void md_ctx_init (md_context_t *ctx, const md_info_t *kt) { ASSERT(NULL != ctx && NULL != kt); CLEAR(*ctx); ASSERT(0 == md_init_ctx(ctx, kt)); ASSERT(0 == md_starts(ctx)); }
/** * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer. * * \param dst buffer to mask * \param dlen length of destination buffer * \param src source of the mask generation * \param slen length of the source buffer * \param md_ctx message digest context to use */ static void mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src, size_t slen, md_context_t *md_ctx ) { unsigned char mask[POLARSSL_MD_MAX_SIZE]; unsigned char counter[4]; unsigned char *p; unsigned int hlen; size_t i, use_len; memset( mask, 0, POLARSSL_MD_MAX_SIZE ); memset( counter, 0, 4 ); hlen = md_ctx->md_info->size; // Generate and apply dbMask // p = dst; while( dlen > 0 ) { use_len = hlen; if( dlen < hlen ) use_len = dlen; md_starts( md_ctx ); md_update( md_ctx, src, slen ); md_update( md_ctx, counter, 4 ); md_finish( md_ctx, mask ); for( i = 0; i < use_len; ++i ) *p++ ^= mask[i]; counter[3]++; dlen -= use_len; } }
int bytes_to_key(const cipher_kt_t *cipher, const digest_type_t *md, const uint8_t *pass, uint8_t *key, uint8_t *iv) { size_t datal; datal = strlen((const char *)pass); #if defined(USE_CRYPTO_OPENSSL) return EVP_BytesToKey(cipher, md, NULL, pass, datal, 1, key, iv); #elif defined(USE_CRYPTO_POLARSSL) md_context_t c; unsigned char md_buf[MAX_MD_SIZE]; int niv; int nkey; int addmd; unsigned int mds; unsigned int i; int rv; nkey = cipher_key_size(cipher); niv = cipher_iv_size(cipher); rv = nkey; if (pass == NULL) { return nkey; } memset(&c, 0, sizeof(md_context_t)); if (md_init_ctx(&c, md)) { return 0; } addmd = 0; mds = md_get_size(md); for (;;) { int error; do { error = 1; if (md_starts(&c)) { break; } if (addmd) { if (md_update(&c, &(md_buf[0]), mds)) { break; } } else { addmd = 1; } if (md_update(&c, pass, datal)) { break; } if (md_finish(&c, &(md_buf[0]))) { break; } error = 0; } while (0); if (error) { md_free_ctx(&c); memset(md_buf, 0, MAX_MD_SIZE); return 0; } i = 0; if (nkey) { for (;;) { if (nkey == 0) { break; } if (i == mds) { break; } if (key != NULL) { *(key++) = md_buf[i]; } nkey--; i++; } } if (niv && (i != mds)) { for (;;) { if (niv == 0) { break; } if (i == mds) { break; } if (iv != NULL) { *(iv++) = md_buf[i]; } niv--; i++; } } if ((nkey == 0) && (niv == 0)) { break; } } md_free_ctx(&c); memset(md_buf, 0, MAX_MD_SIZE); return rv; #elif defined(USE_CRYPTO_MBEDTLS) /* * * Generic message digest context. * * typedef struct { * Information about the associated message digest * const mbedtls_md_info_t *md_info; * * Digest-specific context * void *md_ctx; * * HMAC part of the context * void *hmac_ctx; * } mbedtls_md_context_t; // mbedtls 2.0.0 * * typedef struct { * Information about the associated message digest * const md_info_t *md_info; * * Digest-specific context * void *md_ctx; * } md_context_t; //polarssl 1.3 * */ // NOTE: different struct body, initialize new param hmac 0 to disable HMAC mbedtls_md_context_t c; unsigned char md_buf[MAX_MD_SIZE]; int niv; int nkey; int addmd; unsigned int mds; unsigned int i; int rv; nkey = cipher_key_size(cipher); niv = cipher_iv_size(cipher); rv = nkey; if (pass == NULL) { return nkey; } memset(&c, 0, sizeof(mbedtls_md_context_t)); // XXX: md_init_ctx superseded by mbedtls_md_setup() in 2.0.0 // new param hmac 0 to save some memory if HMAC will not be used, // non-zero is HMAC is going to be used with this context. if (mbedtls_md_setup(&c, md, 1)) { return 0; } addmd = 0; mds = mbedtls_md_get_size(md); for (;;) { int error; do { error = 1; if (mbedtls_md_starts(&c)) { break; } if (addmd) { if (mbedtls_md_update(&c, &(md_buf[0]), mds)) { break; } } else { addmd = 1; } if (mbedtls_md_update(&c, pass, datal)) { break; } if (mbedtls_md_finish(&c, &(md_buf[0]))) { break; } error = 0; } while (0); if (error) { mbedtls_md_free(&c); // md_free_ctx deprecated, Use mbedtls_md_free() instead memset(md_buf, 0, MAX_MD_SIZE); return 0; } i = 0; if (nkey) { for (;;) { if (nkey == 0) { break; } if (i == mds) { break; } if (key != NULL) { *(key++) = md_buf[i]; } nkey--; i++; } } if (niv && (i != mds)) { for (;;) { if (niv == 0) { break; } if (i == mds) { break; } if (iv != NULL) { *(iv++) = md_buf[i]; } niv--; i++; } } if ((nkey == 0) && (niv == 0)) { break; } } mbedtls_md_free(&c); // NOTE: md_free_ctx deprecated, Use mbedtls_md_free() instead memset(md_buf, 0, MAX_MD_SIZE); return rv; #endif }
/* * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function */ int rsa_rsassa_pss_sign( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, int hash_id, unsigned int hashlen, const unsigned char *hash, unsigned char *sig ) { size_t olen; unsigned char *p = sig; unsigned char salt[POLARSSL_MD_MAX_SIZE]; unsigned int slen, hlen, offset = 0; int ret; size_t msb; const md_info_t *md_info; md_context_t md_ctx; if( ctx->padding != RSA_PKCS_V21 || f_rng == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); olen = ctx->len; switch( hash_id ) { case SIG_RSA_MD2: case SIG_RSA_MD4: case SIG_RSA_MD5: hashlen = 16; break; case SIG_RSA_SHA1: hashlen = 20; break; case SIG_RSA_SHA224: hashlen = 28; break; case SIG_RSA_SHA256: hashlen = 32; break; case SIG_RSA_SHA384: hashlen = 48; break; case SIG_RSA_SHA512: hashlen = 64; break; default: return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); } md_info = md_info_from_type( ctx->hash_id ); if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); hlen = md_get_size( md_info ); slen = hlen; if( olen < hlen + slen + 2 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); memset( sig, 0, olen ); msb = mpi_msb( &ctx->N ) - 1; // Generate salt of length slen // if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 ) return( POLARSSL_ERR_RSA_RNG_FAILED + ret ); // Note: EMSA-PSS encoding is over the length of N - 1 bits // msb = mpi_msb( &ctx->N ) - 1; p += olen - hlen * 2 - 2; *p++ = 0x01; memcpy( p, salt, slen ); p += slen; md_init_ctx( &md_ctx, md_info ); // Generate H = Hash( M' ) // md_starts( &md_ctx ); md_update( &md_ctx, p, 8 ); md_update( &md_ctx, hash, hashlen ); md_update( &md_ctx, salt, slen ); md_finish( &md_ctx, p ); // Compensate for boundary condition when applying mask // if( msb % 8 == 0 ) offset = 1; // maskedDB: Apply dbMask to DB // mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx ); md_free_ctx( &md_ctx ); msb = mpi_msb( &ctx->N ) - 1; sig[0] &= 0xFF >> ( olen * 8 - msb ); p += hlen; *p++ = 0xBC; return( ( mode == RSA_PUBLIC ) ? rsa_public( ctx, sig, sig ) : rsa_private( ctx, sig, sig ) ); }
/* * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function */ int rsa_rsassa_pss_verify( rsa_context *ctx, int mode, int hash_id, unsigned int hashlen, const unsigned char *hash, unsigned char *sig ) { int ret; size_t siglen; unsigned char *p; unsigned char buf[POLARSSL_MPI_MAX_SIZE]; unsigned char result[POLARSSL_MD_MAX_SIZE]; unsigned char zeros[8]; unsigned int hlen; size_t slen, msb; const md_info_t *md_info; md_context_t md_ctx; if( ctx->padding != RSA_PKCS_V21 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); siglen = ctx->len; if( siglen < 16 || siglen > sizeof( buf ) ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); ret = ( mode == RSA_PUBLIC ) ? rsa_public( ctx, sig, buf ) : rsa_private( ctx, sig, buf ); if( ret != 0 ) return( ret ); p = buf; if( buf[siglen - 1] != 0xBC ) return( POLARSSL_ERR_RSA_INVALID_PADDING ); switch( hash_id ) { case SIG_RSA_MD2: case SIG_RSA_MD4: case SIG_RSA_MD5: hashlen = 16; break; case SIG_RSA_SHA1: hashlen = 20; break; case SIG_RSA_SHA224: hashlen = 28; break; case SIG_RSA_SHA256: hashlen = 32; break; case SIG_RSA_SHA384: hashlen = 48; break; case SIG_RSA_SHA512: hashlen = 64; break; default: return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); } md_info = md_info_from_type( ctx->hash_id ); if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); hlen = md_get_size( md_info ); slen = siglen - hlen - 1; memset( zeros, 0, 8 ); // Note: EMSA-PSS verification is over the length of N - 1 bits // msb = mpi_msb( &ctx->N ) - 1; // Compensate for boundary condition when applying mask // if( msb % 8 == 0 ) { p++; siglen -= 1; } if( buf[0] >> ( 8 - siglen * 8 + msb ) ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); md_init_ctx( &md_ctx, md_info ); mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx ); buf[0] &= 0xFF >> ( siglen * 8 - msb ); while( *p == 0 && p < buf + siglen ) p++; if( p == buf + siglen || *p++ != 0x01 ) { md_free_ctx( &md_ctx ); return( POLARSSL_ERR_RSA_INVALID_PADDING ); } slen -= p - buf; // Generate H = Hash( M' ) // md_starts( &md_ctx ); md_update( &md_ctx, zeros, 8 ); md_update( &md_ctx, hash, hashlen ); md_update( &md_ctx, p, slen ); md_finish( &md_ctx, result ); md_free_ctx( &md_ctx ); if( memcmp( p + slen, result, hlen ) == 0 ) return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED ); }
/* * Do an RSA operation and check the message digest */ int rsa_pkcs1_verify( rsa_context *ctx, int mode, int hash_id, unsigned int hashlen, const unsigned char *hash, unsigned char *sig ) { int ret; size_t len, siglen; unsigned char *p, c; unsigned char buf[1024]; #if defined(POLARSSL_PKCS1_V21) unsigned char zeros[8]; unsigned int hlen; size_t slen, msb; const md_info_t *md_info; md_context_t md_ctx; #endif siglen = ctx->len; if( siglen < 16 || siglen > (int) sizeof( buf ) ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); ret = ( mode == RSA_PUBLIC ) ? rsa_public( ctx, sig, buf ) : rsa_private( ctx, sig, buf ); if( ret != 0 ) return( ret ); p = buf; switch( ctx->padding ) { case RSA_PKCS_V15: if( *p++ != 0 || *p++ != RSA_SIGN ) return( POLARSSL_ERR_RSA_INVALID_PADDING ); while( *p != 0 ) { if( p >= buf + siglen - 1 || *p != 0xFF ) return( POLARSSL_ERR_RSA_INVALID_PADDING ); p++; } p++; len = siglen - (int)( p - buf ); if( len == 34 ) { c = p[13]; p[13] = 0; if( memcmp( p, ASN1_HASH_MDX, 18 ) != 0 ) return( POLARSSL_ERR_RSA_VERIFY_FAILED ); if( ( c == 2 && hash_id == SIG_RSA_MD2 ) || ( c == 4 && hash_id == SIG_RSA_MD4 ) || ( c == 5 && hash_id == SIG_RSA_MD5 ) ) { if( memcmp( p + 18, hash, 16 ) == 0 ) return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED ); } } if( len == 35 && hash_id == SIG_RSA_SHA1 ) { if( memcmp( p, ASN1_HASH_SHA1, 15 ) == 0 && memcmp( p + 15, hash, 20 ) == 0 ) return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED ); } if( ( len == 19 + 28 && p[14] == 4 && hash_id == SIG_RSA_SHA224 ) || ( len == 19 + 32 && p[14] == 1 && hash_id == SIG_RSA_SHA256 ) || ( len == 19 + 48 && p[14] == 2 && hash_id == SIG_RSA_SHA384 ) || ( len == 19 + 64 && p[14] == 3 && hash_id == SIG_RSA_SHA512 ) ) { c = p[1] - 17; p[1] = 17; p[14] = 0; if( p[18] == c && memcmp( p, ASN1_HASH_SHA2X, 18 ) == 0 && memcmp( p + 19, hash, c ) == 0 ) return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED ); } if( len == hashlen && hash_id == SIG_RSA_RAW ) { if( memcmp( p, hash, hashlen ) == 0 ) return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED ); } break; #if defined(POLARSSL_PKCS1_V21) case RSA_PKCS_V21: if( buf[siglen - 1] != 0xBC ) return( POLARSSL_ERR_RSA_INVALID_PADDING ); switch( hash_id ) { case SIG_RSA_MD2: case SIG_RSA_MD4: case SIG_RSA_MD5: hashlen = 16; break; case SIG_RSA_SHA1: hashlen = 20; break; case SIG_RSA_SHA224: hashlen = 28; break; case SIG_RSA_SHA256: hashlen = 32; break; case SIG_RSA_SHA384: hashlen = 48; break; case SIG_RSA_SHA512: hashlen = 64; break; default: return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); } md_info = md_info_from_type( ctx->hash_id ); if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); hlen = md_get_size( md_info ); slen = siglen - hlen - 1; memset( &md_ctx, 0, sizeof( md_context_t ) ); memset( zeros, 0, 8 ); md_init_ctx( &md_ctx, md_info ); // Note: EMSA-PSS verification is over the length of N - 1 bits // msb = mpi_msb( &ctx->N ) - 1; // Compensate for boundary condition when applying mask // if( msb % 8 == 0 ) { p++; siglen -= 1; } if( buf[0] >> ( 8 - siglen * 8 + msb ) ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx ); buf[0] &= 0xFF >> ( siglen * 8 - msb ); while( *p == 0 && p < buf + siglen ) p++; if( p == buf + siglen ) return( POLARSSL_ERR_RSA_INVALID_PADDING ); if( *p++ != 0x01 ) return( POLARSSL_ERR_RSA_INVALID_PADDING ); slen -= p - buf; // Generate H = Hash( M' ) // md_starts( &md_ctx ); md_update( &md_ctx, zeros, 8 ); md_update( &md_ctx, hash, hashlen ); md_update( &md_ctx, p, slen ); md_finish( &md_ctx, p ); if( memcmp( p, p + slen, hlen ) == 0 ) return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED ); break; #endif default: return( POLARSSL_ERR_RSA_INVALID_PADDING ); } return( POLARSSL_ERR_RSA_INVALID_PADDING ); }
/* * Do an RSA operation to sign the message digest */ int rsa_pkcs1_sign( rsa_context *ctx, int (*f_rng)(void *), void *p_rng, int mode, int hash_id, unsigned int hashlen, const unsigned char *hash, unsigned char *sig ) { size_t nb_pad, olen; unsigned char *p = sig; #if defined(POLARSSL_PKCS1_V21) unsigned char salt[POLARSSL_MD_MAX_SIZE]; unsigned int i, slen, hlen, offset = 0; size_t msb; const md_info_t *md_info; md_context_t md_ctx; #else (void) f_rng; (void) p_rng; #endif olen = ctx->len; switch( ctx->padding ) { case RSA_PKCS_V15: switch( hash_id ) { case SIG_RSA_RAW: nb_pad = olen - 3 - hashlen; break; case SIG_RSA_MD2: case SIG_RSA_MD4: case SIG_RSA_MD5: nb_pad = olen - 3 - 34; break; case SIG_RSA_SHA1: nb_pad = olen - 3 - 35; break; case SIG_RSA_SHA224: nb_pad = olen - 3 - 47; break; case SIG_RSA_SHA256: nb_pad = olen - 3 - 51; break; case SIG_RSA_SHA384: nb_pad = olen - 3 - 67; break; case SIG_RSA_SHA512: nb_pad = olen - 3 - 83; break; default: return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); } if( nb_pad < 8 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); *p++ = 0; *p++ = RSA_SIGN; memset( p, 0xFF, nb_pad ); p += nb_pad; *p++ = 0; switch( hash_id ) { case SIG_RSA_RAW: memcpy( p, hash, hashlen ); break; case SIG_RSA_MD2: memcpy( p, ASN1_HASH_MDX, 18 ); memcpy( p + 18, hash, 16 ); p[13] = 2; break; case SIG_RSA_MD4: memcpy( p, ASN1_HASH_MDX, 18 ); memcpy( p + 18, hash, 16 ); p[13] = 4; break; case SIG_RSA_MD5: memcpy( p, ASN1_HASH_MDX, 18 ); memcpy( p + 18, hash, 16 ); p[13] = 5; break; case SIG_RSA_SHA1: memcpy( p, ASN1_HASH_SHA1, 15 ); memcpy( p + 15, hash, 20 ); break; case SIG_RSA_SHA224: memcpy( p, ASN1_HASH_SHA2X, 19 ); memcpy( p + 19, hash, 28 ); p[1] += 28; p[14] = 4; p[18] += 28; break; case SIG_RSA_SHA256: memcpy( p, ASN1_HASH_SHA2X, 19 ); memcpy( p + 19, hash, 32 ); p[1] += 32; p[14] = 1; p[18] += 32; break; case SIG_RSA_SHA384: memcpy( p, ASN1_HASH_SHA2X, 19 ); memcpy( p + 19, hash, 48 ); p[1] += 48; p[14] = 2; p[18] += 48; break; case SIG_RSA_SHA512: memcpy( p, ASN1_HASH_SHA2X, 19 ); memcpy( p + 19, hash, 64 ); p[1] += 64; p[14] = 3; p[18] += 64; break; default: return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); } break; #if defined(POLARSSL_PKCS1_V21) case RSA_PKCS_V21: if( f_rng == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); switch( hash_id ) { case SIG_RSA_MD2: case SIG_RSA_MD4: case SIG_RSA_MD5: hashlen = 16; break; case SIG_RSA_SHA1: hashlen = 20; break; case SIG_RSA_SHA224: hashlen = 28; break; case SIG_RSA_SHA256: hashlen = 32; break; case SIG_RSA_SHA384: hashlen = 48; break; case SIG_RSA_SHA512: hashlen = 64; break; default: return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); } md_info = md_info_from_type( ctx->hash_id ); if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); hlen = md_get_size( md_info ); slen = hlen; memset( sig, 0, olen ); memset( &md_ctx, 0, sizeof( md_context_t ) ); md_init_ctx( &md_ctx, md_info ); msb = mpi_msb( &ctx->N ) - 1; // Generate salt of length slen // for( i = 0; i < slen; ++i ) salt[i] = (unsigned char) f_rng( p_rng ); // Note: EMSA-PSS encoding is over the length of N - 1 bits // msb = mpi_msb( &ctx->N ) - 1; p += olen - hlen * 2 - 2; *p++ = 0x01; memcpy( p, salt, slen ); p += slen; // Generate H = Hash( M' ) // md_starts( &md_ctx ); md_update( &md_ctx, p, 8 ); md_update( &md_ctx, hash, hashlen ); md_update( &md_ctx, salt, slen ); md_finish( &md_ctx, p ); // Compensate for boundary condition when applying mask // if( msb % 8 == 0 ) offset = 1; // maskedDB: Apply dbMask to DB // mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx ); msb = mpi_msb( &ctx->N ) - 1; sig[0] &= 0xFF >> ( olen * 8 - msb ); p += hlen; *p++ = 0xBC; break; #endif default: return( POLARSSL_ERR_RSA_INVALID_PADDING ); } return( ( mode == RSA_PUBLIC ) ? rsa_public( ctx, sig, sig ) : rsa_private( ctx, sig, sig ) ); }
int bytes_to_key(const cipher_kt_t *cipher, const digest_type_t *md, const uint8_t *pass, uint8_t *key, uint8_t *iv) { size_t datal; datal = strlen((const char *) pass); #if defined(USE_CRYPTO_OPENSSL) return EVP_BytesToKey(cipher, md, NULL, pass, datal, 1, key, iv); #elif defined(USE_CRYPTO_POLARSSL) md_context_t c; unsigned char md_buf[MAX_MD_SIZE]; int niv; int nkey; int addmd; unsigned int mds; unsigned int i; int rv; nkey = cipher_key_size(cipher); niv = cipher_iv_size(cipher); rv = nkey; if (pass == NULL) { return nkey; } memset(&c, 0, sizeof(md_context_t)); if (md_init_ctx(&c, md)) { return 0; } addmd = 0; mds = md_get_size(md); for (;;) { int error; do { error = 1; if (md_starts(&c)) { break; } if (addmd) { if (md_update(&c, &(md_buf[0]), mds)) { break; } } else { addmd = 1; } if (md_update(&c, pass, datal)) break; if (md_finish(&c, &(md_buf[0]))) break; error = 0; } while (0); if (error) { md_free_ctx(&c); memset(md_buf, 0, MAX_MD_SIZE); return 0; } i=0; if (nkey) { for (;;) { if (nkey == 0) break; if (i == mds) break; if (key != NULL) *(key++)=md_buf[i]; nkey--; i++; } } if (niv && (i != mds)) { for (;;) { if (niv == 0) break; if (i == mds) break; if (iv != NULL) *(iv++)=md_buf[i]; niv--; i++; } } if ((nkey == 0) && (niv == 0)) break; } md_free_ctx(&c); memset(md_buf, 0, MAX_MD_SIZE); return rv; #endif }
/* * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function */ int rsa_rsassa_pss_verify_ext( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, md_type_t mgf1_hash_id, int expected_salt_len, const unsigned char *sig ) { int ret; size_t siglen; unsigned char *p; unsigned char buf[POLARSSL_MPI_MAX_SIZE]; unsigned char result[POLARSSL_MD_MAX_SIZE]; unsigned char zeros[8]; unsigned int hlen; size_t slen, msb; const md_info_t *md_info; md_context_t md_ctx; if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V21 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); siglen = ctx->len; if( siglen < 16 || siglen > sizeof( buf ) ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); ret = ( mode == RSA_PUBLIC ) ? rsa_public( ctx, sig, buf ) : rsa_private( ctx, f_rng, p_rng, sig, buf ); if( ret != 0 ) return( ret ); p = buf; if( buf[siglen - 1] != 0xBC ) return( POLARSSL_ERR_RSA_INVALID_PADDING ); if( md_alg != POLARSSL_MD_NONE ) { // Gather length of hash to sign // md_info = md_info_from_type( md_alg ); if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); hashlen = md_get_size( md_info ); } md_info = md_info_from_type( mgf1_hash_id ); if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); hlen = md_get_size( md_info ); slen = siglen - hlen - 1; /* Currently length of salt + padding */ memset( zeros, 0, 8 ); // Note: EMSA-PSS verification is over the length of N - 1 bits // msb = mpi_msb( &ctx->N ) - 1; // Compensate for boundary condition when applying mask // if( msb % 8 == 0 ) { p++; siglen -= 1; } if( buf[0] >> ( 8 - siglen * 8 + msb ) ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); md_init( &md_ctx ); md_init_ctx( &md_ctx, md_info ); mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx ); buf[0] &= 0xFF >> ( siglen * 8 - msb ); while( p < buf + siglen && *p == 0 ) p++; if( p == buf + siglen || *p++ != 0x01 ) { md_free( &md_ctx ); return( POLARSSL_ERR_RSA_INVALID_PADDING ); } /* Actual salt len */ slen -= p - buf; if( expected_salt_len != RSA_SALT_LEN_ANY && slen != (size_t) expected_salt_len ) { md_free( &md_ctx ); return( POLARSSL_ERR_RSA_INVALID_PADDING ); } // Generate H = Hash( M' ) // md_starts( &md_ctx ); md_update( &md_ctx, zeros, 8 ); md_update( &md_ctx, hash, hashlen ); md_update( &md_ctx, p, slen ); md_finish( &md_ctx, result ); md_free( &md_ctx ); if( memcmp( p + slen, result, hlen ) == 0 ) return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED ); }