Exemplo n.º 1
0
int main() { 
  typedef funct::Product<funct::Parameter, funct::BreitWigner>::type FitFunction;
  typedef fit::HistoChiSquare<FitFunction> ChiSquared;
  try {
    funct::Parameter yield("Yield", 1000);
    funct::Parameter mass("Mass", 91.2);
    funct::Parameter gamma("Gamma", 2.50);
    funct::BreitWigner bw(mass, gamma);
    
    FitFunction f = yield * bw;
    TF1 startFun = root::tf1("startFun", f, 0, 200, yield, mass, gamma);
    TH1D histo("histo", "Z mass (GeV/c)", 200, 0, 200);
    histo.FillRandom("startFun", yield);
    ChiSquared chi2(f, &histo, 80, 120);
    fit::RootMinuit<ChiSquared> minuit(chi2, true);
    minuit.addParameter(yield, 100, 0, 10000);
    minuit.addParameter(mass, 2, 70, 120);
    minuit.addParameter(gamma, 1, 0, 5);
    minuit.minimize();
    minuit.migrad();
  } catch(std::exception & err){
    std::cerr << "Exception caught:\n" << err.what() << std::endl;
    return 1;
  }
  
  return 0;
}
void FitterUtilsSimultaneousExpOfPolyTimesX::fit(bool wantplot, bool constPartReco,
      double fracPartReco_const,
      ofstream& out, TTree* t, bool update, string plotsfile)
{

   //***************Get the PDFs from the workspace

   TFile fw(workspacename.c_str());   
   RooWorkspace* workspace = (RooWorkspace*)fw.Get("workspace");
   RooRealVar *B_plus_M = workspace->var("B_plus_M");
   RooRealVar *misPT = workspace->var("misPT");
   RooRealVar *l1Kee = workspace->var("l1Kee");
   RooRealVar *l2Kee = workspace->var("l2Kee");
   RooRealVar *l3Kee = workspace->var("l3Kee");
   RooRealVar *l4Kee = workspace->var("l4Kee");
   RooRealVar *l5Kee = workspace->var("l5Kee");
   RooRealVar *l1KeeGen = workspace->var("l1KeeGen");
   RooRealVar *l2KeeGen = workspace->var("l2KeeGen");
   RooRealVar *l3KeeGen = workspace->var("l3KeeGen");
   RooRealVar *l4KeeGen = workspace->var("l4KeeGen");
   RooRealVar *l5KeeGen = workspace->var("l5KeeGen");
   RooRealVar *fractionalErrorJpsiLeak = workspace->var("fractionalErrorJpsiLeak");


   RooRealVar l1Kemu(*l1Kee);
   l1Kemu.SetName("l1Kemu"); l1Kemu.SetTitle("l1Kemu");    
   RooRealVar l2Kemu(*l2Kee);
   l2Kemu.SetName("l2Kemu"); l2Kemu.SetTitle("l2Kemu");    
   RooRealVar l3Kemu(*l3Kee);
   l3Kemu.SetName("l3Kemu"); l3Kemu.SetTitle("l3Kemu");    
   RooRealVar l4Kemu(*l4Kee);
   l4Kemu.SetName("l4Kemu"); l4Kemu.SetTitle("l4Kemu");    
   RooRealVar l5Kemu(*l5Kee);
   l5Kemu.SetName("l5Kemu"); l5Kemu.SetTitle("l5Kemu");    


   RooHistPdf *histPdfSignalZeroGamma = (RooHistPdf *) workspace->pdf("histPdfSignalZeroGamma");
   RooHistPdf *histPdfSignalOneGamma = (RooHistPdf *) workspace->pdf("histPdfSignalOneGamma");
   RooHistPdf *histPdfSignalTwoGamma = (RooHistPdf *) workspace->pdf("histPdfSignalTwoGamma");
   RooHistPdf *histPdfPartReco = (RooHistPdf *) workspace->pdf("histPdfPartReco");
   RooHistPdf *histPdfJpsiLeak(0);
   if(nGenJpsiLeak>0) histPdfJpsiLeak = (RooHistPdf *) workspace->pdf("histPdfJpsiLeak");

   //Here set in the Kemu PDF the parameters that have to be shared

   RooExpOfPolyTimesX* combPDF = new RooExpOfPolyTimesX("combPDF", "combPDF",  *B_plus_M, *misPT,  *l1Kee, *l2Kee, *l3Kee, *l4Kee, *l5Kee);
   RooExpOfPolyTimesX* KemuPDF = new RooExpOfPolyTimesX("kemuPDF", "kemuPDF",  *B_plus_M, *misPT,  l1Kemu, *l2Kee, *l3Kee, *l4Kee, *l5Kee);



   RooWorkspace* workspaceGen = (RooWorkspace*)fw.Get("workspaceGen");
   RooDataSet* dataGenSignalZeroGamma = (RooDataSet*)workspaceGen->data("dataGenSignalZeroGamma");
   RooDataSet* dataGenSignalOneGamma = (RooDataSet*)workspaceGen->data("dataGenSignalOneGamma");
   RooDataSet* dataGenSignalTwoGamma = (RooDataSet*)workspaceGen->data("dataGenSignalTwoGamma");
   RooDataSet* dataGenPartReco = (RooDataSet*)workspaceGen->data("dataGenPartReco");
   RooDataSet* dataGenComb = (RooDataSet*)workspaceGen->data("dataGenComb");
   RooDataSet* dataGenKemu = (RooDataSet*)workspaceGen->data("dataGenKemu");
   RooDataSet* dataGenJpsiLeak(0);
   if(nGenJpsiLeak>0) dataGenJpsiLeak = (RooDataSet*)workspaceGen->data("dataGenJpsiLeak");


   if(wantplot)
   {
      //**************Must get the datasets

      RooDataSet* dataSetSignalZeroGamma = (RooDataSet*)workspace->data("dataSetSignalZeroGamma");
      RooDataSet* dataSetSignalOneGamma = (RooDataSet*)workspace->data("dataSetSignalOneGamma");
      RooDataSet* dataSetSignalTwoGamma = (RooDataSet*)workspace->data("dataSetSignalTwoGamma");
      RooDataSet* dataSetPartReco = (RooDataSet*)workspace->data("dataSetPartReco");
      RooDataSet* dataSetComb = (RooDataSet*)workspace->data("dataSetComb");
      RooDataSet* dataSetJpsiLeak = (RooDataSet*)workspace->data("dataSetJpsiLeak");

      //**************Plot all the different components

      cout<<"dataGenSignalZeroGamma: "<<dataGenSignalZeroGamma<<endl;
      PlotShape(*dataSetSignalZeroGamma, *dataGenSignalZeroGamma, *histPdfSignalZeroGamma, plotsfile, "cSignalZeroGamma", *B_plus_M, *misPT);
      PlotShape(*dataSetSignalOneGamma, *dataGenSignalOneGamma, *histPdfSignalOneGamma, plotsfile, "cSignalOneGamma", *B_plus_M, *misPT);
      PlotShape(*dataSetSignalTwoGamma, *dataGenSignalTwoGamma, *histPdfSignalTwoGamma, plotsfile, "cSignalTwoGamma", *B_plus_M, *misPT);
      PlotShape(*dataSetPartReco, *dataGenPartReco, *histPdfPartReco, plotsfile, "cPartReco", *B_plus_M, *misPT);
      PlotShape(*dataSetComb, *dataGenComb, *combPDF, plotsfile, "cComb", *B_plus_M, *misPT);
      if(nGenJpsiLeak>1) PlotShape(*dataSetJpsiLeak, *dataGenJpsiLeak, *histPdfJpsiLeak, plotsfile, "cJpsiLeak", *B_plus_M, *misPT);
   }

   //***************Merge datasets

   RooDataSet* dataGenTot(dataGenPartReco);
   dataGenTot->append(*dataGenSignalZeroGamma);
   dataGenTot->append(*dataGenSignalOneGamma);
   dataGenTot->append(*dataGenSignalTwoGamma);
   dataGenTot->append(*dataGenComb);
   if(nGenJpsiLeak>0) dataGenTot->append(*dataGenJpsiLeak);

   //**************Create index category and join samples

   RooCategory category("category", "category");
   category.defineType("Kee");
   category.defineType("Kemu");

   RooDataSet dataGenSimultaneous("dataGenSimultaneous", "dataGenSimultaneous", RooArgSet(*B_plus_M, *misPT), Index(category), Import("Kee", *dataGenTot), Import("Kemu", *dataGenKemu));

   //**************Prepare fitting function

   RooRealVar nSignal("nSignal", "#signal events", 1.*nGenSignal, nGenSignal-7*sqrt(nGenSignal), nGenSignal+7*sqrt(nGenSignal));
   RooRealVar nPartReco("nPartReco", "#nPartReco", 1.*nGenPartReco, nGenPartReco-7*sqrt(nGenPartReco), nGenPartReco+7*sqrt(nGenPartReco));
   RooRealVar nComb("nComb", "#nComb", 1.*nGenComb, nGenComb-7*sqrt(nGenComb), nGenComb+7*sqrt(nGenComb));
   RooRealVar nKemu("nKemu", "#nKemu", 1.*nGenKemu, nGenKemu-7*sqrt(nGenKemu), nGenKemu+7*sqrt(nGenKemu));
   RooRealVar nJpsiLeak("nJpsiLeak", "#nJpsiLeak", 1.*nGenJpsiLeak, nGenJpsiLeak-7*sqrt(nGenJpsiLeak), nGenJpsiLeak+7*sqrt(nGenJpsiLeak));
   RooRealVar fracZero("fracZero", "fracZero",0.5,0,1);
   RooRealVar fracOne("fracOne", "fracOne",0.5, 0,1);
   RooFormulaVar fracPartReco("fracPartReco", "nPartReco/nSignal", RooArgList(nPartReco,nSignal));
   RooFormulaVar fracOneRec("fracOneRec", "(1-fracZero)*fracOne", RooArgList(fracZero, fracOne));

   RooAddPdf histPdfSignal("histPdfSignal", "histPdfSignal", RooArgList(*histPdfSignalZeroGamma, *histPdfSignalOneGamma, *histPdfSignalTwoGamma), RooArgList(fracZero, fracOneRec));

   RooArgList pdfList(histPdfSignal, *histPdfPartReco, *combPDF);
   RooArgList yieldList(nSignal, nPartReco, nComb);

   if(nGenJpsiLeak>0)
   {
      pdfList.add(*histPdfJpsiLeak);
      yieldList.add(nJpsiLeak); 
   }
   RooAddPdf totPdf("totPdf", "totPdf", pdfList, yieldList);
   RooExtendPdf totKemuPdf("totKemuPdf", "totKemuPdf", *KemuPDF, nKemu);

   //**************** Prepare simultaneous PDF

   RooSimultaneous simPdf("simPdf", "simPdf", category);
   simPdf.addPdf(totPdf, "Kee");
   simPdf.addPdf(totKemuPdf, "Kemu");

   //**************** Constrain the fraction of zero and one photon

   int nGenSignalZeroGamma(floor(nGenFracZeroGamma*nGenSignal));
   int nGenSignalOneGamma(floor(nGenFracOneGamma*nGenSignal));
   int nGenSignalTwoGamma(floor(nGenSignal-nGenSignalZeroGamma-nGenSignalOneGamma));

   RooRealVar fracZeroConstMean("fracZeroConstMean", "fracZeroConstMean", nGenSignalZeroGamma*1./nGenSignal);
   RooRealVar fracZeroConstSigma("fracZeroConstSigma", "fracZeroConstSigma", sqrt(nGenSignalZeroGamma)/nGenSignal);
   RooGaussian fracZeroConst("fracZeroConst", "fracZeroConst", fracZero, fracZeroConstMean, fracZeroConstSigma); 

   RooRealVar fracOneConstMean("fracOneConstMean", "fracOneConstMean", nGenSignalOneGamma*1./nGenSignal/(1-fracZeroConstMean.getVal()));
   RooRealVar fracOneConstSigma("fracOneConstSigma", "fracOneConstSigma", sqrt(nGenSignalOneGamma)/nGenSignal/(1-fracZeroConstMean.getVal()));
   RooGaussian fracOneConst("fracOneConst", "fracOneConst", fracOne, fracOneConstMean, fracOneConstSigma); 

   RooRealVar fracPartRecoMean("fracPartRecoMean", "fracPartRecoMean", nGenPartReco/(1.*nGenSignal));
   RooRealVar fracPartRecoSigma("fracPartRecoSigma", "fracPartRecoSigma", fracPartReco_const*fracPartRecoMean.getVal());

   RooGaussian fracPartRecoConst("fracPartRecoConst", "fracPartRecoConst", fracPartReco, fracPartRecoMean, fracPartRecoSigma);

   RooRealVar JpsiLeakMean("JpsiLeakMean", "JpsiLeakMean", nGenJpsiLeak);
   RooRealVar JpsiLeakSigma("JpsiLeakSigma", "JpsiLeakSigma", nGenJpsiLeak*fractionalErrorJpsiLeak->getVal());
   RooGaussian JpsiLeakConst("JpsiLeakConst", "JpsiLeakConst", nJpsiLeak, JpsiLeakMean, JpsiLeakSigma); 


   //**************** fit
   
   RooAbsReal::defaultIntegratorConfig()->setEpsAbs(1e-8) ;
   RooAbsReal::defaultIntegratorConfig()->setEpsRel(1e-8) ;


   initiateParams(nGenSignalZeroGamma, nGenSignalOneGamma, nGenSignalTwoGamma, 
         nKemu, nSignal, nPartReco, nComb, fracZero, fracOne,
         nJpsiLeak, constPartReco, fracPartRecoSigma, 
         *l1Kee, *l2Kee, *l3Kee, *l4Kee, *l5Kee, l1Kemu, l2Kemu, l3Kemu, l4Kemu, l5Kemu, 
         *l1KeeGen, *l2KeeGen, *l3KeeGen, *l4KeeGen, *l5KeeGen);

   RooArgSet constraints(fracZeroConst, fracOneConst);
   if (constPartReco) constraints.add(fracPartRecoConst);
   if(nGenJpsiLeak>0) constraints.add(JpsiLeakConst);

   RooAbsReal* nll = simPdf.createNLL(dataGenSimultaneous, Extended(), ExternalConstraints(constraints));
   RooMinuit minuit(*nll);
   minuit.setStrategy(2);


   int migradRes(1);
   int hesseRes(4);

   vector<int> migradResVec;
   vector<int> hesseResVec;

   double edm(10);
   int nrefit(0);

   RooFitResult* fitRes(0);
   vector<RooFitResult*> fitResVec;

   bool hasConverged(false);

   for(int i(0); (i<15) && !hasConverged ; ++i)
   {
      initiateParams(nGenSignalZeroGamma, nGenSignalOneGamma, nGenSignalTwoGamma, 
            nKemu, nSignal, nPartReco, nComb, fracZero, fracOne,
            nJpsiLeak, constPartReco, fracPartRecoSigma, 
            *l1Kee, *l2Kee, *l3Kee, *l4Kee, *l5Kee, l1Kemu, l2Kemu, l3Kemu, l4Kemu, l5Kemu, 
            *l1KeeGen, *l2KeeGen, *l3KeeGen, *l4KeeGen, *l5KeeGen);

      cout<<"FITTING: starting with nsignal = "<<nSignal.getValV()<<" refit nbr. "<<i<<endl;
      //if(fitRes != NULL && fitRes != 0) delete fitRes;

      migradRes = minuit.migrad();
      hesseRes = minuit.hesse();

      fitRes = minuit.save();
      edm = fitRes->edm();

      fitResVec.push_back(fitRes); 
      migradResVec.push_back(migradRes);
      hesseResVec.push_back(hesseRes);

      if( migradRes == 0 && hesseRes == 0 && edm < 1e-3 ) hasConverged = true;

      ++nrefit;

      cout<<"Fitting nbr "<<i<<" done. Hesse: "<<hesseRes<<" migrad: "<<migradRes<<" edm: "<<edm<<" minNll: "<<fitRes->minNll()<<endl;
   }


   if(!hasConverged)
   {
      double minNll(1e20);
      int minIndex(-1);
      for(unsigned int i(0); i<fitResVec.size(); ++i)
      {
         if( fitResVec.at(i)->minNll() < minNll)
         {
            minIndex = i;
            minNll = fitResVec[i]->minNll();
         }
      }
      
      migradRes = migradResVec.at(minIndex);
      hesseRes = hesseResVec.at(minIndex);
      cout<<"Fit not converged, choose fit "<<minIndex<<". Hesse: "<<hesseRes<<" migrad: "<<migradRes<<" edm: "<<edm<<" minNll: "<<fitRes->minNll()<<endl;
   }


   fillTreeResult(t, fitRes,  update, migradRes, hesseRes, hasConverged);

   for(unsigned int i(0); i<fitResVec.size(); ++i) delete fitResVec.at(i);
   //totPdf.fitTo(*dataGenTot, Extended(), Save(), Warnings(false));

   //*************** output fit status


   int w(12);
   out<<setw(w)<<migradRes<<setw(w)<<hesseRes<<setw(w)<<edm<<setw(w)<<nrefit<<endl;

   if(wantplot) plot_fit_result(plotsfile, totPdf, *dataGenTot);
   if(wantplot) plot_kemu_fit_result(plotsfile, totKemuPdf, *dataGenKemu);

   fw.Close();
   //delete and return
   delete nll;
   delete workspace;
   delete workspaceGen;
   delete combPDF;
   delete KemuPDF;
}
Exemplo n.º 3
0
void FitterUtils::fit(bool wantplot, bool constPartReco,
      double fracPartReco_const,
      ofstream& out, TTree* t, bool update, string plotsfile)
{

   //***************Get the PDFs from the workspace

   TFile fw(workspacename.c_str());   
   RooWorkspace* workspace = (RooWorkspace*)fw.Get("workspace");
   RooRealVar *B_plus_M = workspace->var("B_plus_M");
   RooRealVar *misPT = workspace->var("misPT");
   RooRealVar *T = workspace->var("T");
   RooRealVar *n = workspace->var("n");
   RooRealVar *expoConst = workspace->var("expoConst");
   RooRealVar *trueExp = workspace->var("trueExp");
   RooRealVar *fractionalErrorJpsiLeak = workspace->var("fractionalErrorJpsiLeak");

   cout<<"VALUE OF T IN FIT: "<<T->getVal()<<" +- "<<T->getError()<<endl;
   cout<<"VALUE OF n IN FIT: "<<n->getVal()<<" +- "<<n->getError()<<endl;

   RooHistPdf *histPdfSignalZeroGamma = (RooHistPdf *) workspace->pdf("histPdfSignalZeroGamma");
   RooHistPdf *histPdfSignalOneGamma = (RooHistPdf *) workspace->pdf("histPdfSignalOneGamma");
   RooHistPdf *histPdfSignalTwoGamma = (RooHistPdf *) workspace->pdf("histPdfSignalTwoGamma");
   RooHistPdf *histPdfPartReco = (RooHistPdf *) workspace->pdf("histPdfPartReco");
   RooHistPdf *histPdfJpsiLeak(0);
   if(nGenJpsiLeak>0) histPdfJpsiLeak = (RooHistPdf *) workspace->pdf("histPdfJpsiLeak");

   RooAbsPdf *combPDF;

   if (fit2D)
   {  
      combPDF =  new RooPTMVis("combPDF", "combPDF", *misPT, *B_plus_M, *T, *n, *expoConst);
   }
   else
   {
      combPDF =  new RooExponential("combPDF", "combPDF", *B_plus_M, *expoConst);
   }

   expoConst->setVal(trueExp->getVal());


   RooWorkspace* workspaceGen = (RooWorkspace*)fw.Get("workspaceGen");
   RooDataSet* dataGenSignalZeroGamma = (RooDataSet*)workspaceGen->data("dataGenSignalZeroGamma");
   RooDataSet* dataGenSignalOneGamma = (RooDataSet*)workspaceGen->data("dataGenSignalOneGamma");
   RooDataSet* dataGenSignalTwoGamma = (RooDataSet*)workspaceGen->data("dataGenSignalTwoGamma");
   RooDataSet* dataGenPartReco = (RooDataSet*)workspaceGen->data("dataGenPartReco");
   RooDataSet* dataGenComb = (RooDataSet*)workspaceGen->data("dataGenComb");
   RooDataSet* dataGenJpsiLeak(0);
   if(nGenJpsiLeak>0) dataGenJpsiLeak = (RooDataSet*)workspaceGen->data("dataGenJpsiLeak");


   if(wantplot)
   {
      //**************Must get the datasets

      RooDataSet* dataSetSignalZeroGamma = (RooDataSet*)workspace->data("dataSetSignalZeroGamma");
      RooDataSet* dataSetSignalOneGamma = (RooDataSet*)workspace->data("dataSetSignalOneGamma");
      RooDataSet* dataSetSignalTwoGamma = (RooDataSet*)workspace->data("dataSetSignalTwoGamma");
      RooDataSet* dataSetPartReco = (RooDataSet*)workspace->data("dataSetPartReco");
      RooDataSet* dataSetComb = (RooDataSet*)workspace->data("dataSetComb");
      RooDataSet* dataSetJpsiLeak = (RooDataSet*)workspace->data("dataSetJpsiLeak");

      //**************Plot all the different components

      cout<<"dataGenSignalZeroGamma: "<<dataGenSignalZeroGamma<<endl;
      PlotShape(*dataSetSignalZeroGamma, *dataGenSignalZeroGamma, *histPdfSignalZeroGamma, plotsfile, "cSignalZeroGamma", *B_plus_M, *misPT);
      PlotShape(*dataSetSignalOneGamma, *dataGenSignalOneGamma, *histPdfSignalOneGamma, plotsfile, "cSignalOneGamma", *B_plus_M, *misPT);
      PlotShape(*dataSetSignalTwoGamma, *dataGenSignalTwoGamma, *histPdfSignalTwoGamma, plotsfile, "cSignalTwoGamma", *B_plus_M, *misPT);
      PlotShape(*dataSetPartReco, *dataGenPartReco, *histPdfPartReco, plotsfile, "cPartReco", *B_plus_M, *misPT);
      PlotShape(*dataSetComb, *dataGenComb, *combPDF, plotsfile, "cComb", *B_plus_M, *misPT);
      if(nGenJpsiLeak>1) PlotShape(*dataSetJpsiLeak, *dataGenJpsiLeak, *histPdfJpsiLeak, plotsfile, "cJpsiLeak", *B_plus_M, *misPT);
   }

   //***************Merge datasets

   RooDataSet* dataGenTot(dataGenPartReco);
   dataGenTot->append(*dataGenSignalZeroGamma);
   dataGenTot->append(*dataGenSignalOneGamma);
   dataGenTot->append(*dataGenSignalTwoGamma);
   dataGenTot->append(*dataGenComb);
   if(nGenJpsiLeak>0) dataGenTot->append(*dataGenJpsiLeak);


   //**************Prepare fitting function

   RooRealVar nSignal("nSignal", "#signal events", 1.*nGenSignal, nGenSignal-7*sqrt(nGenSignal), nGenSignal+7*sqrt(nGenSignal));
   RooRealVar nPartReco("nPartReco", "#nPartReco", 1.*nGenPartReco, nGenPartReco-7*sqrt(nGenPartReco), nGenPartReco+7*sqrt(nGenPartReco));
   RooRealVar nComb("nComb", "#nComb", 1.*nGenComb, nGenComb-7*sqrt(nGenComb), nGenComb+7*sqrt(nGenComb));
   RooRealVar nJpsiLeak("nJpsiLeak", "#nJpsiLeak", 1.*nGenJpsiLeak, nGenJpsiLeak-7*sqrt(nGenJpsiLeak), nGenJpsiLeak+7*sqrt(nGenJpsiLeak));
   RooRealVar fracZero("fracZero", "fracZero",0.5,0,1);
   RooRealVar fracOne("fracOne", "fracOne",0.5, 0,1);
   RooFormulaVar fracPartReco("fracPartReco", "nPartReco/nSignal", RooArgList(nPartReco,nSignal));
   RooFormulaVar fracOneRec("fracOneRec", "(1-fracZero)*fracOne", RooArgList(fracZero, fracOne));


   RooAddPdf histPdfSignal("histPdfSignal", "histPdfSignal", RooArgList(*histPdfSignalZeroGamma, *histPdfSignalOneGamma, *histPdfSignalTwoGamma), RooArgList(fracZero, fracOneRec));

   RooArgList pdfList(histPdfSignal, *histPdfPartReco, *combPDF);
   RooArgList yieldList(nSignal, nPartReco, nComb);

   if(nGenJpsiLeak>0)
   {
      pdfList.add(*histPdfJpsiLeak);
      yieldList.add(nJpsiLeak); 
   }
   RooAddPdf totPdf("totPdf", "totPdf", pdfList, yieldList);

   //**************** Constrain the fraction of zero and one photon


   int nGenSignalZeroGamma(floor(nGenFracZeroGamma*nGenSignal));
   int nGenSignalOneGamma(floor(nGenFracOneGamma*nGenSignal));
   int nGenSignalTwoGamma(floor(nGenSignal-nGenSignalZeroGamma-nGenSignalOneGamma));

   RooRealVar fracZeroConstMean("fracZeroConstMean", "fracZeroConstMean", nGenSignalZeroGamma*1./nGenSignal);
   RooRealVar fracZeroConstSigma("fracZeroConstSigma", "fracZeroConstSigma", sqrt(nGenSignalZeroGamma)/nGenSignal);
   RooGaussian fracZeroConst("fracZeroConst", "fracZeroConst", fracZero, fracZeroConstMean, fracZeroConstSigma); 

   RooRealVar fracOneConstMean("fracOneConstMean", "fracOneConstMean", nGenSignalOneGamma*1./nGenSignal/(1-fracZeroConstMean.getVal()));
   RooRealVar fracOneConstSigma("fracOneConstSigma", "fracOneConstSigma", sqrt(nGenSignalOneGamma)/nGenSignal/(1-fracZeroConstMean.getVal()));
   RooGaussian fracOneConst("fracOneConst", "fracOneConst", fracOne, fracOneConstMean, fracOneConstSigma); 

   RooRealVar fracPartRecoMean("fracPartRecoMean", "fracPartRecoMean", nGenPartReco/(1.*nGenSignal));
   RooRealVar fracPartRecoSigma("fracPartRecoSigma", "fracPartRecoSigma", fracPartReco_const*fracPartRecoMean.getVal());

   RooGaussian fracPartRecoConst("fracPartRecoConst", "fracPartRecoConst", fracPartReco, fracPartRecoMean, fracPartRecoSigma);

   RooRealVar JpsiLeakMean("JpsiLeakMean", "JpsiLeakMean", nGenJpsiLeak);
   RooRealVar JpsiLeakSigma("JpsiLeakSigma", "JpsiLeakSigma", nGenJpsiLeak*fractionalErrorJpsiLeak->getVal());
   RooGaussian JpsiLeakConst("JpsiLeakConst", "JpsiLeakConst", nJpsiLeak, JpsiLeakMean, JpsiLeakSigma); 

   //Extra TEST CONSTRAINT


   //RooRealVar combConstMean("combConstMean", "combConstMean", nGenComb);
   //RooRealVar combConstSigma("combConstSigma", "combConstSigma", 7.7);
   //RooGaussian combConst("combConst", "combConst", nComb, combConstMean, combConstSigma);

   //**************** fit
   
   RooAbsReal::defaultIntegratorConfig()->setEpsAbs(1e-8) ;
   RooAbsReal::defaultIntegratorConfig()->setEpsRel(1e-8) ;

   RooArgSet *par_set = totPdf.getParameters(dataGenTot);
   initiateParams(nGenSignalZeroGamma, nGenSignalOneGamma, nGenSignalTwoGamma, 
         *trueExp, nSignal, nPartReco, nComb, fracZero, fracOne, *expoConst, nJpsiLeak,  constPartReco, fracPartRecoSigma);

   RooArgSet constraints(fracZeroConst, fracOneConst);
   if (constPartReco) constraints.add(fracPartRecoConst);
   if(nGenJpsiLeak>0) constraints.add(JpsiLeakConst);

   RooAbsReal* nll = totPdf.createNLL(*dataGenTot, Extended(), ExternalConstraints(constraints));
   RooMinuit minuit(*nll);
   minuit.setStrategy(2);


   int migradRes(1);
   int hesseRes(4);

   vector<int> migradResVec;
   vector<int> hesseResVec;

   double edm(10);
   int nrefit(0);

   RooFitResult* fitRes(0);
   vector<RooFitResult*> fitResVec;

   bool hasConverged(false);

   for(int i(0); (i<10) && !hasConverged ; ++i)
   {
      initiateParams(nGenSignalZeroGamma, nGenSignalOneGamma, nGenSignalTwoGamma, 
             *trueExp, nSignal, nPartReco, nComb, fracZero, fracOne, *expoConst, nJpsiLeak, constPartReco, fracPartRecoSigma);
      cout<<"FITTING: starting with nsignal = "<<nSignal.getValV()<<" refit nbr. "<<i<<endl;
      //if(fitRes != NULL && fitRes != 0) delete fitRes;

      migradRes = minuit.migrad();
      hesseRes = minuit.hesse();

      fitRes = minuit.save();
      edm = fitRes->edm();

      fitResVec.push_back(fitRes); 
      migradResVec.push_back(migradRes);
      hesseResVec.push_back(hesseRes);

      if( migradRes == 0 && hesseRes == 0 && edm < 1e-4 ) hasConverged = true;

      ++nrefit;


      cout<<"Fitting nbr "<<i<<" done. Hesse: "<<hesseRes<<" migrad: "<<migradRes<<" edm: "<<edm<<" minNll: "<<fitRes->minNll()<<endl;
   }


   if(!hasConverged)
   {
      double minNll(1e20);
      int minIndex(-1);
      for(unsigned int i(0); i<fitResVec.size(); ++i)
      {
         if( fitResVec.at(i)->minNll() < minNll)
         {
            minIndex = i;
            minNll = fitResVec[i]->minNll();
         }
      }
      
      migradRes = migradResVec.at(minIndex);
      hesseRes = hesseResVec.at(minIndex);
      cout<<"Fit not converged, choose fit "<<minIndex<<". Hesse: "<<hesseRes<<" migrad: "<<migradRes<<" edm: "<<edm<<" minNll: "<<fitRes->minNll()<<endl;
   }


   fillTreeResult(t, fitRes,  update, migradRes, hesseRes, hasConverged);

   for(unsigned int i(0); i<fitResVec.size(); ++i) delete fitResVec.at(i);
   //totPdf.fitTo(*dataGenTot, Extended(), Save(), Warnings(false));

   //*************** output fit status


   int w(12);
   out<<setw(w)<<migradRes<<setw(w)<<hesseRes<<setw(w)<<edm<<setw(w)<<nrefit<<endl;

   if(wantplot) plot_fit_result(plotsfile, totPdf, *dataGenTot);

   fw.Close();
   //delete and return
   delete nll;
   delete par_set;
   delete workspace;
   delete workspaceGen;
   delete combPDF;

}
Exemplo n.º 4
0
Double_t TT_surface::Use_Minuit(Int_t factor)
{
  Int_t problems=0;
  for (Int_t i_w=0;i_w<f_N_w;i_w++) {
    Double_t w_min=f_w_min+i_w*(f_w_max-f_w_min)/f_N_w;
    Double_t w_max=f_w_min+(i_w+1)*(f_w_max-f_w_min)/f_N_w;

    Double_t ws=(i_w)    *(f_w_max-f_w_min)/f_N_w + f_w_min;
    Double_t p_lep=sqrt(pow(f_Enu-ws,2)-pow(f_params->f_m_lep,2));
    Double_t ws_qbold_min=f_Enu-p_lep;
    Double_t ws_qbold_max=f_Enu+p_lep;

    for (Int_t i_qbold=0;i_qbold<f_N_qbold;i_qbold++) {
      for (Int_t i_cth_p=0;i_cth_p<f_N_cth_p;i_cth_p++) {
	for (Int_t i_phi_p=0;i_phi_p<f_N_phi_p;i_phi_p++) {

	  Double_t qbold_min=ws_qbold_min+ i_qbold   *(ws_qbold_max-ws_qbold_min)/f_N_qbold;
	  Double_t qbold_max=ws_qbold_min+(i_qbold+1)*(ws_qbold_max-ws_qbold_min)/f_N_qbold;

	  Double_t cth_p_min=f_cth_p_min+ i_cth_p   *(f_cth_p_max-f_cth_p_min)/f_N_cth_p;
	  Double_t cth_p_max=f_cth_p_min+(i_cth_p+1)*(f_cth_p_max-f_cth_p_min)/f_N_cth_p;

	  Double_t phi_p_min=f_phi_p_min+ i_phi_p   *(f_phi_p_max-f_phi_p_min)/f_N_phi_p;
	  Double_t phi_p_max=f_phi_p_min+(i_phi_p+1)*(f_phi_p_max-f_phi_p_min)/f_N_phi_p;

	  for (Int_t trial=0;trial<factor;trial++) {

	    //static?
	    Double_t vstart[4];
	    Double_t step[4];
	    Double_t lower[4];
	    Double_t upper[4];

	    vstart[0]=0.0922963; 
	    vstart[1]=0.3128; 
	    vstart[2]=0.470622; 
	    vstart[3]=0.715178;
	    
	    //vstart[0]=f_rand.Uniform(w_min,w_max);
	    //vstart[1]=f_rand.Uniform(qbold_min,qbold_max);
	    //vstart[2]=f_rand.Uniform(cth_p_min,cth_p_max);
	    //vstart[3]=f_rand.Uniform(phi_p_min,phi_p_max);
	    
	    lower[0]=w_min;
	    upper[0]=w_max;
	    lower[1]=qbold_min;
	    upper[1]=qbold_max;
	    lower[2]=cth_p_min;
	    upper[2]=cth_p_max;
	    lower[3]=phi_p_min;
	    upper[3]=phi_p_max;

	    //vstart[0]=0.5; 
	    //vstart[1]=0.5;
	    //vstart[2]=0.5; 
	    //vstart[3]=0.5;
	    //
	    //lower[0]=0.0;
	    //upper[0]=1.0;
	    //lower[1]=0.0;
	    //upper[1]=1.0;
	    //lower[2]=0.0;
	    //upper[2]=1.0;
	    //lower[3]=0.0;
	    //upper[3]=1.0;

	    for (Int_t iStep=0;iStep<4;iStep++) {
	      step[iStep]=(upper[iStep]-lower[iStep])/2.0;
	      //printf("step[%d]=%8.6g\n",iStep,step[iStep]);
	    }
	    
	    TMinuit minuit(4);
	    minuit.SetFCN(Minuit_FCN);

	    Double_t arglist[10];
	    Int_t ierflg = 0;
	    
	    arglist[0]=-1;
	    minuit.mnexcm("SET PRI",arglist,1,ierflg);

	    arglist[0] = 1.0;
	    minuit.mnexcm("SET ERR", arglist ,1,ierflg);

	    minuit.mnparm(0, "w",      vstart[0],step[0],lower[0],upper[0],ierflg);
	    minuit.mnparm(1, "q_bold", vstart[1],step[1],lower[1],upper[1],ierflg);
	    minuit.mnparm(2, "cth_p",  vstart[2],step[2],lower[2],upper[2],ierflg);
	    minuit.mnparm(3, "phi_p",  vstart[3],step[3],lower[3],upper[3],ierflg);
	    
	    // Now ready for minimization step
	    arglist[0] = 500;
	    arglist[1] = 1.0e-1;
	    minuit.mnexcm("MIGRAD", arglist ,2,ierflg);
	    
	    // Print results
	    Double_t amin,edm,errdef;
	    Int_t nvpar,nparx,icstat;
	    minuit.mnstat(amin,edm,errdef,nvpar,nparx,icstat);
	    minuit.mnprin(3,amin);


	  }
	}
      }
    }
  }
  return (problems+0.0)/pow(f_N_var*factor,f_N_dims);
}
Exemplo n.º 5
0
int main(int argc, char *argv[]){
  SetStyle();
  bool use_mc(false);
  char opt(' ');
  while(( opt=getopt(argc, argv, "m") )!=-1){
    switch(opt){
    case 'm':
      use_mc=true;
      break;
    default:
      break;
    }
  }

  {TTree crap;}
  std::vector<std::string> observed_names(0), signal_names;
  signal_names.push_back("raw_plots_and_values/SMS-TChiHH_2b2b_2J_mChargino-400_mLSP-1_TuneZ2star_8TeV-madgraph-tauola_Summer12-START53_V19_FSIM-v1_AODSIM_UCSB1871_v71_SyncSkim.root");
  if(use_mc){
    observed_names.push_back("raw_plots_and_values/BJets_HT-1000ToInf_8TeV-madgraph_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1895_v71_SyncSkim.root");//6
    observed_names.push_back("raw_plots_and_values/BJets_HT-250To500_8TeV-madgraph_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1893_v71_SyncSkim.root");//7
    observed_names.push_back("raw_plots_and_values/BJets_HT-500To1000_8TeV-madgraph_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1894_v71_SyncSkim.root");//8
    observed_names.push_back("raw_plots_and_values/TTJets_FullLeptMGDecays_8TeV-madgraph-tauola_Summer12_DR53X-PU_S10_START53_V7C-v2_AODSIM_UCSB1883_v71_SyncSkim.root");//9
    observed_names.push_back("raw_plots_and_values/TTJets_SemiLeptMGDecays_8TeV-madgraph-tauola_Summer12_DR53X-PU_S10_START53_V7C-v1_AODSIM_UCSB1884_v71_SyncSkim.root");//10
    observed_names.push_back("raw_plots_and_values/TTJets_HadronicMGDecays_8TeV-madgraph_Summer12_DR53X-PU_S10_START53_V7A_ext-v1_AODSIM_UCSB1880_v71_SyncSkim.root");//11
    observed_names.push_back("raw_plots_and_values/TTH_HToBB_M-125_8TeV-pythia6_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1855_v71_SyncSkim.root");//12
    observed_names.push_back("raw_plots_and_values/TTWJets_8TeV-madgraph_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1857_v71_SyncSkim.root");//13
    observed_names.push_back("raw_plots_and_values/TTZJets_8TeV-madgraph_v2_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1856_v71_SyncSkim.root");//14
    observed_names.push_back("raw_plots_and_values/Tbar_s-channel_TuneZ2star_8TeV-powheg-tauola_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1864_v71_SyncSkim.root");//15
    observed_names.push_back("raw_plots_and_values/Tbar_t-channel_TuneZ2star_8TeV-powheg-tauola_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1865_v71_SyncSkim.root");//16
    observed_names.push_back("raw_plots_and_values/Tbar_tW-channel-DR_TuneZ2star_8TeV-powheg-tauola_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1866_v71_SyncSkim.root");//17
    observed_names.push_back("raw_plots_and_values/T_s-channel_TuneZ2star_8TeV-powheg-tauola_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1860_v71_SyncSkim.root");//18
    observed_names.push_back("raw_plots_and_values/T_t-channel_TuneZ2star_8TeV-powheg-tauola_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1861_v71_SyncSkim.root");//19
    observed_names.push_back("raw_plots_and_values/T_tW-channel-DR_TuneZ2star_8TeV-powheg-tauola_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1862_v71_SyncSkim.root");//20
    observed_names.push_back("raw_plots_and_values/W2JetsToLNu_TuneZ2Star_8TeV-madgraph_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1877_v71_SyncSkim.root");//21
    observed_names.push_back("raw_plots_and_values/W3JetsToLNu_TuneZ2Star_8TeV-madgraph_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1878_v71_SyncSkim.root");//22
    observed_names.push_back("raw_plots_and_values/W4JetsToLNu_TuneZ2Star_8TeV-madgraph_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1879_v71_SyncSkim.root");//23
    observed_names.push_back("raw_plots_and_values/ZJetsToNuNu_100_HT_200_TuneZ2Star_8TeV_madgraph_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1887_v71_SyncSkim.root");//24
    observed_names.push_back("raw_plots_and_values/ZJetsToNuNu_200_HT_400_TuneZ2Star_8TeV_madgraph_ext_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1889_v71_SyncSkim.root");//25
    observed_names.push_back("raw_plots_and_values/ZJetsToNuNu_200_HT_400_TuneZ2Star_8TeV_madgraph_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1888_v71_SyncSkim.root");//26
    observed_names.push_back("raw_plots_and_values/ZJetsToNuNu_400_HT_inf_TuneZ2Star_8TeV_madgraph_ext_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1891_v71_SyncSkim.root");//27
    observed_names.push_back("raw_plots_and_values/ZJetsToNuNu_400_HT_inf_TuneZ2Star_8TeV_madgraph_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1890_v71_SyncSkim.root");//28
    observed_names.push_back("raw_plots_and_values/WH_WToLNu_HToBB_M-125_8TeV-powheg-herwigpp_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1858_v71_SyncSkim.root");//29
    observed_names.push_back("raw_plots_and_values/ZH_ZToBB_HToBB_M-125_8TeV-powheg-herwigpp_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1868_v71_SyncSkim.root");//30
    observed_names.push_back("raw_plots_and_values/WW_TuneZ2star_8TeV_pythia6_tauola_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1874_v71_SyncSkim.root");//31
    observed_names.push_back("raw_plots_and_values/ZZ_TuneZ2star_8TeV_pythia6_tauola_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1876_v71_SyncSkim.root");//32
    observed_names.push_back("raw_plots_and_values/WbbJetsToLNu_Massive_TuneZ2star_8TeV-madgraph-pythia6_tauola_Summer12_DR53X-PU_S10_START53_V7A-v1_AODSIM_UCSB1859_v71_SyncSkim.root");//33
  }else{
    observed_names.push_back("raw_plots_and_values/MET_Run2012A-13Jul2012-v1_AOD_UCSB1852_v71_SyncSkim.root");//0
    observed_names.push_back("raw_plots_and_values/MET_Run2012B-13Jul2012-v1_AOD_UCSB1853_v71_SyncSkim.root");//1
    observed_names.push_back("raw_plots_and_values/MET_Run2012C-24Aug2012-v1_AOD_UCSB1854_v71_SyncSkim.root");//2
    observed_names.push_back("raw_plots_and_values/MET_Run2012C-PromptReco-v2_AOD_UCSB1867_v71_SyncSkim.root");//3
    observed_names.push_back("raw_plots_and_values/MET_Run2012D-PromptReco-v1_AOD_UCSB1869_v71_SyncSkim.root");//4
    observed_names.push_back("raw_plots_and_values/MET_Run2012D-PromptReco-v1_AOD_UCSB1870_v71_SyncSkim.root");//5
  }
  std::vector<TFile*> observed_files(0), signal_files(0);
  GetFiles(observed_files, observed_names);
  GetFiles(signal_files, signal_names);

  std::vector<TTree*> observed_trees(0), signal_trees(0);
  GetTrees(observed_trees, observed_files);
  GetTrees(signal_trees, signal_files);

  WeightCalculator weightCalc(19399.0);
  std::vector<double> observed_weights(0), signal_weights;
  GetWeights(observed_weights, observed_names, weightCalc);
  GetWeights(signal_weights, signal_names, weightCalc);

  std::vector<ABCDCount> observed_counts(0), signal_counts;
  GetCounts(observed_counts, observed_trees, observed_weights);
  GetCounts(signal_counts, signal_trees, signal_weights);

  KillTrees(observed_trees);
  KillTrees(signal_trees);
  KillFiles(observed_files);
  KillFiles(signal_files);

  ABCDCalculator abcd_calculator(observed_counts, signal_counts);
  const unsigned int num_params(abcd_calculator.GetNumberOfParameters());
  TMinuit minuit(num_params);
  minuit.SetPrintLevel(1);

  double strategy[1]={2.0};
  int useless(0);
  minuit.mnexcm("SET STR", strategy, 1, useless);
  MinuitFunctor<ABCDCalculator>::SetFunctor(&abcd_calculator);
  MinuitFunctor<ABCDCalculator>::SetNumParams(num_params);
  minuit.SetFCN(MinuitFunctor<ABCDCalculator>::Function);
  minuit.SetMaxIterations(std::numeric_limits<int32_t>::max());
  std::cout << "before" << std::endl;
  for(unsigned int i(0); i<num_params; ++i){
    SetParameter(i, num_params, minuit);
  }
  std::cout << "middle" << std::endl;
  minuit.Migrad();
  minuit.Migrad();
  minuit.Migrad();
  minuit.mnmnos();
  minuit.mnmnos();
  minuit.mnmnos();
  std::cout << "after" << std::endl;
}