diff;
     }
     */    
    struct timeval multEnd;
    gettimeofday(&multEnd, NULL);   
    
    /*************************************************************************************/
    /******************          SHUTDOWN AND CLEANUP          ***************************/
    /*************************************************************************************/
    
    /* deallocate memory */
    freeOnDevice(aMat);
    freeOnDevice(bMat);
    freeOnDevice(cMat);
    freeOnDevice(dMat);
    
    struct timeval totalEnd;
    gettimeofday(&totalEnd, NULL); 
    
    /* count the number of MFLOPS for this operation */
    info->MFlops = 2.0*n*n*n*numRepeats / 1000000.0;
    
    long elapsed_seconds  = multEnd.tv_sec  - multStart.tv_sec;
    long elapsed_useconds = multEnd.tv_usec - multStart.tv_usec;
    
    info->matrixMultiplyTime = ((double)elapsed_seconds) + (((double)elapsed_useconds)/1000000);
    
    elapsed_seconds  = totalEnd.tv_sec  - totalStart.tv_sec;
    elapsed_useconds = totalEnd.tv_usec - totalStart.tv_usec;
    
    info->totalTime = ((double)elapsed_seconds) + (((double)elapsed_useconds)/1000000);
}