/* reads a unsigned char array, assumes the msb is stored first [big endian] */ int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c) { int res; /* make sure there are at least two digits */ if (a->alloc < 2) { if ((res = mp_grow(a, 2)) != MP_OKAY) { return res; } } /* zero the int */ mp_zero(a); /* read the bytes in */ while (c-- > 0) { if ((res = mp_mul_2d(a, 8, a)) != MP_OKAY) { return res; } #ifndef MP_8BIT a->dp[0] |= *b++; a->used += 1; #else a->dp[0] = (*b & MP_MASK); a->dp[1] |= ((*b++ >> 7) & 1u); a->used += 2; #endif } mp_clamp(a); return MP_OKAY; }
/* b = a*2 */ int mp_mul_2(mp_int * a, mp_int * b) { int x, res, oldused; /* grow to accomodate result */ if (b->alloc < a->used + 1) { if ((res = mp_grow(b, a->used + 1)) != MP_OKAY) { return res; } } oldused = b->used; b->used = a->used; { register mp_digit r, rr, *tmpa, *tmpb; /* alias for source */ tmpa = a->dp; /* alias for dest */ tmpb = b->dp; /* carry */ r = 0; for (x = 0; x < a->used; x++) { /* get what will be the *next* carry bit from the * MSB of the current digit */ rr = *tmpa >> ((mp_digit) (DIGIT_BIT - 1)); /* now shift up this digit, add in the carry [from the previous] */ *tmpb++ = ((*tmpa++ << ((mp_digit) 1)) | r) & MP_MASK; /* copy the carry that would be from the source * digit into the next iteration */ r = rr; } /* new leading digit? */ if (r != 0) { /* add a MSB which is always 1 at this point */ *tmpb = 1; ++(b->used); } /* now zero any excess digits on the destination * that we didn't write to */ tmpb = b->dp + b->used; for (x = b->used; x < oldused; x++) { *tmpb++ = 0; } } b->sign = a->sign; return MP_OKAY; }
/* reduce "x" in place modulo "n" using the Diminished Radix algorithm. * * Based on algorithm from the paper * * "Generating Efficient Primes for Discrete Log Cryptosystems" * Chae Hoon Lim, Pil Joong Lee, * POSTECH Information Research Laboratories * * The modulus must be of a special format [see manual] * * Has been modified to use algorithm 7.10 from the LTM book instead * * Input x must be in the range 0 <= x <= (n-1)**2 */ int mp_dr_reduce(mp_int *x, mp_int *n, mp_digit k) { int err, i, m; mp_word r; mp_digit mu, *tmpx1, *tmpx2; /* m = digits in modulus */ m = n->used; /* ensure that "x" has at least 2m digits */ if (x->alloc < (m + m)) { if ((err = mp_grow(x, m + m)) != MP_OKAY) { return err; } } /* top of loop, this is where the code resumes if * another reduction pass is required. */ top: /* aliases for digits */ /* alias for lower half of x */ tmpx1 = x->dp; /* alias for upper half of x, or x/B**m */ tmpx2 = x->dp + m; /* set carry to zero */ mu = 0; /* compute (x mod B**m) + k * [x/B**m] inline and inplace */ for (i = 0; i < m; i++) { r = (((mp_word) * tmpx2++) * (mp_word)k) + *tmpx1 + mu; *tmpx1++ = (mp_digit)(r & MP_MASK); mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); } /* set final carry */ *tmpx1++ = mu; /* zero words above m */ for (i = m + 1; i < x->used; i++) { *tmpx1++ = 0; } /* clamp, sub and return */ mp_clamp(x); /* if x >= n then subtract and reduce again * Each successive "recursion" makes the input smaller and smaller. */ if (mp_cmp_mag(x, n) != MP_LT) { if ((err = s_mp_sub(x, n, x)) != MP_OKAY) { return err; } goto top; } return MP_OKAY; }
int main(void) { int res, x, y; char buf[4096]; FILE *out; mp_int a, b; mp_init(&a); mp_init(&b); out = fopen("drprimes.txt", "w"); for (x = 0; x < (int)(sizeof(sizes)/sizeof(sizes[0])); x++) { top: printf("Seeking a %d-bit safe prime\n", sizes[x] * DIGIT_BIT); mp_grow(&a, sizes[x]); mp_zero(&a); for (y = 1; y < sizes[x]; y++) { a.dp[y] = MP_MASK; } /* make a DR modulus */ a.dp[0] = -1; a.used = sizes[x]; /* now loop */ res = 0; for (;;) { a.dp[0] += 4; if (a.dp[0] >= MP_MASK) break; mp_prime_is_prime(&a, 1, &res); if (res == 0) continue; printf("."); fflush(stdout); mp_sub_d(&a, 1, &b); mp_div_2(&b, &b); mp_prime_is_prime(&b, 3, &res); if (res == 0) continue; mp_prime_is_prime(&a, 3, &res); if (res == 1) break; } if (res != 1) { printf("Error not DR modulus\n"); sizes[x] += 1; goto top; } else { mp_toradix(&a, buf, 10); printf("\n\np == %s\n\n", buf); fprintf(out, "%d-bit prime:\np == %s\n\n", mp_count_bits(&a), buf); fflush(out); } } fclose(out); mp_clear(&a); mp_clear(&b); return 0; }
static void grow_and_negate(mp_int *a, int size, mp_int *b) { int i; int actual_size = MAX(size, USED(a)); mp_zero(b); mp_grow(b, actual_size); USED(b) = actual_size; for (i = 0; i < actual_size; i++) { DIGIT(b, i) = (~DIGIT(a, i)) & MP_MASK; } mp_add_d(b, 1, b); }
/* b = a/2 */ int mp_div_2 (mp_int * a, mp_int * b) { int x, res, oldused; /* copy */ if (b->alloc < a->used) { if ((res = mp_grow (b, a->used)) != MP_OKAY) { return res; } } oldused = b->used; b->used = a->used; { register mp_digit r, rr, *tmpa, *tmpb; /* source alias */ tmpa = a->dp + b->used - 1; /* dest alias */ tmpb = b->dp + b->used - 1; /* carry */ r = 0; for (x = b->used - 1; x >= 0; x--) { /* get the carry for the next iteration */ rr = *tmpa & 1; /* shift the current digit, add in carry and store */ *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); /* forward carry to next iteration */ r = rr; } /* zero excess digits */ tmpb = b->dp + b->used; for (x = b->used; x < oldused; x++) { *tmpb++ = 0; } } b->sign = a->sign; mp_clamp (b); return MP_OKAY; }
/* shift left a certain amount of digits */ int mp_lshd (mp_int * a, int b) { int x, res; /* if its less than zero return */ if (b <= 0) { return MP_OKAY; } /* grow to fit the new digits */ if (a->alloc < a->used + b) { if ((res = mp_grow (a, a->used + b)) != MP_OKAY) { return res; } } { register mp_digit *top, *bottom; /* increment the used by the shift amount then copy upwards */ a->used += b; /* top */ top = a->dp + a->used - 1; /* base */ bottom = a->dp + a->used - 1 - b; /* much like mp_rshd this is implemented using a sliding window * except the window goes the otherway around. Copying from * the bottom to the top. see bn_mp_rshd.c for more info. */ for (x = a->used - 1; x >= b; x--) { *top-- = *bottom--; } /* zero the lower digits */ top = a->dp; for (x = 0; x < b; x++) { *top++ = 0; } } return MP_OKAY; }
/* b = a/2 */ int mp_div_2(mp_int * a, mp_int * b) { int x, res, oldused; /* copy */ if (ALLOC(b) < USED(a)) { if ((res = mp_grow (b, USED(a))) != MP_OKAY) { return res; } } oldused = USED(b); SET_USED(b,USED(a)); { register mp_digit r, rr, *tmpa, *tmpb; /* source alias */ tmpa = DIGITS(a) + USED(b) - 1; /* dest alias */ tmpb = DIGITS(b) + USED(b) - 1; /* carry */ r = 0; for (x = USED(b) - 1; x >= 0; x--) { /* get the carry for the next iteration */ rr = *tmpa & 1; /* shift the current digit, add in carry and store */ *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); /* forward carry to next iteration */ r = rr; } /* zero excess digits */ tmpb = DIGITS(b) + USED(b); for (x = USED(b); x < oldused; x++) { *tmpb++ = 0; } } SET_SIGN(b,SIGN(a)); mp_clamp (b); return MP_OKAY; }
/* copy, b = a */ int mp_copy MPA(mp_int * a, mp_int * b) { int res, n; /* if dst == src do nothing */ if (a == b) { return MP_OKAY; } /* grow dest */ if (b->alloc < a->used) { if ((res = mp_grow (MPST, b, a->used)) != MP_OKAY) { return res; } } /* zero b and copy the parameters over */ { register mp_digit *tmpa, *tmpb; /* pointer aliases */ /* source */ tmpa = a->dp; /* destination */ tmpb = b->dp; /* copy all the digits */ for (n = 0; n < a->used; n++) { *tmpb++ = *tmpa++; } /* clear high digits */ for (; n < b->used; n++) { *tmpb++ = 0; } } /* copy used count and sign */ b->used = a->used; b->sign = a->sign; return MP_OKAY; }
static void from_num(MVMnum64 d, mp_int *a) { MVMnum64 d_digit = pow(2, DIGIT_BIT); MVMnum64 da = fabs(d); MVMnum64 upper; MVMnum64 lower; MVMnum64 lowest; MVMnum64 rest; int digits = 0; mp_zero(a); while (da > d_digit * d_digit * d_digit) {; da /= d_digit; digits++; } mp_grow(a, digits + 3); /* populate the top 3 digits */ upper = da / (d_digit*d_digit); rest = fmod(da, d_digit*d_digit); lower = rest / d_digit; lowest = fmod(rest,d_digit ); if (upper >= 1) { mp_set_long(a, (unsigned long) upper); mp_mul_2d(a, DIGIT_BIT , a); DIGIT(a, 0) = (mp_digit) lower; mp_mul_2d(a, DIGIT_BIT , a); } else { if (lower >= 1) { mp_set_long(a, (unsigned long) lower); mp_mul_2d(a, DIGIT_BIT , a); a->used = 2; } else { a->used = 1; } } DIGIT(a, 0) = (mp_digit) lowest; /* shift the rest */ mp_mul_2d(a, DIGIT_BIT * digits, a); if (d < 0) mp_neg(a, a); mp_clamp(a); mp_shrink(a); }
/* computes a = 2**b * * Simple algorithm which zeroes the int, grows it then just sets one bit * as required. */ int mp_2expt(mp_int * a, int b) { int res; /* zero a as per default */ mp_zero(a); /* grow a to accomodate the single bit */ if ((res = mp_grow(a, b / DIGIT_BIT + 1)) != MP_OKAY) { return res; } /* set the used count of where the bit will go */ a->used = b / DIGIT_BIT + 1; /* put the single bit in its place */ a->dp[b / DIGIT_BIT] = 1 << (b % DIGIT_BIT); return MP_OKAY; }
/* Bitops on libtomath (no 2s compliment API) are horrendously inefficient and * really should be hand-coded to work DIGIT-by-DIGIT with in-loop carry * handling. For now we have these fixups. * * The following inverts the bits of a negative bigint, adds 1 to that, and * appends sign-bit extension DIGITs to it to give us a 2s compliment * representation in memory. Do not call it on positive bigints. */ static void grow_and_negate(const mp_int *a, int size, mp_int *b) { int i; /* Always add an extra DIGIT so we can tell positive values * with a one in the highest bit apart from negative values. */ int actual_size = MAX(size, USED(a)) + 1; SIGN(b) = MP_ZPOS; mp_grow(b, actual_size); USED(b) = actual_size; for (i = 0; i < USED(a); i++) { DIGIT(b, i) = (~DIGIT(a, i)) & MP_MASK; } for (; i < actual_size; i++) { DIGIT(b, i) = MP_MASK; } /* Note: This add cannot cause another grow assuming nobody ever * tries to use tommath -0 for anything, and nobody tries to use * this on positive bigints. */ mp_add_d(b, 1, b); }
/* low level addition, based on HAC pp.594, Algorithm 14.7 */ int s_mp_add (mp_int * a, mp_int * b, mp_int * c) { mp_int *x; int olduse, res, min, max; /* find sizes, we let |a| <= |b| which means we have to sort * them. "x" will point to the input with the most digits */ if (a->used > b->used) { min = b->used; max = a->used; x = a; } else { min = a->used; max = b->used; x = b; } /* init result */ if (c->alloc < max + 1) { if ((res = mp_grow (c, max + 1)) != MP_OKAY) { return res; } } /* get old used digit count and set new one */ olduse = c->used; c->used = max + 1; { register mp_digit u, *tmpa, *tmpb, *tmpc; register int i; /* alias for digit pointers */ /* first input */ tmpa = a->dp; /* second input */ tmpb = b->dp; /* destination */ tmpc = c->dp; /* zero the carry */ u = 0; for (i = 0; i < min; i++) { /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ *tmpc = *tmpa++ + *tmpb++ + u; /* U = carry bit of T[i] */ u = *tmpc >> ((mp_digit)DIGIT_BIT); /* take away carry bit from T[i] */ *tmpc++ &= MP_MASK; } /* now copy higher words if any, that is in A+B * if A or B has more digits add those in */ if (min != max) { for (; i < max; i++) { /* T[i] = X[i] + U */ *tmpc = x->dp[i] + u; /* U = carry bit of T[i] */ u = *tmpc >> ((mp_digit)DIGIT_BIT); /* take away carry bit from T[i] */ *tmpc++ &= MP_MASK; } } /* add carry */ *tmpc++ = u; /* clear digits above oldused */ for (i = c->used; i < olduse; i++) { *tmpc++ = 0; } } mp_clamp (c); return MP_OKAY; }
/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ int s_mp_sub (mp_int * a, mp_int * b, mp_int * c) { int olduse, res, min, max; /* find sizes */ min = b->used; max = a->used; /* init result */ if (c->alloc < max) { if ((res = mp_grow (c, max)) != MP_OKAY) { return res; } } olduse = c->used; c->used = max; { register mp_digit u, *tmpa, *tmpb, *tmpc; register int i; /* alias for digit pointers */ tmpa = a->dp; tmpb = b->dp; tmpc = c->dp; /* set carry to zero */ u = 0; for (i = 0; i < min; i++) { /* T[i] = A[i] - B[i] - U */ *tmpc = *tmpa++ - *tmpb++ - u; /* U = carry bit of T[i] * Note this saves performing an AND operation since * if a carry does occur it will propagate all the way to the * MSB. As a result a single shift is enough to get the carry */ u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); /* Clear carry from T[i] */ *tmpc++ &= MP_MASK; } /* now copy higher words if any, e.g. if A has more digits than B */ for (; i < max; i++) { /* T[i] = A[i] - U */ *tmpc = *tmpa++ - u; /* U = carry bit of T[i] */ u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); /* Clear carry from T[i] */ *tmpc++ &= MP_MASK; } /* clear digits above used (since we may not have grown result above) */ for (i = c->used; i < olduse; i++) { *tmpc++ = 0; } } mp_clamp (c); return MP_OKAY; }
int fast_s_mp_sqr (mp_int * a, mp_int * b) { int olduse, res, pa, ix, iz; mp_digit W[MP_WARRAY], *tmpx; mp_word W1; /* grow the destination as required */ pa = a->used + a->used; if (b->alloc < pa) { if ((res = mp_grow (b, pa)) != MP_OKAY) { return res; } } /* number of output digits to produce */ W1 = 0; for (ix = 0; ix < pa; ix++) { int tx, ty, iy; mp_word _W; mp_digit *tmpy; /* clear counter */ _W = 0; /* get offsets into the two bignums */ ty = MIN(a->used-1, ix); tx = ix - ty; /* setup temp aliases */ tmpx = a->dp + tx; tmpy = a->dp + ty; /* this is the number of times the loop will iterrate, essentially its while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MIN(a->used-tx, ty+1); /* now for squaring tx can never equal ty * we halve the distance since they approach at a rate of 2x * and we have to round because odd cases need to be executed */ iy = MIN(iy, (ty-tx+1)>>1); /* execute loop */ for (iz = 0; iz < iy; iz++) { _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); } /* double the inner product and add carry */ _W = _W + _W + W1; /* even columns have the square term in them */ if ((ix&1) == 0) { _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]); } /* store it */ W[ix] = _W; /* make next carry */ W1 = _W >> ((mp_word)DIGIT_BIT); }
/* this is a modified version of fast_s_mul_digs that only produces * output digits *above* digs. See the comments for fast_s_mul_digs * to see how it works. * * This is used in the Barrett reduction since for one of the multiplications * only the higher digits were needed. This essentially halves the work. * * Based on Algorithm 14.12 on pp.595 of HAC. */ int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) { int olduse, res, pa, ix, iz; mp_digit W[MP_WARRAY]; mp_word _W; /* grow the destination as required */ pa = a->used + b->used; if (c->alloc < pa) { if ((res = mp_grow (c, pa)) != MP_OKAY) { return res; } } /* number of output digits to produce */ pa = a->used + b->used; _W = 0; for (ix = digs; ix < pa; ix++) { int tx, ty, iy; mp_digit *tmpx, *tmpy; /* get offsets into the two bignums */ ty = MIN(b->used-1, ix); tx = ix - ty; /* setup temp aliases */ tmpx = a->dp + tx; tmpy = b->dp + ty; /* this is the number of times the loop will iterrate, essentially its while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MIN(a->used-tx, ty+1); /* execute loop */ for (iz = 0; iz < iy; iz++) { _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); } /* store term */ W[ix] = ((mp_digit)_W) & MP_MASK; /* make next carry */ _W = _W >> ((mp_word)DIGIT_BIT); } /* setup dest */ olduse = c->used; c->used = pa; { mp_digit *tmpc; tmpc = c->dp + digs; for (ix = digs; ix < pa; ix++) { /* now extract the previous digit [below the carry] */ *tmpc++ = W[ix]; } /* clear unused digits [that existed in the old copy of c] */ for (; ix < olduse; ix++) { *tmpc++ = 0; } } mp_clamp (c); return MP_OKAY; }
/* computes xR**-1 == x (mod N) via Montgomery Reduction */ int mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) { int ix, res, digs; mp_digit mu; /* can the fast reduction [comba] method be used? * * Note that unlike in mul you're safely allowed *less* * than the available columns [255 per default] since carries * are fixed up in the inner loop. */ digs = n->used * 2 + 1; if ((digs < MP_WARRAY) && n->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { return fast_mp_montgomery_reduce (x, n, rho); } /* grow the input as required */ if (x->alloc < digs) { if ((res = mp_grow (x, digs)) != MP_OKAY) { return res; } } x->used = digs; for (ix = 0; ix < n->used; ix++) { /* mu = ai * rho mod b * * The value of rho must be precalculated via * montgomery_setup() such that * it equals -1/n0 mod b this allows the * following inner loop to reduce the * input one digit at a time */ mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK); /* a = a + mu * m * b**i */ { register int iy; register mp_digit *tmpn, *tmpx, u; register mp_word r; /* alias for digits of the modulus */ tmpn = n->dp; /* alias for the digits of x [the input] */ tmpx = x->dp + ix; /* set the carry to zero */ u = 0; /* Multiply and add in place */ for (iy = 0; iy < n->used; iy++) { /* compute product and sum */ r = ((mp_word)mu) * ((mp_word)*tmpn++) + ((mp_word) u) + ((mp_word) * tmpx); /* get carry */ u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); /* fix digit */ *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK)); } /* At this point the ix'th digit of x should be zero */ /* propagate carries upwards as required*/ while (u) { *tmpx += u; u = *tmpx >> DIGIT_BIT; *tmpx++ &= MP_MASK; } } } /* at this point the n.used'th least * significant digits of x are all zero * which means we can shift x to the * right by n.used digits and the * residue is unchanged. */ /* x = x/b**n.used */ mp_clamp(x); mp_rshd (x, n->used); /* if x >= n then x = x - n */ if (mp_cmp_mag (x, n) != MP_LT) { return s_mp_sub (x, n, x); } return MP_OKAY; }
int main(void) { mp_int a, b, c, d, e, f; unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n, t; unsigned rr; int i, n, err, cnt, ix, old_kara_m, old_kara_s; mp_digit mp; mp_init(&a); mp_init(&b); mp_init(&c); mp_init(&d); mp_init(&e); mp_init(&f); srand(time(NULL)); #if 0 // test montgomery printf("Testing montgomery...\n"); for (i = 1; i < 10; i++) { printf("Testing digit size: %d\n", i); for (n = 0; n < 1000; n++) { mp_rand(&a, i); a.dp[0] |= 1; // let's see if R is right mp_montgomery_calc_normalization(&b, &a); mp_montgomery_setup(&a, &mp); // now test a random reduction for (ix = 0; ix < 100; ix++) { mp_rand(&c, 1 + abs(rand()) % (2*i)); mp_copy(&c, &d); mp_copy(&c, &e); mp_mod(&d, &a, &d); mp_montgomery_reduce(&c, &a, mp); mp_mulmod(&c, &b, &a, &c); if (mp_cmp(&c, &d) != MP_EQ) { printf("d = e mod a, c = e MOD a\n"); mp_todecimal(&a, buf); printf("a = %s\n", buf); mp_todecimal(&e, buf); printf("e = %s\n", buf); mp_todecimal(&d, buf); printf("d = %s\n", buf); mp_todecimal(&c, buf); printf("c = %s\n", buf); printf("compare no compare!\n"); exit(EXIT_FAILURE); } } } } printf("done\n"); // test mp_get_int printf("Testing: mp_get_int\n"); for (i = 0; i < 1000; ++i) { t = ((unsigned long) rand() * rand() + 1) & 0xFFFFFFFF; mp_set_int(&a, t); if (t != mp_get_int(&a)) { printf("mp_get_int() bad result!\n"); return 1; } } mp_set_int(&a, 0); if (mp_get_int(&a) != 0) { printf("mp_get_int() bad result!\n"); return 1; } mp_set_int(&a, 0xffffffff); if (mp_get_int(&a) != 0xffffffff) { printf("mp_get_int() bad result!\n"); return 1; } // test mp_sqrt printf("Testing: mp_sqrt\n"); for (i = 0; i < 1000; ++i) { printf("%6d\r", i); fflush(stdout); n = (rand() & 15) + 1; mp_rand(&a, n); if (mp_sqrt(&a, &b) != MP_OKAY) { printf("mp_sqrt() error!\n"); return 1; } mp_n_root(&a, 2, &a); if (mp_cmp_mag(&b, &a) != MP_EQ) { printf("mp_sqrt() bad result!\n"); return 1; } } printf("\nTesting: mp_is_square\n"); for (i = 0; i < 1000; ++i) { printf("%6d\r", i); fflush(stdout); /* test mp_is_square false negatives */ n = (rand() & 7) + 1; mp_rand(&a, n); mp_sqr(&a, &a); if (mp_is_square(&a, &n) != MP_OKAY) { printf("fn:mp_is_square() error!\n"); return 1; } if (n == 0) { printf("fn:mp_is_square() bad result!\n"); return 1; } /* test for false positives */ mp_add_d(&a, 1, &a); if (mp_is_square(&a, &n) != MP_OKAY) { printf("fp:mp_is_square() error!\n"); return 1; } if (n == 1) { printf("fp:mp_is_square() bad result!\n"); return 1; } } printf("\n\n"); /* test for size */ for (ix = 10; ix < 128; ix++) { printf("Testing (not safe-prime): %9d bits \r", ix); fflush(stdout); err = mp_prime_random_ex(&a, 8, ix, (rand() & 1) ? LTM_PRIME_2MSB_OFF : LTM_PRIME_2MSB_ON, myrng, NULL); if (err != MP_OKAY) { printf("failed with err code %d\n", err); return EXIT_FAILURE; } if (mp_count_bits(&a) != ix) { printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix); return EXIT_FAILURE; } } for (ix = 16; ix < 128; ix++) { printf("Testing ( safe-prime): %9d bits \r", ix); fflush(stdout); err = mp_prime_random_ex(&a, 8, ix, ((rand() & 1) ? LTM_PRIME_2MSB_OFF : LTM_PRIME_2MSB_ON) | LTM_PRIME_SAFE, myrng, NULL); if (err != MP_OKAY) { printf("failed with err code %d\n", err); return EXIT_FAILURE; } if (mp_count_bits(&a) != ix) { printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix); return EXIT_FAILURE; } /* let's see if it's really a safe prime */ mp_sub_d(&a, 1, &a); mp_div_2(&a, &a); mp_prime_is_prime(&a, 8, &cnt); if (cnt != MP_YES) { printf("sub is not prime!\n"); return EXIT_FAILURE; } } printf("\n\n"); mp_read_radix(&a, "123456", 10); mp_toradix_n(&a, buf, 10, 3); printf("a == %s\n", buf); mp_toradix_n(&a, buf, 10, 4); printf("a == %s\n", buf); mp_toradix_n(&a, buf, 10, 30); printf("a == %s\n", buf); #if 0 for (;;) { fgets(buf, sizeof(buf), stdin); mp_read_radix(&a, buf, 10); mp_prime_next_prime(&a, 5, 1); mp_toradix(&a, buf, 10); printf("%s, %lu\n", buf, a.dp[0] & 3); } #endif /* test mp_cnt_lsb */ printf("testing mp_cnt_lsb...\n"); mp_set(&a, 1); for (ix = 0; ix < 1024; ix++) { if (mp_cnt_lsb(&a) != ix) { printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a)); return 0; } mp_mul_2(&a, &a); } /* test mp_reduce_2k */ printf("Testing mp_reduce_2k...\n"); for (cnt = 3; cnt <= 128; ++cnt) { mp_digit tmp; mp_2expt(&a, cnt); mp_sub_d(&a, 2, &a); /* a = 2**cnt - 2 */ printf("\nTesting %4d bits", cnt); printf("(%d)", mp_reduce_is_2k(&a)); mp_reduce_2k_setup(&a, &tmp); printf("(%d)", tmp); for (ix = 0; ix < 1000; ix++) { if (!(ix & 127)) { printf("."); fflush(stdout); } mp_rand(&b, (cnt / DIGIT_BIT + 1) * 2); mp_copy(&c, &b); mp_mod(&c, &a, &c); mp_reduce_2k(&b, &a, 2); if (mp_cmp(&c, &b)) { printf("FAILED\n"); exit(0); } } } /* test mp_div_3 */ printf("Testing mp_div_3...\n"); mp_set(&d, 3); for (cnt = 0; cnt < 10000;) { mp_digit r1, r2; if (!(++cnt & 127)) printf("%9d\r", cnt); mp_rand(&a, abs(rand()) % 128 + 1); mp_div(&a, &d, &b, &e); mp_div_3(&a, &c, &r2); if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) { printf("\n\nmp_div_3 => Failure\n"); } } printf("\n\nPassed div_3 testing\n"); /* test the DR reduction */ printf("testing mp_dr_reduce...\n"); for (cnt = 2; cnt < 32; cnt++) { printf("%d digit modulus\n", cnt); mp_grow(&a, cnt); mp_zero(&a); for (ix = 1; ix < cnt; ix++) { a.dp[ix] = MP_MASK; } a.used = cnt; a.dp[0] = 3; mp_rand(&b, cnt - 1); mp_copy(&b, &c); rr = 0; do { if (!(rr & 127)) { printf("%9lu\r", rr); fflush(stdout); } mp_sqr(&b, &b); mp_add_d(&b, 1, &b); mp_copy(&b, &c); mp_mod(&b, &a, &b); mp_dr_reduce(&c, &a, (((mp_digit) 1) << DIGIT_BIT) - a.dp[0]); if (mp_cmp(&b, &c) != MP_EQ) { printf("Failed on trial %lu\n", rr); exit(-1); } } while (++rr < 500); printf("Passed DR test for %d digits\n", cnt); } #endif /* test the mp_reduce_2k_l code */ #if 0 #if 0 /* first load P with 2^1024 - 0x2A434 B9FDEC95 D8F9D550 FFFFFFFF FFFFFFFF */ mp_2expt(&a, 1024); mp_read_radix(&b, "2A434B9FDEC95D8F9D550FFFFFFFFFFFFFFFF", 16); mp_sub(&a, &b, &a); #elif 1 /* p = 2^2048 - 0x1 00000000 00000000 00000000 00000000 4945DDBF 8EA2A91D 5776399B B83E188F */ mp_2expt(&a, 2048); mp_read_radix(&b, "1000000000000000000000000000000004945DDBF8EA2A91D5776399BB83E188F", 16); mp_sub(&a, &b, &a); #endif mp_todecimal(&a, buf); printf("p==%s\n", buf); /* now mp_reduce_is_2k_l() should return */ if (mp_reduce_is_2k_l(&a) != 1) { printf("mp_reduce_is_2k_l() return 0, should be 1\n"); return EXIT_FAILURE; } mp_reduce_2k_setup_l(&a, &d); /* now do a million square+1 to see if it varies */ mp_rand(&b, 64); mp_mod(&b, &a, &b); mp_copy(&b, &c); printf("testing mp_reduce_2k_l..."); fflush(stdout); for (cnt = 0; cnt < (1UL << 20); cnt++) { mp_sqr(&b, &b); mp_add_d(&b, 1, &b); mp_reduce_2k_l(&b, &a, &d); mp_sqr(&c, &c); mp_add_d(&c, 1, &c); mp_mod(&c, &a, &c); if (mp_cmp(&b, &c) != MP_EQ) { printf("mp_reduce_2k_l() failed at step %lu\n", cnt); mp_tohex(&b, buf); printf("b == %s\n", buf); mp_tohex(&c, buf); printf("c == %s\n", buf); return EXIT_FAILURE; } } printf("...Passed\n"); #endif div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n = sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n = sub_d_n = 0; /* force KARA and TOOM to enable despite cutoffs */ KARATSUBA_SQR_CUTOFF = KARATSUBA_MUL_CUTOFF = 8; TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 16; for (;;) { /* randomly clear and re-init one variable, this has the affect of triming the alloc space */ switch (abs(rand()) % 7) { case 0: mp_clear(&a); mp_init(&a); break; case 1: mp_clear(&b); mp_init(&b); break; case 2: mp_clear(&c); mp_init(&c); break; case 3: mp_clear(&d); mp_init(&d); break; case 4: mp_clear(&e); mp_init(&e); break; case 5: mp_clear(&f); mp_init(&f); break; case 6: break; /* don't clear any */ } printf ("%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu ", add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, expt_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n); fgets(cmd, 4095, stdin); cmd[strlen(cmd) - 1] = 0; printf("%s ]\r", cmd); fflush(stdout); if (!strcmp(cmd, "mul2d")) { ++mul2d_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); sscanf(buf, "%d", &rr); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); mp_mul_2d(&a, rr, &a); a.sign = b.sign; if (mp_cmp(&a, &b) != MP_EQ) { printf("mul2d failed, rr == %d\n", rr); draw(&a); draw(&b); return 0; } } else if (!strcmp(cmd, "div2d")) { ++div2d_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); sscanf(buf, "%d", &rr); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); mp_div_2d(&a, rr, &a, &e); a.sign = b.sign; if (a.used == b.used && a.used == 0) { a.sign = b.sign = MP_ZPOS; } if (mp_cmp(&a, &b) != MP_EQ) { printf("div2d failed, rr == %d\n", rr); draw(&a); draw(&b); return 0; } } else if (!strcmp(cmd, "add")) { ++add_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_add(&d, &b, &d); if (mp_cmp(&c, &d) != MP_EQ) { printf("add %lu failure!\n", add_n); draw(&a); draw(&b); draw(&c); draw(&d); return 0; } /* test the sign/unsigned storage functions */ rr = mp_signed_bin_size(&c); mp_to_signed_bin(&c, (unsigned char *) cmd); memset(cmd + rr, rand() & 255, sizeof(cmd) - rr); mp_read_signed_bin(&d, (unsigned char *) cmd, rr); if (mp_cmp(&c, &d) != MP_EQ) { printf("mp_signed_bin failure!\n"); draw(&c); draw(&d); return 0; } rr = mp_unsigned_bin_size(&c); mp_to_unsigned_bin(&c, (unsigned char *) cmd); memset(cmd + rr, rand() & 255, sizeof(cmd) - rr); mp_read_unsigned_bin(&d, (unsigned char *) cmd, rr); if (mp_cmp_mag(&c, &d) != MP_EQ) { printf("mp_unsigned_bin failure!\n"); draw(&c); draw(&d); return 0; } } else if (!strcmp(cmd, "sub")) { ++sub_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_sub(&d, &b, &d); if (mp_cmp(&c, &d) != MP_EQ) { printf("sub %lu failure!\n", sub_n); draw(&a); draw(&b); draw(&c); draw(&d); return 0; } } else if (!strcmp(cmd, "mul")) { ++mul_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_mul(&d, &b, &d); if (mp_cmp(&c, &d) != MP_EQ) { printf("mul %lu failure!\n", mul_n); draw(&a); draw(&b); draw(&c); draw(&d); return 0; } } else if (!strcmp(cmd, "div")) { ++div_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&d, buf, 64); mp_div(&a, &b, &e, &f); if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) { printf("div %lu %d, %d, failure!\n", div_n, mp_cmp(&c, &e), mp_cmp(&d, &f)); draw(&a); draw(&b); draw(&c); draw(&d); draw(&e); draw(&f); return 0; } } else if (!strcmp(cmd, "sqr")) { ++sqr_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); mp_copy(&a, &c); mp_sqr(&c, &c); if (mp_cmp(&b, &c) != MP_EQ) { printf("sqr %lu failure!\n", sqr_n); draw(&a); draw(&b); draw(&c); return 0; } } else if (!strcmp(cmd, "gcd")) { ++gcd_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_gcd(&d, &b, &d); d.sign = c.sign; if (mp_cmp(&c, &d) != MP_EQ) { printf("gcd %lu failure!\n", gcd_n); draw(&a); draw(&b); draw(&c); draw(&d); return 0; } } else if (!strcmp(cmd, "lcm")) { ++lcm_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_lcm(&d, &b, &d); d.sign = c.sign; if (mp_cmp(&c, &d) != MP_EQ) { printf("lcm %lu failure!\n", lcm_n); draw(&a); draw(&b); draw(&c); draw(&d); return 0; } } else if (!strcmp(cmd, "expt")) { ++expt_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&d, buf, 64); mp_copy(&a, &e); mp_exptmod(&e, &b, &c, &e); if (mp_cmp(&d, &e) != MP_EQ) { printf("expt %lu failure!\n", expt_n); draw(&a); draw(&b); draw(&c); draw(&d); draw(&e); return 0; } } else if (!strcmp(cmd, "invmod")) { ++inv_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); mp_invmod(&a, &b, &d); mp_mulmod(&d, &a, &b, &e); if (mp_cmp_d(&e, 1) != MP_EQ) { printf("inv [wrong value from MPI?!] failure\n"); draw(&a); draw(&b); draw(&c); draw(&d); mp_gcd(&a, &b, &e); draw(&e); return 0; } } else if (!strcmp(cmd, "div2")) { ++div2_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); mp_div_2(&a, &c); if (mp_cmp(&c, &b) != MP_EQ) { printf("div_2 %lu failure\n", div2_n); draw(&a); draw(&b); draw(&c); return 0; } } else if (!strcmp(cmd, "mul2")) { ++mul2_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); mp_mul_2(&a, &c); if (mp_cmp(&c, &b) != MP_EQ) { printf("mul_2 %lu failure\n", mul2_n); draw(&a); draw(&b); draw(&c); return 0; } } else if (!strcmp(cmd, "add_d")) { ++add_d_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); sscanf(buf, "%d", &ix); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); mp_add_d(&a, ix, &c); if (mp_cmp(&b, &c) != MP_EQ) { printf("add_d %lu failure\n", add_d_n); draw(&a); draw(&b); draw(&c); printf("d == %d\n", ix); return 0; } } else if (!strcmp(cmd, "sub_d")) { ++sub_d_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); sscanf(buf, "%d", &ix); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); mp_sub_d(&a, ix, &c); if (mp_cmp(&b, &c) != MP_EQ) { printf("sub_d %lu failure\n", sub_d_n); draw(&a); draw(&b); draw(&c); printf("d == %d\n", ix); return 0; } } } return 0; }
/* single digit subtraction */ int mp_sub_d (mp_int * a, mp_digit b, mp_int * c) { mp_digit *tmpa, *tmpc, mu; int res, ix, oldused; /* grow c as required */ if (c->alloc < a->used + 1) { if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { return res; } } /* if a is negative just do an unsigned * addition [with fudged signs] */ if (a->sign == MP_NEG) { a->sign = MP_ZPOS; res = mp_add_d(a, b, c); a->sign = c->sign = MP_NEG; /* clamp */ mp_clamp(c); return res; } /* setup regs */ oldused = c->used; tmpa = a->dp; tmpc = c->dp; /* if a <= b simply fix the single digit */ if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) { if (a->used == 1) { *tmpc++ = b - *tmpa; } else { *tmpc++ = b; } ix = 1; /* negative/1digit */ c->sign = MP_NEG; c->used = 1; } else { /* positive/size */ c->sign = MP_ZPOS; c->used = a->used; /* subtract first digit */ *tmpc = *tmpa++ - b; mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); *tmpc++ &= MP_MASK; /* handle rest of the digits */ for (ix = 1; ix < a->used; ix++) { *tmpc = *tmpa++ - mu; mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); *tmpc++ &= MP_MASK; } } /* zero excess digits */ while (ix++ < oldused) { *tmpc++ = 0; } mp_clamp(c); return MP_OKAY; }
/* computes xR**-1 == x (mod N) via Montgomery Reduction * * This is an optimized implementation of montgomery_reduce * which uses the comba method to quickly calculate the columns of the * reduction. * * Based on Algorithm 14.32 on pp.601 of HAC. */ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) { int ix, res, olduse; mp_word W[MP_WARRAY] = { 0 }; /* get old used count */ olduse = x->used; /* grow a as required */ if (x->alloc < n->used + 1) { if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { return res; } } /* first we have to get the digits of the input into * an array of double precision words W[...] */ { register mp_word *_W; register mp_digit *tmpx; /* alias for the W[] array */ _W = W; /* alias for the digits of x*/ tmpx = x->dp; /* copy the digits of a into W[0..a->used-1] */ for (ix = 0; ix < x->used; ix++) { *_W++ = *tmpx++; } /* zero the high words of W[a->used..m->used*2] */ for (; ix < n->used * 2 + 1; ix++) { *_W++ = 0; } } /* now we proceed to zero successive digits * from the least significant upwards */ for (ix = 0; ix < n->used; ix++) { /* mu = ai * m' mod b * * We avoid a double precision multiplication (which isn't required) * by casting the value down to a mp_digit. Note this requires * that W[ix-1] have the carry cleared (see after the inner loop) */ register mp_digit mu; mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); /* a = a + mu * m * b**i * * This is computed in place and on the fly. The multiplication * by b**i is handled by offseting which columns the results * are added to. * * Note the comba method normally doesn't handle carries in the * inner loop In this case we fix the carry from the previous * column since the Montgomery reduction requires digits of the * result (so far) [see above] to work. This is * handled by fixing up one carry after the inner loop. The * carry fixups are done in order so after these loops the * first m->used words of W[] have the carries fixed */ { register int iy; register mp_digit *tmpn; register mp_word *_W; /* alias for the digits of the modulus */ tmpn = n->dp; /* Alias for the columns set by an offset of ix */ _W = W + ix; /* inner loop */ for (iy = 0; iy < n->used; iy++) { *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++); } } /* now fix carry for next digit, W[ix+1] */ W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT); } /* now we have to propagate the carries and * shift the words downward [all those least * significant digits we zeroed]. */ { register mp_digit *tmpx; register mp_word *_W, *_W1; /* nox fix rest of carries */ /* alias for current word */ _W1 = W + ix; /* alias for next word, where the carry goes */ _W = W + ++ix; for (; ix <= n->used * 2 + 1; ix++) { *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); } /* copy out, A = A/b**n * * The result is A/b**n but instead of converting from an * array of mp_word to mp_digit than calling mp_rshd * we just copy them in the right order */ /* alias for destination word */ tmpx = x->dp; /* alias for shifted double precision result */ _W = W + n->used; for (ix = 0; ix < n->used + 1; ix++) { *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); } /* zero oldused digits, if the input a was larger than * m->used+1 we'll have to clear the digits */ for (; ix < olduse; ix++) { *tmpx++ = 0; } } /* set the max used and clamp */ x->used = n->used + 1; mp_clamp (x); /* if A >= m then A = A - m */ if (mp_cmp_mag (x, n) != MP_LT) { return s_mp_sub (x, n, x); } return MP_OKAY; }
/* single digit addition */ int mp_add_d (mp_int * a, mp_digit b, mp_int * c) { int res, ix, oldused; mp_digit *tmpa, *tmpc, mu; /* grow c as required */ if (c->alloc < a->used + 1) { if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { return res; } } /* if a is negative and |a| >= b, call c = |a| - b */ if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) { /* temporarily fix sign of a */ a->sign = MP_ZPOS; /* c = |a| - b */ res = mp_sub_d(a, b, c); /* fix sign */ a->sign = c->sign = MP_NEG; /* clamp */ mp_clamp(c); return res; } /* old number of used digits in c */ oldused = c->used; /* sign always positive */ c->sign = MP_ZPOS; /* source alias */ tmpa = a->dp; /* destination alias */ tmpc = c->dp; /* if a is positive */ if (a->sign == MP_ZPOS) { /* add digit, after this we're propagating * the carry. */ *tmpc = *tmpa++ + b; mu = *tmpc >> DIGIT_BIT; *tmpc++ &= MP_MASK; /* now handle rest of the digits */ for (ix = 1; ix < a->used; ix++) { *tmpc = *tmpa++ + mu; mu = *tmpc >> DIGIT_BIT; *tmpc++ &= MP_MASK; } /* set final carry */ ix++; *tmpc++ = mu; /* setup size */ c->used = a->used + 1; } else {
/* Fast (comba) multiplier * * This is the fast column-array [comba] multiplier. It is * designed to compute the columns of the product first * then handle the carries afterwards. This has the effect * of making the nested loops that compute the columns very * simple and schedulable on super-scalar processors. * * This has been modified to produce a variable number of * digits of output so if say only a half-product is required * you don't have to compute the upper half (a feature * required for fast Barrett reduction). * * Based on Algorithm 14.12 on pp.595 of HAC. * */ int fast_s_mp_mul_digs(mp_int * a, mp_int * b, mp_int * c, int digs) { int olduse, res, pa, ix; extern mp_word *W; /* grow the destination as required */ if (c->alloc < digs) { if ((res = mp_grow(c, digs)) != MP_OKAY) { return res; } } /* clear temp buf (the columns) */ memset(W, 0, sizeof(mp_word) * digs); /* calculate the columns */ pa = a->used; for (ix = 0; ix < pa; ix++) { /* this multiplier has been modified to allow you to * control how many digits of output are produced. * So at most we want to make upto "digs" digits of output. * * this adds products to distinct columns (at ix+iy) of W * note that each step through the loop is not dependent on * the previous which means the compiler can easily unroll * the loop without scheduling problems */ { register mp_digit tmpx, *tmpy; register mp_word *_W; register int iy, pb; /* alias for the the word on the left e.g. A[ix] * A[iy] */ tmpx = a->dp[ix]; /* alias for the right side */ tmpy = b->dp; /* alias for the columns, each step through the loop adds a new term to each column */ _W = W + ix; /* the number of digits is limited by their placement. E.g. we avoid multiplying digits that will end up above the # of digits of precision requested */ pb = MIN(b->used, digs - ix); for (iy = 0; iy < pb; iy++) { *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++); } } } /* setup dest */ olduse = c->used; c->used = digs; { register mp_digit *tmpc; /* At this point W[] contains the sums of each column. To get the * correct result we must take the extra bits from each column and * carry them down * * Note that while this adds extra code to the multiplier it * saves time since the carry propagation is removed from the * above nested loop.This has the effect of reducing the work * from N*(N+N*c)==N**2 + c*N**2 to N**2 + N*c where c is the * cost of the shifting. On very small numbers this is slower * but on most cryptographic size numbers it is faster. * * In this particular implementation we feed the carries from * behind which means when the loop terminates we still have one * last digit to copy */ tmpc = c->dp; for (ix = 1; ix < digs; ix++) { /* forward the carry from the previous temp */ W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT)); /* now extract the previous digit [below the carry] */ *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK)); } /* fetch the last digit */ *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK)); /* clear unused digits [that existed in the old copy of c] */ for (; ix < olduse; ix++) { *tmpc++ = 0; } } mp_clamp(c); return MP_OKAY; }
void reserve( int size_ ) { MPINT_SAFE_CALL( mp_grow( &value, size_ ) ); }
int main(void) { unsigned rr; int cnt, ix; #if LTM_DEMO_TEST_VS_MTEST unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n; char* ret; #else unsigned long s, t; unsigned long long q, r; mp_digit mp; int i, n, err, should; #endif if (mp_init_multi(&a, &b, &c, &d, &e, &f, NULL)!= MP_OKAY) return EXIT_FAILURE; atexit(_cleanup); #if defined(LTM_DEMO_REAL_RAND) if (!fd_urandom) { fd_urandom = fopen("/dev/urandom", "r"); if (!fd_urandom) { #if !defined(_WIN32) fprintf(stderr, "\ncould not open /dev/urandom\n"); #endif } } #endif srand(LTM_DEMO_RAND_SEED); #ifdef MP_8BIT printf("Digit size 8 Bit \n"); #endif #ifdef MP_16BIT printf("Digit size 16 Bit \n"); #endif #ifdef MP_32BIT printf("Digit size 32 Bit \n"); #endif #ifdef MP_64BIT printf("Digit size 64 Bit \n"); #endif printf("Size of mp_digit: %u\n", (unsigned int)sizeof(mp_digit)); printf("Size of mp_word: %u\n", (unsigned int)sizeof(mp_word)); printf("DIGIT_BIT: %d\n", DIGIT_BIT); printf("MP_PREC: %d\n", MP_PREC); #if LTM_DEMO_TEST_VS_MTEST == 0 // trivial stuff // a: 0->5 mp_set_int(&a, 5); // a: 5-> b: -5 mp_neg(&a, &b); if (mp_cmp(&a, &b) != MP_GT) { return EXIT_FAILURE; } if (mp_cmp(&b, &a) != MP_LT) { return EXIT_FAILURE; } // a: 5-> a: -5 mp_neg(&a, &a); if (mp_cmp(&b, &a) != MP_EQ) { return EXIT_FAILURE; } // a: -5-> b: 5 mp_abs(&a, &b); if (mp_isneg(&b) != MP_NO) { return EXIT_FAILURE; } // a: -5-> b: -4 mp_add_d(&a, 1, &b); if (mp_isneg(&b) != MP_YES) { return EXIT_FAILURE; } if (mp_get_int(&b) != 4) { return EXIT_FAILURE; } // a: -5-> b: 1 mp_add_d(&a, 6, &b); if (mp_get_int(&b) != 1) { return EXIT_FAILURE; } // a: -5-> a: 1 mp_add_d(&a, 6, &a); if (mp_get_int(&a) != 1) { return EXIT_FAILURE; } mp_zero(&a); // a: 0-> a: 6 mp_add_d(&a, 6, &a); if (mp_get_int(&a) != 6) { return EXIT_FAILURE; } mp_set_int(&a, 0); mp_set_int(&b, 1); if ((err = mp_jacobi(&a, &b, &i)) != MP_OKAY) { printf("Failed executing mp_jacobi(0 | 1) %s.\n", mp_error_to_string(err)); return EXIT_FAILURE; } if (i != 1) { printf("Failed trivial mp_jacobi(0 | 1) %d != 1\n", i); return EXIT_FAILURE; } for (cnt = 0; cnt < (int)(sizeof(jacobi)/sizeof(jacobi[0])); ++cnt) { mp_set_int(&b, jacobi[cnt].n); /* only test positive values of a */ for (n = -5; n <= 10; ++n) { mp_set_int(&a, abs(n)); should = MP_OKAY; if (n < 0) { mp_neg(&a, &a); /* Until #44 is fixed the negative a's must fail */ should = MP_VAL; } if ((err = mp_jacobi(&a, &b, &i)) != should) { printf("Failed executing mp_jacobi(%d | %lu) %s.\n", n, jacobi[cnt].n, mp_error_to_string(err)); return EXIT_FAILURE; } if (err == MP_OKAY && i != jacobi[cnt].c[n + 5]) { printf("Failed trivial mp_jacobi(%d | %lu) %d != %d\n", n, jacobi[cnt].n, i, jacobi[cnt].c[n + 5]); return EXIT_FAILURE; } } } // test mp_get_int printf("\n\nTesting: mp_get_int"); for (i = 0; i < 1000; ++i) { t = ((unsigned long) rand () * rand () + 1) & 0xFFFFFFFF; mp_set_int (&a, t); if (t != mp_get_int (&a)) { printf ("\nmp_get_int() bad result!"); return EXIT_FAILURE; } } mp_set_int(&a, 0); if (mp_get_int(&a) != 0) { printf("\nmp_get_int() bad result!"); return EXIT_FAILURE; } mp_set_int(&a, 0xffffffff); if (mp_get_int(&a) != 0xffffffff) { printf("\nmp_get_int() bad result!"); return EXIT_FAILURE; } printf("\n\nTesting: mp_get_long\n"); for (i = 0; i < (int)(sizeof(unsigned long)*CHAR_BIT) - 1; ++i) { t = (1ULL << (i+1)) - 1; if (!t) t = -1; printf(" t = 0x%lx i = %d\r", t, i); do { if (mp_set_long(&a, t) != MP_OKAY) { printf("\nmp_set_long() error!"); return EXIT_FAILURE; } s = mp_get_long(&a); if (s != t) { printf("\nmp_get_long() bad result! 0x%lx != 0x%lx", s, t); return EXIT_FAILURE; } t <<= 1; } while(t); } printf("\n\nTesting: mp_get_long_long\n"); for (i = 0; i < (int)(sizeof(unsigned long long)*CHAR_BIT) - 1; ++i) { r = (1ULL << (i+1)) - 1; if (!r) r = -1; printf(" r = 0x%llx i = %d\r", r, i); do { if (mp_set_long_long(&a, r) != MP_OKAY) { printf("\nmp_set_long_long() error!"); return EXIT_FAILURE; } q = mp_get_long_long(&a); if (q != r) { printf("\nmp_get_long_long() bad result! 0x%llx != 0x%llx", q, r); return EXIT_FAILURE; } r <<= 1; } while(r); } // test mp_sqrt printf("\n\nTesting: mp_sqrt\n"); for (i = 0; i < 1000; ++i) { printf ("%6d\r", i); fflush (stdout); n = (rand () & 15) + 1; mp_rand (&a, n); if (mp_sqrt (&a, &b) != MP_OKAY) { printf ("\nmp_sqrt() error!"); return EXIT_FAILURE; } mp_n_root_ex (&a, 2, &c, 0); mp_n_root_ex (&a, 2, &d, 1); if (mp_cmp_mag (&c, &d) != MP_EQ) { printf ("\nmp_n_root_ex() bad result!"); return EXIT_FAILURE; } if (mp_cmp_mag (&b, &c) != MP_EQ) { printf ("mp_sqrt() bad result!\n"); return EXIT_FAILURE; } } printf("\n\nTesting: mp_is_square\n"); for (i = 0; i < 1000; ++i) { printf ("%6d\r", i); fflush (stdout); /* test mp_is_square false negatives */ n = (rand () & 7) + 1; mp_rand (&a, n); mp_sqr (&a, &a); if (mp_is_square (&a, &n) != MP_OKAY) { printf ("\nfn:mp_is_square() error!"); return EXIT_FAILURE; } if (n == 0) { printf ("\nfn:mp_is_square() bad result!"); return EXIT_FAILURE; } /* test for false positives */ mp_add_d (&a, 1, &a); if (mp_is_square (&a, &n) != MP_OKAY) { printf ("\nfp:mp_is_square() error!"); return EXIT_FAILURE; } if (n == 1) { printf ("\nfp:mp_is_square() bad result!"); return EXIT_FAILURE; } } printf("\n\n"); // r^2 = n (mod p) for (i = 0; i < (int)(sizeof(sqrtmod_prime)/sizeof(sqrtmod_prime[0])); ++i) { mp_set_int(&a, sqrtmod_prime[i].p); mp_set_int(&b, sqrtmod_prime[i].n); if (mp_sqrtmod_prime(&b, &a, &c) != MP_OKAY) { printf("Failed executing %d. mp_sqrtmod_prime\n", (i+1)); return EXIT_FAILURE; } if (mp_cmp_d(&c, sqrtmod_prime[i].r) != MP_EQ) { printf("Failed %d. trivial mp_sqrtmod_prime\n", (i+1)); ndraw(&c, "r"); return EXIT_FAILURE; } } /* test for size */ for (ix = 10; ix < 128; ix++) { printf ("Testing (not safe-prime): %9d bits \r", ix); fflush (stdout); err = mp_prime_random_ex (&a, 8, ix, (rand () & 1) ? 0 : LTM_PRIME_2MSB_ON, myrng, NULL); if (err != MP_OKAY) { printf ("failed with err code %d\n", err); return EXIT_FAILURE; } if (mp_count_bits (&a) != ix) { printf ("Prime is %d not %d bits!!!\n", mp_count_bits (&a), ix); return EXIT_FAILURE; } } printf("\n"); for (ix = 16; ix < 128; ix++) { printf ("Testing ( safe-prime): %9d bits \r", ix); fflush (stdout); err = mp_prime_random_ex ( &a, 8, ix, ((rand () & 1) ? 0 : LTM_PRIME_2MSB_ON) | LTM_PRIME_SAFE, myrng, NULL); if (err != MP_OKAY) { printf ("failed with err code %d\n", err); return EXIT_FAILURE; } if (mp_count_bits (&a) != ix) { printf ("Prime is %d not %d bits!!!\n", mp_count_bits (&a), ix); return EXIT_FAILURE; } /* let's see if it's really a safe prime */ mp_sub_d (&a, 1, &a); mp_div_2 (&a, &a); mp_prime_is_prime (&a, 8, &cnt); if (cnt != MP_YES) { printf ("sub is not prime!\n"); return EXIT_FAILURE; } } printf("\n\n"); // test montgomery printf("Testing: montgomery...\n"); for (i = 1; i <= 10; i++) { if (i == 10) i = 1000; printf(" digit size: %2d\r", i); fflush(stdout); for (n = 0; n < 1000; n++) { mp_rand(&a, i); a.dp[0] |= 1; // let's see if R is right mp_montgomery_calc_normalization(&b, &a); mp_montgomery_setup(&a, &mp); // now test a random reduction for (ix = 0; ix < 100; ix++) { mp_rand(&c, 1 + abs(rand()) % (2*i)); mp_copy(&c, &d); mp_copy(&c, &e); mp_mod(&d, &a, &d); mp_montgomery_reduce(&c, &a, mp); mp_mulmod(&c, &b, &a, &c); if (mp_cmp(&c, &d) != MP_EQ) { printf("d = e mod a, c = e MOD a\n"); mp_todecimal(&a, buf); printf("a = %s\n", buf); mp_todecimal(&e, buf); printf("e = %s\n", buf); mp_todecimal(&d, buf); printf("d = %s\n", buf); mp_todecimal(&c, buf); printf("c = %s\n", buf); printf("compare no compare!\n"); return EXIT_FAILURE; } /* only one big montgomery reduction */ if (i > 10) { n = 1000; ix = 100; } } } } printf("\n\n"); mp_read_radix(&a, "123456", 10); mp_toradix_n(&a, buf, 10, 3); printf("a == %s\n", buf); mp_toradix_n(&a, buf, 10, 4); printf("a == %s\n", buf); mp_toradix_n(&a, buf, 10, 30); printf("a == %s\n", buf); #if 0 for (;;) { fgets(buf, sizeof(buf), stdin); mp_read_radix(&a, buf, 10); mp_prime_next_prime(&a, 5, 1); mp_toradix(&a, buf, 10); printf("%s, %lu\n", buf, a.dp[0] & 3); } #endif /* test mp_cnt_lsb */ printf("\n\nTesting: mp_cnt_lsb"); mp_set(&a, 1); for (ix = 0; ix < 1024; ix++) { if (mp_cnt_lsb (&a) != ix) { printf ("Failed at %d, %d\n", ix, mp_cnt_lsb (&a)); return EXIT_FAILURE; } mp_mul_2 (&a, &a); } /* test mp_reduce_2k */ printf("\n\nTesting: mp_reduce_2k\n"); for (cnt = 3; cnt <= 128; ++cnt) { mp_digit tmp; mp_2expt (&a, cnt); mp_sub_d (&a, 2, &a); /* a = 2**cnt - 2 */ printf ("\r %4d bits", cnt); printf ("(%d)", mp_reduce_is_2k (&a)); mp_reduce_2k_setup (&a, &tmp); printf ("(%lu)", (unsigned long) tmp); for (ix = 0; ix < 1000; ix++) { if (!(ix & 127)) { printf ("."); fflush (stdout); } mp_rand (&b, (cnt / DIGIT_BIT + 1) * 2); mp_copy (&c, &b); mp_mod (&c, &a, &c); mp_reduce_2k (&b, &a, 2); if (mp_cmp (&c, &b)) { printf ("FAILED\n"); return EXIT_FAILURE; } } } /* test mp_div_3 */ printf("\n\nTesting: mp_div_3...\n"); mp_set(&d, 3); for (cnt = 0; cnt < 10000;) { mp_digit r2; if (!(++cnt & 127)) { printf("%9d\r", cnt); fflush(stdout); } mp_rand(&a, abs(rand()) % 128 + 1); mp_div(&a, &d, &b, &e); mp_div_3(&a, &c, &r2); if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) { printf("\nmp_div_3 => Failure\n"); } } printf("\nPassed div_3 testing"); /* test the DR reduction */ printf("\n\nTesting: mp_dr_reduce...\n"); for (cnt = 2; cnt < 32; cnt++) { printf ("\r%d digit modulus", cnt); mp_grow (&a, cnt); mp_zero (&a); for (ix = 1; ix < cnt; ix++) { a.dp[ix] = MP_MASK; } a.used = cnt; a.dp[0] = 3; mp_rand (&b, cnt - 1); mp_copy (&b, &c); rr = 0; do { if (!(rr & 127)) { printf ("."); fflush (stdout); } mp_sqr (&b, &b); mp_add_d (&b, 1, &b); mp_copy (&b, &c); mp_mod (&b, &a, &b); mp_dr_setup(&a, &mp), mp_dr_reduce (&c, &a, mp); if (mp_cmp (&b, &c) != MP_EQ) { printf ("Failed on trial %u\n", rr); return EXIT_FAILURE; } } while (++rr < 500); printf (" passed"); fflush (stdout); } #if LTM_DEMO_TEST_REDUCE_2K_L /* test the mp_reduce_2k_l code */ #if LTM_DEMO_TEST_REDUCE_2K_L == 1 /* first load P with 2^1024 - 0x2A434 B9FDEC95 D8F9D550 FFFFFFFF FFFFFFFF */ mp_2expt(&a, 1024); mp_read_radix(&b, "2A434B9FDEC95D8F9D550FFFFFFFFFFFFFFFF", 16); mp_sub(&a, &b, &a); #elif LTM_DEMO_TEST_REDUCE_2K_L == 2 /* p = 2^2048 - 0x1 00000000 00000000 00000000 00000000 4945DDBF 8EA2A91D 5776399B B83E188F */ mp_2expt(&a, 2048); mp_read_radix(&b, "1000000000000000000000000000000004945DDBF8EA2A91D5776399BB83E188F", 16); mp_sub(&a, &b, &a); #else #error oops #endif mp_todecimal(&a, buf); printf("\n\np==%s\n", buf); /* now mp_reduce_is_2k_l() should return */ if (mp_reduce_is_2k_l(&a) != 1) { printf("mp_reduce_is_2k_l() return 0, should be 1\n"); return EXIT_FAILURE; } mp_reduce_2k_setup_l(&a, &d); /* now do a million square+1 to see if it varies */ mp_rand(&b, 64); mp_mod(&b, &a, &b); mp_copy(&b, &c); printf("Testing: mp_reduce_2k_l..."); fflush(stdout); for (cnt = 0; cnt < (int)(1UL << 20); cnt++) { mp_sqr(&b, &b); mp_add_d(&b, 1, &b); mp_reduce_2k_l(&b, &a, &d); mp_sqr(&c, &c); mp_add_d(&c, 1, &c); mp_mod(&c, &a, &c); if (mp_cmp(&b, &c) != MP_EQ) { printf("mp_reduce_2k_l() failed at step %d\n", cnt); mp_tohex(&b, buf); printf("b == %s\n", buf); mp_tohex(&c, buf); printf("c == %s\n", buf); return EXIT_FAILURE; } } printf("...Passed\n"); #endif /* LTM_DEMO_TEST_REDUCE_2K_L */ #else div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n = sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n = sub_d_n = 0; /* force KARA and TOOM to enable despite cutoffs */ KARATSUBA_SQR_CUTOFF = KARATSUBA_MUL_CUTOFF = 8; TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 16; for (;;) { /* randomly clear and re-init one variable, this has the affect of triming the alloc space */ switch (abs(rand()) % 7) { case 0: mp_clear(&a); mp_init(&a); break; case 1: mp_clear(&b); mp_init(&b); break; case 2: mp_clear(&c); mp_init(&c); break; case 3: mp_clear(&d); mp_init(&d); break; case 4: mp_clear(&e); mp_init(&e); break; case 5: mp_clear(&f); mp_init(&f); break; case 6: break; /* don't clear any */ } printf ("%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu ", add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, expt_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n); ret=fgets(cmd, 4095, stdin); if(!ret){_panic(__LINE__);} cmd[strlen(cmd) - 1] = 0; printf("%-6s ]\r", cmd); fflush(stdout); if (!strcmp(cmd, "mul2d")) { ++mul2d_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} sscanf(buf, "%d", &rr); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); mp_mul_2d(&a, rr, &a); a.sign = b.sign; if (mp_cmp(&a, &b) != MP_EQ) { printf("mul2d failed, rr == %d\n", rr); draw(&a); draw(&b); return EXIT_FAILURE; } } else if (!strcmp(cmd, "div2d")) { ++div2d_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} sscanf(buf, "%d", &rr); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); mp_div_2d(&a, rr, &a, &e); a.sign = b.sign; if (a.used == b.used && a.used == 0) { a.sign = b.sign = MP_ZPOS; } if (mp_cmp(&a, &b) != MP_EQ) { printf("div2d failed, rr == %d\n", rr); draw(&a); draw(&b); return EXIT_FAILURE; } } else if (!strcmp(cmd, "add")) { ++add_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_add(&d, &b, &d); if (mp_cmp(&c, &d) != MP_EQ) { printf("add %lu failure!\n", add_n); draw(&a); draw(&b); draw(&c); draw(&d); return EXIT_FAILURE; } /* test the sign/unsigned storage functions */ rr = mp_signed_bin_size(&c); mp_to_signed_bin(&c, (unsigned char *) cmd); memset(cmd + rr, rand() & 255, sizeof(cmd) - rr); mp_read_signed_bin(&d, (unsigned char *) cmd, rr); if (mp_cmp(&c, &d) != MP_EQ) { printf("mp_signed_bin failure!\n"); draw(&c); draw(&d); return EXIT_FAILURE; } rr = mp_unsigned_bin_size(&c); mp_to_unsigned_bin(&c, (unsigned char *) cmd); memset(cmd + rr, rand() & 255, sizeof(cmd) - rr); mp_read_unsigned_bin(&d, (unsigned char *) cmd, rr); if (mp_cmp_mag(&c, &d) != MP_EQ) { printf("mp_unsigned_bin failure!\n"); draw(&c); draw(&d); return EXIT_FAILURE; } } else if (!strcmp(cmd, "sub")) { ++sub_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_sub(&d, &b, &d); if (mp_cmp(&c, &d) != MP_EQ) { printf("sub %lu failure!\n", sub_n); draw(&a); draw(&b); draw(&c); draw(&d); return EXIT_FAILURE; } } else if (!strcmp(cmd, "mul")) { ++mul_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_mul(&d, &b, &d); if (mp_cmp(&c, &d) != MP_EQ) { printf("mul %lu failure!\n", mul_n); draw(&a); draw(&b); draw(&c); draw(&d); return EXIT_FAILURE; } } else if (!strcmp(cmd, "div")) { ++div_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&c, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&d, buf, 64); mp_div(&a, &b, &e, &f); if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) { printf("div %lu %d, %d, failure!\n", div_n, mp_cmp(&c, &e), mp_cmp(&d, &f)); draw(&a); draw(&b); draw(&c); draw(&d); draw(&e); draw(&f); return EXIT_FAILURE; } } else if (!strcmp(cmd, "sqr")) { ++sqr_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); mp_copy(&a, &c); mp_sqr(&c, &c); if (mp_cmp(&b, &c) != MP_EQ) { printf("sqr %lu failure!\n", sqr_n); draw(&a); draw(&b); draw(&c); return EXIT_FAILURE; } } else if (!strcmp(cmd, "gcd")) { ++gcd_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_gcd(&d, &b, &d); d.sign = c.sign; if (mp_cmp(&c, &d) != MP_EQ) { printf("gcd %lu failure!\n", gcd_n); draw(&a); draw(&b); draw(&c); draw(&d); return EXIT_FAILURE; } } else if (!strcmp(cmd, "lcm")) { ++lcm_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_lcm(&d, &b, &d); d.sign = c.sign; if (mp_cmp(&c, &d) != MP_EQ) { printf("lcm %lu failure!\n", lcm_n); draw(&a); draw(&b); draw(&c); draw(&d); return EXIT_FAILURE; } } else if (!strcmp(cmd, "expt")) { ++expt_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&c, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&d, buf, 64); mp_copy(&a, &e); mp_exptmod(&e, &b, &c, &e); if (mp_cmp(&d, &e) != MP_EQ) { printf("expt %lu failure!\n", expt_n); draw(&a); draw(&b); draw(&c); draw(&d); draw(&e); return EXIT_FAILURE; } } else if (!strcmp(cmd, "invmod")) { ++inv_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&c, buf, 64); mp_invmod(&a, &b, &d); mp_mulmod(&d, &a, &b, &e); if (mp_cmp_d(&e, 1) != MP_EQ) { printf("inv [wrong value from MPI?!] failure\n"); draw(&a); draw(&b); draw(&c); draw(&d); draw(&e); mp_gcd(&a, &b, &e); draw(&e); return EXIT_FAILURE; } } else if (!strcmp(cmd, "div2")) { ++div2_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); mp_div_2(&a, &c); if (mp_cmp(&c, &b) != MP_EQ) { printf("div_2 %lu failure\n", div2_n); draw(&a); draw(&b); draw(&c); return EXIT_FAILURE; } } else if (!strcmp(cmd, "mul2")) { ++mul2_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); mp_mul_2(&a, &c); if (mp_cmp(&c, &b) != MP_EQ) { printf("mul_2 %lu failure\n", mul2_n); draw(&a); draw(&b); draw(&c); return EXIT_FAILURE; } } else if (!strcmp(cmd, "add_d")) { ++add_d_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} sscanf(buf, "%d", &ix); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); mp_add_d(&a, ix, &c); if (mp_cmp(&b, &c) != MP_EQ) { printf("add_d %lu failure\n", add_d_n); draw(&a); draw(&b); draw(&c); printf("d == %d\n", ix); return EXIT_FAILURE; } } else if (!strcmp(cmd, "sub_d")) { ++sub_d_n; ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&a, buf, 64); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} sscanf(buf, "%d", &ix); ret=fgets(buf, 4095, stdin); if(!ret){_panic(__LINE__);} mp_read_radix(&b, buf, 64); mp_sub_d(&a, ix, &c); if (mp_cmp(&b, &c) != MP_EQ) { printf("sub_d %lu failure\n", sub_d_n); draw(&a); draw(&b); draw(&c); printf("d == %d\n", ix); return EXIT_FAILURE; } } else if (!strcmp(cmd, "exit")) { printf("\nokay, exiting now\n"); break; } } #endif return 0; }