Exemplo n.º 1
0
lars_type * lars_alloc2( matrix_type * X , matrix_type * Y , bool internal_copy ) {
  lars_type * lars = lars_alloc__();
  if (internal_copy) {
    lars->X = matrix_alloc_copy( X );
    lars->Y = matrix_alloc_copy( Y );
    lars->data_owner = true;
  } else {
    lars->X = X; 
    lars->Y = Y;
    lars->data_owner = false;
  }
  return lars;
}
Exemplo n.º 2
0
matrix_type * matrix_realloc_copy(matrix_type * T , const matrix_type * src) {
  if (T == NULL)
    return matrix_alloc_copy( src );
  else {
    matrix_resize( T , src->rows , src->columns , false );
    matrix_assign( T , src );
    return T;
  }
}
Exemplo n.º 3
0
void rml_enkf_common_initA__( matrix_type * A ,
                              matrix_type * S , 
                              matrix_type * Cd , 
                              matrix_type * E , 
                              matrix_type * D ,
                              double truncation,
                              double lamda,
                              matrix_type * Udr,
                              double * Wdr,
                              matrix_type * VdTr) {

  int nrobs         = matrix_get_rows( S );
  int ens_size      = matrix_get_columns( S );
  double a = lamda + 1;
  matrix_type *tmp  = matrix_alloc (nrobs, ens_size);
  double nsc = 1/sqrt(ens_size-1);

  
  printf("The lamda Value is %5.5f\n",lamda);
  printf("The Value of Truncation is %4.2f \n",truncation);

  matrix_subtract_row_mean( S );           /* Shift away the mean in the ensemble predictions*/
  matrix_inplace_diag_sqrt(Cd);
  matrix_dgemm(tmp, Cd, S,false, false, 1.0, 0.0);
  matrix_scale(tmp, nsc);
  
  printf("The Scaling of data matrix completed !\n ");


  // SVD(S)  = Ud * Wd * Vd(T)
  int nsign = enkf_linalg_svd_truncation(tmp , truncation , -1 , DGESVD_MIN_RETURN  , Wdr , Udr , VdTr);
  
  /* After this we only work with the reduced dimension matrices */
  
  printf("The number of siginificant ensembles are %d \n ",nsign);
  
  matrix_type * X1   = matrix_alloc( nsign, ens_size);
  matrix_type * X2    = matrix_alloc (nsign, ens_size );
  matrix_type * X3    = matrix_alloc (ens_size, ens_size );
  
  
  // Compute the matrices X1,X2,X3 and dA 
  enkf_linalg_rml_enkfX1(X1, Udr ,D ,Cd );  //X1 = Ud(T)*Cd(-1/2)*D   -- D= -(dk-d0)
  enkf_linalg_rml_enkfX2(X2, Wdr ,X1 ,a, nsign);  //X2 = ((a*Ipd)+Wd^2)^-1  * X1

  matrix_free(X1);

  enkf_linalg_rml_enkfX3(X3, VdTr ,Wdr,X2, nsign);  //X3 = Vd *Wd*X2
  printf("The X3 matrix is computed !\n ");

  matrix_type *dA1= matrix_alloc (matrix_get_rows(A), ens_size);
  matrix_type * Dm  = matrix_alloc_copy( A );

  matrix_subtract_row_mean( Dm );      /* Remove the mean from the ensemble of model parameters*/
  matrix_scale(Dm, nsc);

  enkf_linalg_rml_enkfdA(dA1, Dm, X3);      //dA = Dm * X3   
  matrix_inplace_add(A,dA1); //dA 

  matrix_free(X3);
  matrix_free(Dm);
  matrix_free(dA1);
}
Exemplo n.º 4
0
void bootstrap_enkf_updateA(void * module_data ,
                            matrix_type * A ,
                            matrix_type * S ,
                            matrix_type * R ,
                            matrix_type * dObs ,
                            matrix_type * E ,
                            matrix_type * D ) {

    bootstrap_enkf_data_type * bootstrap_data = bootstrap_enkf_data_safe_cast( module_data );
    {
        const int num_cpu_threads = 4;
        int ens_size              = matrix_get_columns( A );
        matrix_type * X           = matrix_alloc( ens_size , ens_size );
        matrix_type * A0          = matrix_alloc_copy( A );
        matrix_type * S_resampled = matrix_alloc_copy( S );
        matrix_type * A_resampled = matrix_alloc( matrix_get_rows(A0) , matrix_get_columns( A0 ));
        int ** iens_resample      = alloc_iens_resample( bootstrap_data->rng , ens_size );
        {
            int ensemble_members_loop;
            for ( ensemble_members_loop = 0; ensemble_members_loop < ens_size; ensemble_members_loop++) {
                int unique_bootstrap_components;
                int ensemble_counter;
                /* Resample A and meas_data. Here we are careful to resample the working copy.*/
                {
                    {
                        int_vector_type * bootstrap_components = int_vector_alloc( ens_size , 0);
                        for (ensemble_counter  = 0; ensemble_counter < ens_size; ensemble_counter++) {
                            int random_column = iens_resample[ ensemble_members_loop][ensemble_counter];
                            int_vector_iset( bootstrap_components , ensemble_counter , random_column );
                            matrix_copy_column( A_resampled , A0 , ensemble_counter , random_column );
                            matrix_copy_column( S_resampled , S  , ensemble_counter , random_column );
                        }
                        int_vector_select_unique( bootstrap_components );
                        unique_bootstrap_components = int_vector_size( bootstrap_components );
                        int_vector_free( bootstrap_components );
                    }

                    if (bootstrap_data->doCV) {
                        const bool_vector_type * ens_mask = NULL;
                        cv_enkf_init_update( bootstrap_data->cv_enkf_data , ens_mask , S_resampled , R , dObs , E , D);
                        cv_enkf_initX( bootstrap_data->cv_enkf_data , X , A_resampled , S_resampled , R , dObs , E , D);
                    } else
                        std_enkf_initX(bootstrap_data->std_enkf_data , X , NULL , S_resampled,R, dObs, E,D );


                    matrix_inplace_matmul_mt1( A_resampled , X , num_cpu_threads );
                    matrix_inplace_add( A_resampled , A0 );
                    matrix_copy_column( A , A_resampled, ensemble_members_loop, ensemble_members_loop);

                }
            }
        }


        free_iens_resample( iens_resample , ens_size);
        matrix_free( X );
        matrix_free( S_resampled );
        matrix_free( A_resampled );
        matrix_free( A0 );
    }
}
Exemplo n.º 5
0
Arquivo: stepwise.c Projeto: jokva/ert
static double stepwise_estimate__( stepwise_type * stepwise , bool_vector_type * active_rows) {
    matrix_type * X;
    matrix_type * E;
    matrix_type * Y;

    double y_mean    = 0;
    int nvar         = matrix_get_columns( stepwise->X0 );
    int nsample      = matrix_get_rows( stepwise->X0 );

    nsample = bool_vector_count_equal( active_rows , true );
    nvar = bool_vector_count_equal( stepwise->active_set , true );


    matrix_set( stepwise->beta , 0 ); // It is essential to make sure that old finite values in the beta0 vector do not hang around.


    /*
      Extracting the data used for regression, and storing them in the
      temporary local matrices X and Y. Selecting data is based both on
      which varibles are active (stepwise->active_set) and which rows
      should be used for regression, versus which should be used for
      validation (@active_rows).
    */
    if ((nsample < matrix_get_rows( stepwise->X0 )) || (nvar < matrix_get_columns( stepwise->X0 ))) {
        X = matrix_alloc( nsample , nvar );
        E = matrix_alloc( nsample , nvar );
        Y = matrix_alloc( nsample , 1);

        {
            int icol,irow;   // Running over all values.
            int arow,acol;   // Running over active values.
            arow = 0;
            for (irow = 0; irow < matrix_get_rows( stepwise->X0 ); irow++) {
                if (bool_vector_iget( active_rows , irow )) {
                    acol = 0;
                    for (icol = 0; icol < matrix_get_columns( stepwise->X0 ); icol++) {
                        if (bool_vector_iget( stepwise->active_set , icol )) {
                            matrix_iset( X , arow , acol , matrix_iget( stepwise->X0 , irow , icol ));
                            matrix_iset( E , arow , acol , matrix_iget( stepwise->E0 , irow , icol ));
                            acol++;
                        }
                    }

                    matrix_iset( Y , arow , 0 , matrix_iget( stepwise->Y0 , irow , 0 ));
                    arow++;
                }
            }
        }
    } else {
        X = matrix_alloc_copy( stepwise->X0 );
        E = matrix_alloc_copy( stepwise->E0 );
        Y = matrix_alloc_copy( stepwise->Y0 );
    }


    {

        if (stepwise->X_mean != NULL)
            matrix_free( stepwise->X_mean);

        stepwise->X_mean = matrix_alloc( 1 , nvar );

        if (stepwise->X_norm != NULL)
            matrix_free( stepwise->X_norm);

        stepwise->X_norm = matrix_alloc( 1 , nvar );

        matrix_type * beta     = matrix_alloc( nvar , 1);           /* This is the beta vector as estimated from the OLS estimator. */

        regression_augmented_OLS( X , Y , E, beta );


        /*
           In this code block the beta/tmp_beta vector which is dense with
           fewer elements than the full model is scattered into the beta0
           vector which has full size and @nvar elements.
        */
        {
            int ivar,avar;
            avar = 0;
            for (ivar = 0; ivar < matrix_get_columns( stepwise->X0 ); ivar++) {
                if (bool_vector_iget( stepwise->active_set , ivar )) {
                    matrix_iset( stepwise->beta , ivar , 0 , matrix_iget( beta , avar , 0));
                    avar++;
                }
            }
        }


        matrix_free( beta );
    }

    matrix_free( X );
    matrix_free( E );
    matrix_free( Y );
    return y_mean;
}
Exemplo n.º 6
0
void lars_estimate(lars_type * lars , int max_vars , double max_beta , bool verbose) {
  int nvars       = matrix_get_columns( lars->X );
  int nsample     = matrix_get_rows( lars->X );
  matrix_type * X = matrix_alloc( nsample, nvars );    // Allocate local X and Y variables
  matrix_type * Y = matrix_alloc( nsample, 1 );        // which will hold the normalized data 
  lars_estimate_init( lars , X , Y);                   // during the estimation process.
  {
    matrix_type * G                = matrix_alloc_gram( X , true );
    matrix_type * mu               = matrix_alloc( nsample , 1 );
    matrix_type * C                = matrix_alloc( nvars , 1 );
    matrix_type * Y_mu             = matrix_alloc_copy( Y ); 
    int_vector_type * active_set   = int_vector_alloc(0,0);
    int_vector_type * inactive_set = int_vector_alloc(0,0);
    int    active_size;

    
    if ((max_vars <= 0) || (max_vars > nvars))
      max_vars = nvars;
    
    {
      int i;
      for (i=0; i < nvars; i++)
        int_vector_iset( inactive_set , i , i );
    }
    matrix_set( mu , 0 );

    while (true) {
      double maxC = 0;

      /*
        The first step is to calculate the correlations between the
        covariates, and the current residual. All the currently inactive
        covariates are searched; the covariate with the greatest
        correlation with (Y - mu) is selected and added to the active set.
      */
      matrix_sub( Y_mu , Y , mu );                            // Y_mu = Y - mu 
      matrix_dgemm( C , X , Y_mu , true , false , 1.0 , 0);   // C    = X' * Y_mu
      { 
        int i;
        int max_set_index = 0;

        for (i=0; i < int_vector_size( inactive_set ); i++) {
          int    set_index = i;
          int    var_index = int_vector_iget( inactive_set , set_index );
          double value     = fabs( matrix_iget(C ,  var_index , 0) );
          if (value > maxC) {
            maxC          = value;
            max_set_index = set_index;
          }
        }
        /* 
           Remove element corresponding to max_set_index from the
           inactive set and add it to the active set:
        */
        int_vector_append( active_set , int_vector_idel( inactive_set , max_set_index ));
      }
      active_size = int_vector_size( active_set );
      /*
        Now we have calculated the correlations between all the
        covariates and the current residual @Y_mu. The correlations are
        stored in the matrix @C. The value of the maximum correlation is
        stored in @maxC.
      
        Based on the value of @maxC we have added one new covariate to
        the model, technically by moving the index from @inactive_set to
        @active_set.
      */

      /*****************************************************************/


      {
        matrix_type * weights     = matrix_alloc( active_size , 1);
        double scale;

        /*****************************************************************/
        /* This scope should compute and initialize the variables
           @weights and @scale. */
        {
          matrix_type * subG        = matrix_alloc( active_size , active_size );
          matrix_type * STS         = matrix_alloc( active_size , active_size );
          matrix_type * sign_vector = matrix_alloc( active_size , 1);
          int i , j;

          /*
            STS = S' o S where 'o' is the Schur product and S is given
            by:

            [  s1   s2   s3   s4 ]  
        S = [  s1   s2   s3   s4 ]
            [  s1   s2   s3   s4 ]
            [  s1   s2   s3   s4 ]

            Where si is the sign of the correlation between (active)
            variable 'i' and Y_mu.
          */

                
          for (i=0; i < active_size ; i++) {
            int     vari  = int_vector_iget( active_set , i );
            double  signi = sgn( matrix_iget( C , vari , 0));
            matrix_iset( sign_vector , i , 0 , signi );
            for (j=0; j < active_size; j++) {
              int     varj  = int_vector_iget( active_set , j );
              double  signj = sgn( matrix_iget( C , varj , 0));
            
              matrix_iset( STS , i , j , signi * signj );
            }
          }
        
          // Extract the elements from G corresponding to active indices and
          // copy to the matrix subG:
          for (i=0; i < active_size ; i++) {
            int ii = int_vector_iget( active_set , i );
            for (j=0; j < active_size; j++) {
              int jj = int_vector_iget( active_set , j );
            
              matrix_iset( subG , i , j , matrix_iget(G , ii , jj));
            }
          }
      
          // Weights 
          matrix_inplace_mul( subG , STS );  
          matrix_inv( subG );
        
          {
            matrix_type * ones = matrix_alloc( active_size , 1 );
            matrix_type * GA1  = matrix_alloc( active_size , 1 );
          
            matrix_set( ones , 1.0 );
            matrix_matmul( GA1 , subG , ones );
            scale = 1.0 / sqrt( matrix_get_column_sum( GA1 , 0 ));
          
            matrix_mul( weights , GA1 , sign_vector );
            matrix_scale( weights , scale );
          
            matrix_free( GA1 );
            matrix_free( ones );
          }
        
          matrix_free( sign_vector );
          matrix_free( subG );
          matrix_free( STS );
        }
      
        /******************************************************************/
        /* The variables weight and scale have been calculated, proceed
           to calculate the step length @gamma. */ 
        {
          int i;
          double  gamma;
        
          {
            matrix_type * u = matrix_alloc( nsample , 1 );
            int j;

            for (i=0; i < nsample; i++) {
              double row_sum = 0;
              for (j =0; j < active_size; j++) 
                row_sum += matrix_iget( X , i , int_vector_iget( active_set , j)) * matrix_iget(weights , j , 0 );
            
              matrix_iset( u , i , 0 , row_sum );
            }
          
            gamma = maxC / scale;
            if (active_size < matrix_get_columns( X )) {
              matrix_type * equi_corr = matrix_alloc( nvars , 1 );
              matrix_dgemm( equi_corr , X , u , true , false , 1.0 , 0);     // equi_corr = X'·u
              for (i=0; i < (nvars - active_size); i++) {
                int var_index  = int_vector_iget( inactive_set , i );
                double gamma1  = (maxC - matrix_iget(C , var_index , 0 )) / ( scale - matrix_iget( equi_corr , var_index , 0));
                double gamma2  = (maxC + matrix_iget(C , var_index , 0 )) / ( scale + matrix_iget( equi_corr , var_index , 0));
              
                if ((gamma1 > 0) && (gamma1 < gamma))
                  gamma = gamma1;
              
                if ((gamma2 > 0) && (gamma2 < gamma))
                  gamma = gamma2;
              
              }
              matrix_free( equi_corr );
            }
            /* Update the current estimated 'location' mu. */
            matrix_scale( u , gamma );
            matrix_inplace_add( mu , u );
            matrix_free( u );
          } 
      
          /* 
             We have calculated the step length @gamma, and the @weights. Update the @beta matrix.
          */
          for (i=0; i < active_size; i++) 
            matrix_iset( lars->beta , int_vector_iget( active_set , i ) , active_size - 1 , gamma * matrix_iget( weights , i , 0));
      
          if (active_size > 1) 
            for (i=0; i < nvars; i++)
              matrix_iadd( lars->beta , i , active_size - 1 , matrix_iget( lars->beta , i , active_size - 2)); 
        
          matrix_free( weights );
        }
      }
    
      if (active_size == max_vars)
        break;
      
      if (max_beta > 0) {
        double beta_norm2 = matrix_get_column_abssum( lars->beta , active_size - 1 );
        if (beta_norm2 > max_beta) {
          // We stop - we will use an interpolation between this beta estimate and
          // the previous, to ensure that the |beta| = max_beta criteria is satisfied.
          if (active_size >= 2) {
            double beta_norm1 = matrix_get_column_abssum( lars->beta , active_size - 2 );
            double s = (max_beta - beta_norm1)/(beta_norm2 - beta_norm1);
            {
              int j;
              for (j=0; j < nvars; j++) {
                double beta1 = matrix_iget( lars->beta , j , active_size - 2 );
                double beta2 = matrix_iget( lars->beta , j , active_size - 1 );
                matrix_iset( lars->beta , j , active_size - 1 , beta1 + s*(beta2 - beta1));
              }
            }
          }
          break;
        }
      }
    }
    matrix_free( G );
    matrix_free( mu );
    matrix_free( C );
    matrix_free( Y_mu );
    int_vector_free( active_set );
    int_vector_free( inactive_set );
    matrix_resize( lars->beta , nvars , active_size , true );
    if (verbose) 
      matrix_pretty_fprint( lars->beta , "beta" , "%12.5f" , stdout );
    lars_select_beta( lars , active_size - 1);
  }
  matrix_free( X );
  matrix_free( Y );
}