Exemplo n.º 1
0
void Net::Classify(const mxArray *mx_data, Mat &pred) {
  
  //mexPrintMsg("Start classification...");  
  size_t mapnum = 1;  
  if (mexIsCell(mx_data)) {
    mapnum = mexGetNumel(mx_data);    
  }
  mexAssert(mapnum == layers_.front()->outputmaps_,
    "Data must have the same number of cells as outputmaps on the first layer");
  std::vector< std::vector<Mat> > data(mapnum);  
  for (size_t i = 0; i < mapnum; ++i) {
    const mxArray *mx_cell;  
    if (mexIsCell(mx_data)) {
      mx_cell = mxGetCell(mx_data, i);
    } else {
      mx_cell = mx_data;
    }
    std::vector<size_t> data_dim = mexGetDimensions(mx_cell);  
    mexAssert(data_dim.size() == 3, "The data array must have 3 dimensions");  
    mexAssert(data_dim[0] == layers_.front()->mapsize_[0] && 
              data_dim[1] == layers_.front()->mapsize_[1],
             "Data and the first layer must have equal sizes");      
    mexGetMatrix3D(mx_cell, data[i]);
  }

  Forward(data, pred, false);
  //mexPrintMsg("Classification finished");
}
Exemplo n.º 2
0
void Net::ReadLabels(const mxArray *mx_labels) {
  std::vector<size_t> labels_dim = mexGetDimensions(mx_labels);  
  mexAssert(labels_dim.size() == 2, "The label array must have 2 dimensions");
  size_t samples_num = labels_dim[0];
  size_t classes_num = labels_dim[1];
  mexAssert(classes_num == layers_.back()->length_,
    "Labels and last layer must have equal number of classes");  
  MatCPU labels_norm; // order_ == false
  mexGetMatrix(mx_labels, labels_norm);
  if (params_.balance_) {  
    MatCPU labels_mean(1, classes_num);
    Mean(labels_norm, labels_mean, 1);
    mexAssert(!labels_mean.hasZeros(), 
      "Balancing impossible: one of the classes is not presented");
    MatCPU cpucoeffs(1, classes_num);
    cpucoeffs.assign(1);
    cpucoeffs /= labels_mean;
    classcoefs_.resize(1, classes_num);
    classcoefs_ = cpucoeffs;
    classcoefs_ /= (ftype) classes_num;
  }
  labels_.resize(samples_num, classes_num);
  labels_.reorder(true, false); // order_ == true;
  labels_ = labels_norm; 
}
Exemplo n.º 3
0
void Net::ReadData(const mxArray *mx_data) {
  LayerInput *firstlayer = static_cast<LayerInput*>(layers_[0]);
  std::vector<size_t> data_dim = mexGetDimensions(mx_data);
  size_t mapsize1, mapsize2;
  if (kMapsOrder == kMatlabOrder) {
    mapsize1 = data_dim[0];
    mapsize2 = data_dim[1];
  } else {
    mapsize1 = data_dim[1];
    mapsize2 = data_dim[0];
  }  
  mexAssert(mapsize1 == firstlayer->mapsize_[0] && 
            mapsize2 == firstlayer->mapsize_[1],
    "Data and the first layer must have equal sizes");  
  size_t outputmaps = 1;
  if (data_dim.size() > 2) {
    outputmaps = data_dim[2];
  }
  mexAssert(outputmaps == firstlayer->outputmaps_,
    "Data's 3rd dimension must be equal to the outputmaps on the input layer");
  size_t samples_num = 1;  
  if (data_dim.size() > 3) {
    samples_num = data_dim[3];
  }  
  ftype *data_ptr = mexGetPointer(mx_data);  
  // transposed array
  data_.attach(data_ptr, samples_num, mapsize1 * mapsize2 * outputmaps, 1, true);  
  if (firstlayer->norm_ > 0) {    
    MatCPU norm_data(data_.size1(), data_.size2());
    norm_data.reorder(true, false);
    norm_data = data_;
    norm_data.Normalize(firstlayer->norm_);        
    Swap(data_, norm_data);
  }
}
Exemplo n.º 4
0
void Net::ReadData(const mxArray *mx_data) {
  std::vector<size_t> data_dim = mexGetDimensions(mx_data);
  mexAssert(data_dim.size() == 4, "The data array must have 4 dimensions");  
  mexAssert(data_dim[0] == layers_[0]->mapsize_[0] && 
            data_dim[1] == layers_[0]->mapsize_[1],
    "Data and the first layer must have equal sizes");  
  mexAssert(data_dim[2] == layers_[0]->outputmaps_,
    "Data's 3rd dimension must be equal to the outputmaps on the input layer");
  mexAssert(data_dim[3] > 0, "Input data array is empty");
  ftype *data = mexGetPointer(mx_data);
  data_.attach(data, data_dim[3], data_dim[0] * data_dim[1] * data_dim[2]);  
}
Exemplo n.º 5
0
void Net::ReadLabels(const mxArray *mx_labels) {
  std::vector<size_t> labels_dim = mexGetDimensions(mx_labels);  
  mexAssert(labels_dim.size() == 2, "The label array must have 2 dimensions");
  ////mexPrintMsg("labels_dim.", labels_dim[0]);
  ////mexPrintMsg("data_.size()", data_.size());  
  size_t classes_num = labels_dim[1];
  mexAssert(classes_num == layers_.back()->length_,
    "Labels and last layer must have equal number of classes");  
  labels_ = mexGetMatrix(mx_labels);
  classcoefs_.init(1, classes_num, 1);
  if (params_.balance_) {  
    Mat labels_mean = Mean(labels_, 1);
    for (size_t i = 0; i < classes_num; ++i) {
      mexAssert(labels_mean(i) > 0, "Balancing impossible: one of the classes is not presented");
      (classcoefs_(i) /= labels_mean(i)) /= classes_num;      
    }
  }
  if (layers_.back()->function_ == "SVM") {
    (labels_ *= 2) -= 1;    
  }
}
Exemplo n.º 6
0
void Net::Train(const mxArray *mx_data, const mxArray *mx_labels) {  
  
  //mexPrintMsg("Start training...");
  LayerFull *lastlayer = static_cast<LayerFull*>(layers_.back());
  std::vector<size_t> labels_dim = mexGetDimensions(mx_labels);  
  mexAssert(labels_dim.size() == 2, "The label array must have 2 dimensions");    
  mexAssert(labels_dim[0] == lastlayer->length_,
    "Labels and last layer must have equal number of classes");  
  size_t train_num = labels_dim[1];  
  Mat labels(labels_dim);
  mexGetMatrix(mx_labels, labels);
  classcoefs_.assign(labels_dim[0], 1);
  if (params_.balance_) {  
    Mat labels_mean(labels_dim[0], 1);
    labels.Mean(2, labels_mean);
    for (size_t i = 0; i < labels_dim[0]; ++i) {
      mexAssert(labels_mean(i) > 0, "Balancing impossible: one of the classes is not presented");  
      (classcoefs_[i] /= labels_mean(i)) /= labels_dim[0];      
    }
  }
  if (lastlayer->function_ == "SVM") {
    (labels *= 2) -= 1;    
  }
  
  size_t mapnum = 1;  
  if (mexIsCell(mx_data)) {
    mapnum = mexGetNumel(mx_data);    
  }
  mexAssert(mapnum == layers_.front()->outputmaps_,
    "Data must have the same number of cells as outputmaps on the first layer");
  std::vector< std::vector<Mat> > data(mapnum);  
  for (size_t map = 0; map < mapnum; ++map) {
    const mxArray *mx_cell;  
    if (mexIsCell(mx_data)) {
      mx_cell = mxGetCell(mx_data, map);
    } else {
      mx_cell = mx_data;
    }
    std::vector<size_t> data_dim = mexGetDimensions(mx_cell);  
    mexAssert(data_dim.size() == 3, "The data array must have 3 dimensions");  
    mexAssert(data_dim[0] == layers_.front()->mapsize_[0] && 
              data_dim[1] == layers_.front()->mapsize_[1],
             "Data and the first layer must have equal sizes");    
    mexAssert(data_dim[2] == train_num, "All data maps and labels must have equal number of objects");    
    mexGetMatrix3D(mx_cell, data[map]);
  }
  
      
  
  size_t numbatches = ceil((double) train_num/params_.batchsize_);
  trainerror_.assign(params_.numepochs_ * numbatches, 0);
  for (size_t epoch = 0; epoch < params_.numepochs_; ++epoch) {    
    std::vector<size_t> randind(train_num);
    for (size_t i = 0; i < train_num; ++i) {
      randind[i] = i;
    }
    if (params_.shuffle_) {
      std::random_shuffle(randind.begin(), randind.end());
    }
    std::vector<size_t>::const_iterator iter = randind.begin();
    for (size_t batch = 0; batch < numbatches; ++batch) {
      size_t batchsize = std::min(params_.batchsize_, (size_t)(randind.end() - iter));
      std::vector<size_t> batch_ind = std::vector<size_t>(iter, iter + batchsize);
      iter = iter + batchsize;
      std::vector< std::vector<Mat> > data_batch(mapnum);
      for (size_t map = 0; map < mapnum; ++map) {
        data_batch[map].resize(batchsize);
        for (size_t i = 0; i < batchsize; ++i) {        
          data_batch[map][i] = data[map][batch_ind[i]];
        }
      }      
      Mat labels_batch(labels_dim[0], batchsize);
      Mat pred_batch(labels_dim[0], batchsize);
      labels.SubMat(batch_ind, 2 ,labels_batch);
      UpdateWeights(false);      
      Forward(data_batch, pred_batch, true);
      Backward(labels_batch, trainerror_[epoch * numbatches + batch]);      
      UpdateWeights(true);
      if (params_.verbose_ == 2) {
        std::string info = std::string("Epoch: ") + std::to_string(epoch+1) +
                           std::string(", batch: ") + std::to_string(batch+1);
        mexPrintMsg(info);
      }
    } // batch    
    if (params_.verbose_ == 1) {
      std::string info = std::string("Epoch: ") + std::to_string(epoch+1);                         
      mexPrintMsg(info);
    }
  } // epoch
  //mexPrintMsg("Training finished");
}
Exemplo n.º 7
0
void LayerJitt::Init(const mxArray *mx_layer, const Layer *prev_layer) {
  dims_[1] = prev_layer->dims_[1];

  std::vector<ftype> shift(2);
  shift[0] = 0; shift[1] = 0;
  if (mexIsField(mx_layer, "shift")) {
    shift = mexGetVector(mexGetField(mx_layer, "shift"));
    mexAssertMsg(shift.size() == 2, "Length of jitter shift vector and maps dimensionality must coincide");
    for (size_t i = 0; i < 2; ++i) {
      mexAssertMsg(0 <= shift[i] && shift[i] < dims_[i+2], "Shift in 'jitt' layer is out of range");
    }
    MatCPU shift_cpu(1, 2);
    shift_cpu.assign(shift);
    shift_ = shift_cpu;
  }

  std::vector<ftype> scale(2);
  scale[0] = 1; scale[1] = 1;
  if (mexIsField(mx_layer, "scale")) {
    scale = mexGetVector(mexGetField(mx_layer, "scale"));
    mexAssertMsg(scale.size() == 2, "Length of jitter scale vector and maps dimensionality must coincide");
    for (size_t i = 0; i < 2; ++i) {
      mexAssertMsg(1 <= scale[i] && scale[i] < dims_[i+2], "Scale in 'j' layer is out of range");
    }
    MatCPU scale_cpu(1, 2);
    scale_cpu.assign(scale);
    scale_ = scale_cpu;
    scale_.Log();
  }

  if (mexIsField(mx_layer, "mirror")) {
    std::vector<ftype> mirror = mexGetVector(mexGetField(mx_layer, "mirror"));
    mexAssertMsg(mirror.size() == 2, "Length of jitter scale vector and maps dimensionality must coincide");
    for (size_t i = 0; i < 2; ++i) {
      mexAssertMsg(mirror[i] == 0 || mirror[i] == 1, "Mirror must be either 0 or 1");
    }
    MatCPU mirror_cpu(1, 2);
    mirror_cpu.assign(mirror);
    mirror_ = mirror_cpu;
  }

  if (mexIsField(mx_layer, "angle")) {
    angle_ = mexGetScalar(mexGetField(mx_layer, "angle"));
    mexAssertMsg(0 <= angle_ && angle_ <= 1, "Angle in 'j' layer must be between 0 and 1");
  }

  if (mexIsField(mx_layer, "defval")) {
    defval_ = mexGetScalar(mexGetField(mx_layer, "defval"));
  } else {
    // check that the transformed image is always inside the original one
    std::vector<ftype> maxsize(2, 0);
    for (size_t i = 0; i < 2; ++i) {
      maxsize[i] = (ftype) (dims_[i+2] - 1) * scale[i];
    }
    if (angle_ > 0) {
      ftype angle_inn = atan2((ftype) dims_[2], (ftype) dims_[3]) / kPi;
      ftype maxsin = 1;
      if (angle_inn + angle_ < 0.5) {
        maxsin = sin(kPi * (angle_inn + angle_));
      }
      ftype maxcos = 1;
      if (angle_inn > angle_) {
        maxcos = cos(kPi * (angle_inn - angle_));
      }
      ftype maxrad = (ftype) sqrt((double) (maxsize[0]*maxsize[0] + maxsize[1]*maxsize[1]));
      maxsize[0] = maxrad * maxsin;
      maxsize[1] = maxrad * maxcos;
    }
    std::vector<ftype> oldmapsize(2, 0);
    for (size_t i = 0; i < 2; ++i) {
      oldmapsize[i] = (ftype) prev_layer->dims_[i+2];
    }
    ftype min0 = ((ftype) oldmapsize[0] / 2 - (ftype) 0.5) - (ftype) maxsize[0] / 2 - shift[0];
    ftype max0 = ((ftype) oldmapsize[0] / 2 - (ftype) 0.5) + (ftype) maxsize[0] / 2 + shift[0];
    ftype min1 = ((ftype) oldmapsize[1] / 2 - (ftype) 0.5) - (ftype) maxsize[1] / 2 - shift[1];
    ftype max1 = ((ftype) oldmapsize[1] / 2 - (ftype) 0.5) + (ftype) maxsize[1] / 2 + shift[1];
    if (!(0 <= min0 && max0 < oldmapsize[0] && 0 <= min1 && max1 < oldmapsize[1])) {
      mexPrintMsg("min1", min0); mexPrintMsg("max1", max0);
      mexPrintMsg("min2", min1); mexPrintMsg("max2", max1);
      mexAssertMsg(false, "For these jitter parameters the new image is out of the original image");
    }
  }
  if (mexIsField(mx_layer, "eigenvectors")) {
    const mxArray* mx_ev = mexGetField(mx_layer, "eigenvectors");
    std::vector<size_t> ev_dim = mexGetDimensions(mx_ev);
    mexAssertMsg(ev_dim.size() == 2, "The eigenvectors array must have 2 dimensions");
    mexAssertMsg(ev_dim[0] == dims_[1] && ev_dim[1] == dims_[1],
      "The eigenvector matrix size is wrong");
    MatCPU ev_cpu(dims_[1], dims_[1]);
    mexGetMatrix(mx_ev, ev_cpu);
    eigenvectors_.resize(dims_[1], dims_[1]);
    eigenvectors_ = ev_cpu;
    if (mexIsField(mx_layer, "noise_std")) {
      noise_std_ = mexGetScalar(mexGetField(mx_layer, "noise_std"));
      mexAssertMsg(noise_std_ >= 0, "noise_std must be nonnegative");
    } else {
      mexAssertMsg(false, "noise_std is required with eigenvalues");
    }
  }
  if (mexIsField(mx_layer, "randtest")) {
    randtest_ = (mexGetScalar(mexGetField(mx_layer, "randtest")) > 0);
  }
}