Exemplo n.º 1
0
void
check_data (void)
{
  static const struct {
    int         a_base;
    const char  *a;
    const char  *b;
    int         want;
  } data[] = {
    { 10, "0",  "1", -1 },
    { 10, "0",  "0",  0 },
    { 10, "0", "-1",  1 },

    { 10, "1",  "1", 0 },
    { 10, "1",  "0", 1 },
    { 10, "1", "-1", 1 },

    { 10, "-1",  "1", -1 },
    { 10, "-1",  "0", -1 },
    { 10, "-1", "-1", 0 },

    { 16,         "0", "-0x80000000",  1 },
    { 16,  "80000000", "-0x80000000",  1 },
    { 16,  "80000001", "-0x80000000",  1 },
    { 16, "-80000000", "-0x80000000",  0 },
    { 16, "-80000001", "-0x80000000", -1 },
    { 16, "-FF0080000001", "-0x80000000", -1 },

    { 16,                 "0", "-0x8000000000000000",  1 },
    { 16,  "8000000000000000", "-0x8000000000000000",  1 },
    { 16,  "8000000000000001", "-0x8000000000000000",  1 },
    { 16, "-8000000000000000", "-0x8000000000000000",  0 },
    { 16, "-8000000000000001", "-0x8000000000000000", -1 },
    { 16, "-FF008000000000000001", "-0x8000000000000000", -1 },
  };

  mpf_t  a;
  mpz_t  bz;
  long   b;
  int    got;
  int    i;

  mpf_init (a);
  mpz_init (bz);
  for (i = 0; i < numberof (data); i++)
    {
      mpf_set_str_or_abort (a, data[i].a, data[i].a_base);
      mpz_set_str_or_abort (bz, data[i].b, 0);

      if (mpz_fits_slong_p (bz))
        {
          b = mpz_get_si (bz);
          got = mpf_cmp_si (a, b);
          if (SGN (got) != data[i].want)
            {
              printf ("mpf_cmp_si wrong on data[%d]\n", i);
              printf ("  a="); mpf_out_str (stdout, 10, 0, a);
              printf (" (%s)\n", data[i].a);
              printf ("  b=%ld (%s)\n", b, data[i].b);
              printf ("  got=%d\n", got);
              printf ("  want=%d\n", data[i].want);
              abort();
            }
        }
    }

  mpf_clear (a);
  mpz_clear (bz);
}
Exemplo n.º 2
0
int
cl1mp (int k, int l, int m, int n,
       int nklmd, int n2d,
       LDBLE * q_arg,
       int *kode_arg, LDBLE toler_arg,
       int *iter, LDBLE * x_arg, LDBLE * res_arg, LDBLE * error_arg,
       LDBLE * cu_arg, int *iu, int *s, int check, LDBLE censor_arg)
{
  /* System generated locals */
  union double_or_int
  {
    int ival;
    mpf_t dval;
  } *q2;

  /* Local variables */
  static int nklm;
  static int iout, i, j;
  static int maxit, n1, n2;
  static int ia, ii, kk, in, nk, js;
  static int iphase, kforce;
  static int klm, jmn, nkl, jpn;
  static int klm1;
  static int *kode;
  int q_dim, cu_dim;
  int iswitch;
  mpf_t *q;
  mpf_t *x;
  mpf_t *res;
  mpf_t error;
  mpf_t *cu;
  mpf_t dummy, dummy1, sum, z, zu, zv, xmax, minus_one, toler, check_toler;
  /*mpf_t *scratch; */
  mpf_t pivot, xmin, cuv, tpivot, sn;
  mpf_t zero;
  int censor;
  mpf_t censor_tol;
/* THIS SUBROUTINE USES A MODIFICATION OF THE SIMPLEX */
/* METHOD OF LINEAR PROGRAMMING TO CALCULATE AN L1 SOLUTION */
/* TO A K BY N SYSTEM OF LINEAR EQUATIONS */
/*             AX=B */
/* SUBJECT TO L LINEAR EQUALITY CONSTRAINTS */
/*             CX=D */
/* AND M LINEAR INEQUALITY CONSTRAINTS */
/*             EX.LE.F. */
/* DESCRIPTION OF PARAMETERS */
/* K      NUMBER OF ROWS OF THE MATRIX A (K.GE.1). */
/* L      NUMBER OF ROWS OF THE MATRIX C (L.GE.0). */
/* M      NUMBER OF ROWS OF THE MATRIX E (M.GE.0). */
/* N      NUMBER OF COLUMNS OF THE MATRICES A,C,E (N.GE.1). */
/* KLMD   SET TO AT LEAST K+L+M FOR ADJUSTABLE DIMENSIONS. */
/* KLM2D  SET TO AT LEAST K+L+M+2 FOR ADJUSTABLE DIMENSIONS. */
/* NKLMD  SET TO AT LEAST N+K+L+M FOR ADJUSTABLE DIMENSIONS. */
/* N2D    SET TO AT LEAST N+2 FOR ADJUSTABLE DIMENSIONS */
/* Q      TWO DIMENSIONAL REAL ARRAY WITH KLM2D ROWS AND */
/*        AT LEAST N2D COLUMNS. */
/*        ON ENTRY THE MATRICES A,C AND E, AND THE VECTORS */
/*        B,D AND F MUST BE STORED IN THE FIRST K+L+M ROWS */
/*        AND N+1 COLUMNS OF Q AS FOLLOWS */
/*             A B */
/*         Q = C D */
/*             E F */
/*        THESE VALUES ARE DESTROYED BY THE SUBROUTINE. */
/* KODE   A CODE USED ON ENTRY TO, AND EXIT */
/*        FROM, THE SUBROUTINE. */
/*        ON ENTRY, THIS SHOULD NORMALLY BE SET TO 0. */
/*        HOWEVER, IF CERTAIN NONNEGATIVITY CONSTRAINTS */
/*        ARE TO BE INCLUDED IMPLICITLY, RATHER THAN */
/*        EXPLICITLY IN THE CONSTRAINTS EX.LE.F, THEN KODE */
/*        SHOULD BE SET TO 1, AND THE NONNEGATIVITY */
/*        CONSTRAINTS INCLUDED IN THE ARRAYS X AND */
/*        RES (SEE BELOW). */
/*        ON EXIT, KODE HAS ONE OF THE */
/*        FOLLOWING VALUES */
/*             0- OPTIMAL SOLUTION FOUND, */
/*             1- NO FEASIBLE SOLUTION TO THE */
/*                CONSTRAINTS, */
/*             2- CALCULATIONS TERMINATED */
/*                PREMATURELY DUE TO ROUNDING ERRORS, */
/*             3- MAXIMUM NUMBER OF ITERATIONS REACHED. */
/* TOLER  A SMALL POSITIVE TOLERANCE. EMPIRICAL */
/*        EVIDENCE SUGGESTS TOLER = 10**(-D*2/3), */
/*        WHERE D REPRESENTS THE NUMBER OF DECIMAL */
/*        DIGITS OF ACCURACY AVAILABLE. ESSENTIALLY, */
/*        THE SUBROUTINE CANNOT DISTINGUISH BETWEEN ZERO */
/*        AND ANY QUANTITY WHOSE MAGNITUDE DOES NOT EXCEED */
/*        TOLER. IN PARTICULAR, IT WILL NOT PIVOT ON ANY */
/*        NUMBER WHOSE MAGNITUDE DOES NOT EXCEED TOLER. */
/* ITER   ON ENTRY ITER MUST CONTAIN AN UPPER BOUND ON */
/*        THE MAXIMUM NUMBER OF ITERATIONS ALLOWED. */
/*        A SUGGESTED VALUE IS 10*(K+L+M). ON EXIT ITER */
/*        GIVES THE NUMBER OF SIMPLEX ITERATIONS. */
/* X      ONE DIMENSIONAL REAL ARRAY OF SIZE AT LEAST N2D. */
/*        ON EXIT THIS ARRAY CONTAINS A */
/*        SOLUTION TO THE L1 PROBLEM. IF KODE=1 */
/*        ON ENTRY, THIS ARRAY IS ALSO USED TO INCLUDE */
/*        SIMPLE NONNEGATIVITY CONSTRAINTS ON THE */
/*        VARIABLES. THE VALUES -1, 0, OR 1 */
/*        FOR X(J) INDICATE THAT THE J-TH VARIABLE */
/*        IS RESTRICTED TO BE .LE.0, UNRESTRICTED, */
/*        OR .GE.0 RESPECTIVELY. */
/* RES    ONE DIMENSIONAL REAL ARRAY OF SIZE AT LEAST KLMD. */
/*        ON EXIT THIS CONTAINS THE RESIDUALS B-AX */
/*        IN THE FIRST K COMPONENTS, D-CX IN THE */
/*        NEXT L COMPONENTS (THESE WILL BE =0),AND */
/*        F-EX IN THE NEXT M COMPONENTS. IF KODE=1 ON */
/*        ENTRY, THIS ARRAY IS ALSO USED TO INCLUDE SIMPLE */
/*        NONNEGATIVITY CONSTRAINTS ON THE RESIDUALS */
/*        B-AX. THE VALUES -1, 0, OR 1 FOR RES(I) */
/*        INDICATE THAT THE I-TH RESIDUAL (1.LE.I.LE.K) IS */
/*        RESTRICTED TO BE .LE.0, UNRESTRICTED, OR .GE.0 */
/*        RESPECTIVELY. */
/* ERROR  ON EXIT, THIS GIVES THE MINIMUM SUM OF */
/*        ABSOLUTE VALUES OF THE RESIDUALS. */
/* CU     A TWO DIMENSIONAL REAL ARRAY WITH TWO ROWS AND */
/*        AT LEAST NKLMD COLUMNS USED FOR WORKSPACE. */
/* IU     A TWO DIMENSIONAL INTEGER ARRAY WITH TWO ROWS AND */
/*        AT LEAST NKLMD COLUMNS USED FOR WORKSPACE. */
/* S      INTEGER ARRAY OF SIZE AT LEAST KLMD, USED FOR */
/*        WORKSPACE. */
/*      DOUBLE PRECISION DBLE */
/*      REAL */

/* INITIALIZATION. */
  if (svnid == NULL)
    fprintf (stderr, " ");
  /*
   *  mp variables
   */
  censor = 1;
  if (censor_arg == 0.0)
    censor = 0;
  mpf_set_default_prec (96);
  mpf_init (zero);
  mpf_init (dummy);
  mpf_init (dummy1);
  mpf_init_set_d (censor_tol, censor_arg);
  q =
    (mpf_t *)
    PHRQ_malloc ((size_t)
		 (max_row_count * max_column_count * sizeof (mpf_t)));
  if (q == NULL)
    malloc_error ();
  for (i = 0; i < max_row_count * max_column_count; i++)
  {
    mpf_init_set_d (q[i], q_arg[i]);
    if (censor == 1)
    {
      if (mpf_cmp (q[i], zero) != 0)
      {
	mpf_abs (dummy1, q[i]);
	if (mpf_cmp (dummy1, censor_tol) <= 0)
	{
	  mpf_set_si (q[i], 0);
	}
      }
    }
  }
  x = (mpf_t *) PHRQ_malloc ((size_t) (n2d * sizeof (mpf_t)));
  if (x == NULL)
    malloc_error ();
  for (i = 0; i < n2d; i++)
  {
    mpf_init_set_d (x[i], x_arg[i]);
  }
  res = (mpf_t *) PHRQ_malloc ((size_t) ((k + l + m) * sizeof (mpf_t)));
  if (res == NULL)
    malloc_error ();
  for (i = 0; i < k + l + m; i++)
  {
    mpf_init_set_d (res[i], res_arg[i]);
  }
  cu = (mpf_t *) PHRQ_malloc ((size_t) (2 * nklmd * sizeof (mpf_t)));
  if (cu == NULL)
    malloc_error ();
  for (i = 0; i < 2 * nklmd; i++)
  {
    mpf_init_set_d (cu[i], cu_arg[i]);
  }
  kode = (int *) PHRQ_malloc (sizeof (int));
  if (kode == NULL)
    malloc_error ();
  *kode = *kode_arg;
  mpf_init (sum);
  mpf_init (error);
  mpf_init (z);
  mpf_init (zu);
  mpf_init (zv);
  mpf_init (xmax);
  mpf_init_set_si (minus_one, -1);
  mpf_init_set_d (toler, toler_arg);
  mpf_init_set_d (check_toler, toler_arg);
  mpf_init (pivot);
  mpf_init (xmin);
  mpf_init (cuv);
  mpf_init (tpivot);
  mpf_init (sn);
/* Parameter adjustments */
  q_dim = n2d;
  q2 = (union double_or_int *) q;
  cu_dim = nklmd;

/* Function Body */
  maxit = *iter;
  n1 = n + 1;
  n2 = n + 2;
  nk = n + k;
  nkl = nk + l;
  klm = k + l + m;
  klm1 = klm + 1;
  nklm = n + klm;
  kforce = 1;
  *iter = 0;
  js = 0;
  ia = -1;
/* Make scratch space */
/*
	scratch = (LDBLE *) PHRQ_malloc( (size_t) nklmd * sizeof(LDBLE));
	if (scratch == NULL) malloc_error();
	for (i=0; i < nklmd; i++) {
		scratch[i] = 0.0;
	}
*/
/*
	scratch = (mpf_t *) PHRQ_malloc( (size_t) nklmd * sizeof(mpf_t));
	if (scratch == NULL) malloc_error();
	for (i=0; i < nklmd; i++) {
		mpf_init(scratch[i]);
	}
*/
/* SET UP LABELS IN Q. */
  for (j = 0; j < n; ++j)
  {
    q2[klm1 * q_dim + j].ival = j + 1;
  }
/* L10: */
  for (i = 0; i < klm; ++i)
  {
    q2[i * q_dim + n1].ival = n + i + 1;
    if (mpf_cmp_d (q2[i * q_dim + n].dval, 0.0) < 0)
    {
      for (j = 0; j < n1; ++j)
      {
	/* q2[ i * q_dim + j ].dval = -q2[ i * q_dim + j ].dval; */
	mpf_neg (q2[i * q_dim + j].dval, q2[i * q_dim + j].dval);
      }
      q2[i * q_dim + n1].ival = -q2[i * q_dim + n1].ival;
/* L20: */
    }
  }
/* L30: */
/* SET UP PHASE 1 COSTS. */
  iphase = 2;
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "Set up phase 1 costs\n");
#endif
/* Zero first row of cu and iu */
  /*memcpy( (void *) &(cu[0]), (void *) &(scratch[0]), (size_t) nklm * sizeof(mpf_t) ); */
  for (j = 0; j < nklm; ++j)
  {
    mpf_set_si (cu[j], 0);
    iu[j] = 0;
  }
/* L40: */
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L40\n");
#endif
  if (l != 0)
  {
    for (j = nk; j < nkl; ++j)
    {
      mpf_set_si (cu[j], 1);
      /*cu[ j ] = 1.; */
      iu[j] = 1;
    }
/* L50: */
    iphase = 1;
  }

/* Copy first row of cu and iu to second row */
  /*memcpy( (void *) &(cu[cu_dim]), (void *) &(cu[0]), (size_t) nklm * sizeof(mpf_t) ); */
  for (i = 0; i < nklm; i++)
  {
    mpf_set (cu[cu_dim + i], cu[i]);
  }
  memcpy ((void *) &(iu[cu_dim]), (void *) &(iu[0]),
	  (size_t) nklm * sizeof (int));
/* L60: */
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L60\n");
#endif
  if (m != 0)
  {
    for (j = nkl; j < nklm; ++j)
    {
      /* cu[ cu_dim + j ] = 1.; */
      mpf_set_si (cu[cu_dim + j], 1);
      iu[cu_dim + j] = 1;
      jmn = j - n;
      if (q2[jmn * q_dim + n1].ival < 0)
      {
	iphase = 1;
      }
    }
/* L70: */
  }
/* L80: */
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L80\n");
#endif
  if (*kode != 0)
  {
    for (j = 0; j < n; ++j)
    {
      /* if ( x[j] < 0.) { */
      if (mpf_cmp_si (x[j], 0) < 0)
      {
/* L90: */
	/* cu[ j ] = 1.; */
	mpf_set_si (cu[j], 1);
	iu[j] = 1;
	/* } else if (x[j] > 0.) { */
      }
      else if (mpf_cmp_si (x[j], 0) > 0)
      {
	/* cu[ cu_dim + j ] = 1.; */
	mpf_set_si (cu[cu_dim + j], 1);
	iu[cu_dim + j] = 1;
      }
    }
/* L110: */
#ifdef DEBUG_CL1
    output_msg (OUTPUT_MESSAGE, "L110\n");
#endif
    for (j = 0; j < k; ++j)
    {
      jpn = j + n;
      /* if (res[j] < 0.) { */
      if (mpf_cmp_si (res[j], 0) < 0)
      {
/* L120: */
	/* cu[ jpn ] = 1.; */
	mpf_set_si (cu[jpn], 1);
	iu[jpn] = 1;
	if (q2[j * q_dim + n1].ival > 0)
	{
	  iphase = 1;
	}
	/* } else if (res[j] > 0.) { */
      }
      else if (mpf_cmp_si (res[j], 0) > 0)
      {
/* L130: */
	/* cu[ cu_dim + jpn ] = 1.; */
	mpf_set_si (cu[cu_dim + jpn], 1);
	iu[cu_dim + jpn] = 1;
	if (q2[j * q_dim + n1].ival < 0)
	{
	  iphase = 1;
	}
      }
    }
/* L140: */
  }
/* L150: */
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L150\n");
#endif
  if (iphase == 2)
  {
    goto L500;
  }
/* COMPUTE THE MARGINAL COSTS. */
L160:
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L160\n");
#endif
  for (j = js; j < n1; ++j)
  {
    mpf_set_si (sum, 0);
    for (i = 0; i < klm; ++i)
    {
      ii = q2[i * q_dim + n1].ival;
      if (ii < 0)
      {
	/* z = cu[ cu_dim - ii - 1 ]; */
	mpf_set (z, cu[cu_dim - ii - 1]);
      }
      else
      {
	/*z = cu[ ii - 1 ]; */
	mpf_set (z, cu[ii - 1]);
      }
      /*sum += q2[ i * q_dim + j ].dval * z; */
      mpf_mul (dummy, q2[i * q_dim + j].dval, z);
      mpf_add (sum, sum, dummy);
    }
    /*q2[ klm * q_dim + j ].dval = sum; */
    mpf_set (q2[klm * q_dim + j].dval, sum);
  }
  for (j = js; j < n; ++j)
  {
    ii = q2[klm1 * q_dim + j].ival;
    if (ii < 0)
    {
      /*z = cu[ cu_dim - ii - 1 ]; */
      mpf_set (z, cu[cu_dim - ii - 1]);
    }
    else
    {
      /*z = cu[ ii - 1 ]; */
      mpf_set (z, cu[ii - 1]);
    }
    /*q2[ klm * q_dim + j ].dval -= z; */
    mpf_sub (q2[klm * q_dim + j].dval, q2[klm * q_dim + j].dval, z);
  }
/* DETERMINE THE VECTOR TO ENTER THE BASIS. */
L240:
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L240, xmax %e\n", mpf_get_d (xmax));
#endif
  /*xmax = 0.; */
  mpf_set_si (xmax, 0);
  if (js >= n)
  {
    goto L490;			/* test for optimality */
  }
  for (j = js; j < n; ++j)
  {
    /*zu = q2[ klm * q_dim + j ].dval; */
    mpf_set (zu, q2[klm * q_dim + j].dval);
    ii = q2[klm1 * q_dim + j].ival;
    if (ii > 0)
    {
      /*zv = -zu - cu[ ii - 1 ] - cu[ cu_dim + ii - 1 ]; */
      mpf_mul (dummy, cu[cu_dim + ii - 1], minus_one);
      mpf_sub (dummy, dummy, cu[ii - 1]);
      mpf_sub (zv, dummy, zu);
    }
    else
    {
      ii = -ii;
      /* zv = zu; */
      mpf_set (zv, zu);
      /* zu = -zu - cu[ ii - 1 ] - cu[ cu_dim + ii - 1 ]; */
      mpf_mul (dummy, cu[cu_dim + ii - 1], minus_one);
      mpf_sub (dummy, dummy, cu[ii - 1]);
      mpf_sub (zu, dummy, zu);
    }
/* L260 */
    if (kforce == 1 && ii > n)
    {
      continue;
    }
    /*if (iu[ ii - 1 ] != 1 && zu > xmax){ */
    if ((iu[ii - 1] != 1) && (mpf_cmp (zu, xmax) > 0))
    {
      /*xmax = zu; */
      mpf_set (xmax, zu);
      in = j;
    }
/* L270 */
    /*if (iu[ cu_dim + ii - 1 ] != 1 && zv > xmax ) { */
    if ((iu[cu_dim + ii - 1] != 1) && (mpf_cmp (zv, xmax) > 0))
    {
      /*xmax = zv; */
      mpf_set (xmax, zv);
      in = j;
    }
  }
/* L280 */
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L280 xmax %e, toler %e\n", mpf_get_d (xmax),
	      mpf_get_d (toler));
#endif
  /*if (xmax <= toler) { */
  if (mpf_cmp (xmax, toler) <= 0)
  {
#ifdef DEBUG_CL1
    output_msg (OUTPUT_MESSAGE, "xmax before optimality test %e\n",
		mpf_get_d (xmax));
#endif
    goto L490;			/* test for optimality */
  }
  /*if (q2[ klm * q_dim + in ].dval != xmax) { */
  if (mpf_cmp (q2[klm * q_dim + in].dval, xmax) != 0)
  {
    for (i = 0; i < klm1; ++i)
    {
      /*q2[ i * q_dim + in ].dval = -q2[ i * q_dim + in ].dval; */
      mpf_neg (q2[i * q_dim + in].dval, q2[i * q_dim + in].dval);
    }
    q2[klm1 * q_dim + in].ival = -q2[klm1 * q_dim + in].ival;
/* L290: */
    /*q2[ klm * q_dim + in ].dval = xmax; */
    mpf_set (q2[klm * q_dim + in].dval, xmax);
  }
/* DETERMINE THE VECTOR TO LEAVE THE BASIS. */
  if (iphase != 1 && ia != -1)
  {
    /*xmax = 0.; */
    mpf_set_si (xmax, 0);
/* find maximum absolute value in column "in" */
    for (i = 0; i <= ia; ++i)
    {
      /*z = fabs(q2[ i * q_dim + in ].dval); */
      mpf_abs (z, q2[i * q_dim + in].dval);
      /*if (z > xmax) { */
      if (mpf_cmp (z, xmax) > 0)
      {
	/*xmax = z; */
	mpf_set (xmax, z);
	iout = i;
      }
    }
/* L310: */
#ifdef DEBUG_CL1
    output_msg (OUTPUT_MESSAGE, "L310, xmax %e\n", mpf_get_d (xmax));
#endif
/* switch row ia with row iout, use memcpy */
    /*if (xmax > toler) { */
    if (mpf_cmp (xmax, toler) > 0)
    {
      /*
         memcpy( (void *) &(scratch[0]), (void *) &(q2[ ia * q_dim]),
         (size_t) n2 * sizeof(mpf_t) );
         memcpy( (void *) &(q2[ ia * q_dim ]), (void *) &(q2[ iout * q_dim]),
         (size_t) n2 * sizeof(mpf_t) );
         memcpy( (void *) &(q2[ iout * q_dim ]), (void *) &(scratch[ 0 ]),
         (size_t) n2 * sizeof(mpf_t) );
       */
      for (i = 0; i < n1; i++)
      {
	mpf_set (dummy, q2[ia * q_dim + i].dval);
	mpf_set (q2[ia * q_dim + i].dval, q2[iout * q_dim + i].dval);
	mpf_set (q2[iout * q_dim + i].dval, dummy);
      }
      j = q2[ia * q_dim + n1].ival;
      q2[ia * q_dim + n1].ival = q2[iout * q_dim + n1].ival;
      q2[iout * q_dim + n1].ival = j;

/* L320: */
/* set pivot to row ia, column in */
      iout = ia;
      --ia;
      /*pivot = q2[ iout * q_dim + in ].dval; */
      mpf_set (pivot, q2[iout * q_dim + in].dval);
      goto L420;		/* Gauss Jordan */
    }
  }
/* L330: */
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L330, xmax %e\n", mpf_get_d (xmax));
#endif
  kk = -1;
/* divide column n1 by positive value in column "in" greater than toler */
  for (i = 0; i < klm; ++i)
  {
    /*z = q2[ i * q_dim + in ].dval; */
    mpf_set (z, q2[i * q_dim + in].dval);
    /*if (z > toler) { */
    if (mpf_cmp (z, toler) > 0)
    {
      ++kk;
      /*res[kk] = q2[ i * q_dim + n ].dval / z; */
      mpf_div (res[kk], q2[i * q_dim + n].dval, z);
      s[kk] = i;
    }
  }
/* L340: */
  if (kk < 0)
  {
    output_msg (OUTPUT_MESSAGE, "kode = 2 in loop 340.\n");
  }
L350:
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L350, xmax %e\n", mpf_get_d (xmax));
#endif
  if (kk < 0)
  {
/* no positive value found in L340 or bypass intermediate verticies */
    *kode = 2;
    goto L590;
  }
/* L360: */
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L360, xmax %e\n", mpf_get_d (xmax));
#endif
/* find minimum residual */
  /*xmin = res[ 0 ]; */
  mpf_set (xmin, res[0]);
  iout = s[0];
  j = 0;
  if (kk != 0)
  {
    for (i = 1; i <= kk; ++i)
    {
      /*if (res[i] < xmin) { */
      if (mpf_cmp (res[i], xmin) < 0)
      {
	j = i;
	/*xmin = res[i]; */
	mpf_set (xmin, res[i]);
	iout = s[i];
      }
    }
/* L370: */
/* put kk in position j */
    /*res[j] = res[kk]; */
    mpf_set (res[j], res[kk]);
    s[j] = s[kk];
  }
/* L380: */
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L380 iout %d, xmin %e, xmax %e\n", iout,
	      mpf_get_d (xmin), mpf_get_d (xmax));
#endif
  --kk;
  /*pivot = q2[ iout * q_dim + in ].dval; */
  mpf_set (pivot, q2[iout * q_dim + in].dval);
  ii = q2[iout * q_dim + n1].ival;
  if (iphase != 1)
  {
    if (ii < 0)
    {
/* L390: */
      if (iu[-ii - 1] == 1)
      {
	goto L420;
      }
    }
    else
    {
      if (iu[cu_dim + ii - 1] == 1)
      {
	goto L420;
      }
    }
  }
/* L400: */
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L400\n");
#endif
  ii = abs (ii);
  /*cuv = cu[ ii - 1 ] + cu[ cu_dim + ii - 1]; */
  mpf_add (cuv, cu[ii - 1], cu[cu_dim + ii - 1]);
  /*if (q2[ klm * q_dim + in ].dval - pivot * cuv > toler) { */
  mpf_mul (dummy, pivot, cuv);
  mpf_sub (dummy, q2[klm * q_dim + in].dval, dummy);
  if (mpf_cmp (dummy, toler) > 0)
  {
/* BYPASS INTERMEDIATE VERTICES. */
    for (j = js; j < n1; ++j)
    {
      /*z = q2[ iout * q_dim + j ].dval; */
      mpf_set (z, q2[iout * q_dim + j].dval);
      /*q2[ klm * q_dim + j ].dval -= z * cuv; */
      mpf_mul (dummy1, z, cuv);
      mpf_sub (q2[klm * q_dim + j].dval, q2[klm * q_dim + j].dval, dummy1);

      if (censor == 1)
      {
	if (mpf_cmp (q2[klm * q_dim + j].dval, zero) != 0)
	{
	  mpf_abs (dummy1, q2[klm * q_dim + j].dval);
	  if (mpf_cmp (dummy1, censor_tol) <= 0)
	  {
	    mpf_set_si (q2[klm * q_dim + j].dval, 0);
	  }
	}
      }

      /*q2[ iout * q_dim + j ].dval = -z; */
      mpf_neg (q2[iout * q_dim + j].dval, z);
    }
/* L410: */
    q2[iout * q_dim + n1].ival = -q2[iout * q_dim + n1].ival;
    goto L350;
  }
/* GAUSS-JORDAN ELIMINATION. */
L420:
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "Gauss Jordon %d\n", *iter);
#endif
  if (*iter >= maxit)
  {
    *kode = 3;
    goto L590;
  }
/* L430: */
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L430\n");
#endif
  ++(*iter);
  for (j = js; j < n1; ++j)
  {
    if (j != in)
    {
      /*q2[ iout * q_dim + j ].dval /= pivot; */
      mpf_div (q2[iout * q_dim + j].dval, q2[iout * q_dim + j].dval, pivot);
    }
  }
/* L440: */
  for (j = js; j < n1; ++j)
  {
    if (j != in)
    {
      /*z = -q2[ iout * q_dim + j ].dval; */
      mpf_neg (z, q2[iout * q_dim + j].dval);
      for (i = 0; i < klm1; ++i)
      {
	if (i != iout)
	{
	  /*q2[ i * q_dim + j ].dval += z * q2[ i * q_dim + in ].dval; */
	  mpf_mul (dummy, z, q2[i * q_dim + in].dval);
	  mpf_add (q2[i * q_dim + j].dval, q2[i * q_dim + j].dval, dummy);

	  if (censor == 1)
	  {
	    if (mpf_cmp (q2[i * q_dim + j].dval, zero) != 0)
	    {
	      mpf_abs (dummy1, q2[i * q_dim + j].dval);
	      if (mpf_cmp (dummy1, censor_tol) <= 0)
	      {
		mpf_set_si (q2[i * q_dim + j].dval, 0);
	      }
	    }
	  }
	}
      }
/* L450: */
    }
  }
/* L460: */
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L460\n");
#endif
  /*tpivot = -pivot; */
  mpf_neg (tpivot, pivot);
  for (i = 0; i < klm1; ++i)
  {
    if (i != iout)
    {
      /*q2[ i * q_dim + in ].dval /= tpivot; */
      mpf_div (q2[i * q_dim + in].dval, q2[i * q_dim + in].dval, tpivot);
    }
  }
/* L470: */
  /*q2[ iout * q_dim + in ].dval = 1. / pivot; */
  mpf_set_si (dummy, 1);
  mpf_div (q2[iout * q_dim + in].dval, dummy, pivot);
  ii = q2[iout * q_dim + n1].ival;
  q2[iout * q_dim + n1].ival = q2[klm1 * q_dim + in].ival;
  q2[klm1 * q_dim + in].ival = ii;
  ii = abs (ii);
  if (iu[ii - 1] == 0 || iu[cu_dim + ii - 1] == 0)
  {
    goto L240;
  }
/* switch column */
  for (i = 0; i < klm1; ++i)
  {
    /*z = q2[ i * q_dim + in ].dval; */
    mpf_set (z, q2[i * q_dim + in].dval);
    /*q2[ i * q_dim + in ].dval = q2[ i * q_dim + js ].dval; */
    mpf_set (q2[i * q_dim + in].dval, q2[i * q_dim + js].dval);
    /*q2[ i * q_dim + js ].dval = z; */
    mpf_set (q2[i * q_dim + js].dval, z);
  }
  i = q2[klm1 * q_dim + in].ival;
  q2[klm1 * q_dim + in].ival = q2[klm1 * q_dim + js].ival;
  q2[klm1 * q_dim + js].ival = i;
/* L480: */
  ++js;
  goto L240;
/* TEST FOR OPTIMALITY. */
L490:
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L490\n");
#endif
  if (kforce == 0)
  {
    if (iphase == 1)
    {
      /*if (q2[ klm * q_dim + n ].dval <= toler) { */
      if (mpf_cmp (q2[klm * q_dim + n].dval, toler) <= 0)
      {
	goto L500;
      }
#ifdef DEBUG_CL1
      output_msg (OUTPUT_MESSAGE, "q2[klm1-1, n1-1] > *toler. %e\n",
		  mpf_get_d (q2[(klm1 - 1) * q_dim + n1 - 1].dval));
#endif
      *kode = 1;
      goto L590;
    }
    *kode = 0;
    goto L590;
  }
  /*if (iphase != 1 || q2[ klm * q_dim + n ].dval > toler) { */
  if ((iphase != 1) || (mpf_cmp (q2[klm * q_dim + n].dval, toler) > 0))
  {
    kforce = 0;
    goto L240;
  }
/* SET UP PHASE 2 COSTS. */
L500:
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "Set up phase 2 costs %d\n", *iter);
#endif
  iphase = 2;
  for (j = 0; j < nklm; ++j)
  {
    /*cu[ j ] = 0.; */
    mpf_set_si (cu[j], 0);
  }
/* L510: */
  for (j = n; j < nk; ++j)
  {
    /*cu[ j ] = 1.; */
    mpf_set_si (cu[j], 1);
  }
  /*
     memcpy( (void *) &(cu[cu_dim]), (void *) &(cu[0]), (size_t) nklm * sizeof(LDBLE) );
   */
  for (i = 0; i < nklm; i++)
  {
    mpf_set (cu[cu_dim + i], cu[i]);
  }

/* L520: */
  for (i = 0; i < klm; ++i)
  {
    ii = q2[i * q_dim + n1].ival;
    if (ii <= 0)
    {
      if (iu[cu_dim - ii - 1] == 0)
      {
	continue;
      }
      /*cu[ cu_dim - ii - 1 ] = 0.; */
      mpf_set_si (cu[cu_dim - ii - 1], 0);
    }
    else
    {
/* L530: */
      if (iu[ii - 1] == 0)
      {
	continue;
      }
      /*cu[ ii - 1 ] = 0.; */
      mpf_set_si (cu[ii - 1], 0);
    }
/* L540: */
    ++ia;
/* switch row */
    /*
       memcpy( (void *) &(scratch[0]), (void *) &(q2[ ia * q_dim]),
       (size_t) n2 * sizeof(LDBLE) );
       memcpy( (void *) &(q2[ ia * q_dim ]), (void *) &(q2[ i * q_dim]),
       (size_t) n2 * sizeof(LDBLE) );
       memcpy( (void *) &(q2[ i * q_dim ]), (void *) &(scratch[ 0 ]),
       (size_t) n2 * sizeof(LDBLE) );
     */
    for (iswitch = 0; iswitch < n1; iswitch++)
    {
      mpf_set (dummy, q2[ia * q_dim + iswitch].dval);
      mpf_set (q2[ia * q_dim + iswitch].dval, q2[i * q_dim + iswitch].dval);
      mpf_set (q2[i * q_dim + iswitch].dval, dummy);
    }
    iswitch = q2[ia * q_dim + n1].ival;
    q2[ia * q_dim + n1].ival = q2[i * q_dim + n1].ival;
    q2[i * q_dim + n1].ival = iswitch;
/* L550: */
  }
/* L560: */
  goto L160;


/* PREPARE OUTPUT. */
L590:
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L590\n");
#endif
  /*sum = 0.; */
  mpf_set_si (sum, 0);
  for (j = 0; j < n; ++j)
  {
    /*x[j] = 0.; */
    mpf_set_si (x[j], 0);
  }
/* L600: */
  for (i = 0; i < klm; ++i)
  {
    /*res[i] = 0.; */
    mpf_set_si (res[i], 0);
  }
/* L610: */
  for (i = 0; i < klm; ++i)
  {
    ii = q2[i * q_dim + n1].ival;
    /*sn = 1.; */
    mpf_set_si (sn, 1);
    if (ii < 0)
    {
      ii = -ii;
      /*sn = -1.; */
      mpf_set_si (sn, -1);
    }
    if (ii <= n)
    {
/* L620: */
      /*x[ii - 1] = sn * q2[ i * q_dim + n ].dval; */
      mpf_mul (x[ii - 1], sn, q2[i * q_dim + n].dval);
    }
    else
    {
/* L630: */
      /*res[ii - n - 1] = sn * q2[ i * q_dim + n ].dval; */
      mpf_mul (res[ii - n - 1], sn, q2[i * q_dim + n].dval);
      if (ii >= n1 && ii <= nk)
      {
/*     *    DBLE(Q(I,N1)) */
	/*sum += q2[ i * q_dim + n ].dval; */
	mpf_add (sum, sum, q2[i * q_dim + n].dval);
      }
    }
  }
/* L640: */
#ifdef DEBUG_CL1
  output_msg (OUTPUT_MESSAGE, "L640\n");
#endif
  /*
   *  Check calculation
   */
  mpf_set_si (dummy, 100);
  mpf_mul (check_toler, toler, dummy);
  if (check && *kode == 0)
  {
    /*
     *  Check optimization constraints
     */
    if (*kode_arg == 1)
    {
      for (i = 0; i < k; i++)
      {
	if (res_arg[i] < 0.0)
	{
	  mpf_sub (dummy, res[i], check_toler);
	  mpf_set_si (dummy1, 0);
	  if (mpf_cmp (dummy, dummy1) > 0)
	  {
#ifdef CHECK_ERRORS
	    output_msg (OUTPUT_MESSAGE,
			"\tCL1MP: optimization constraint not satisfied row %d, res %e, constraint %f.\n",
			i, mpf_get_d (res[i]), res_arg[i]);
#endif
	    *kode = 1;
	  }
	}
	else if (res_arg[i] > 0.0)
	{
	  mpf_add (dummy, res[i], check_toler);
	  mpf_set_si (dummy1, 0);
	  if (mpf_cmp (dummy, dummy1) < 0)
	  {
#ifdef CHECK_ERRORS
	    output_msg (OUTPUT_MESSAGE,
			"\tCL1MP: optimization constraint not satisfied row %d, res %e, constraint %f.\n",
			i, mpf_get_d (res[i]), res_arg[i]);
#endif
	    *kode = 1;
	  }
	}
      }
    }
    /*
     *  Check equalities
     */
    for (i = k; i < k + l; i++)
    {
      mpf_abs (dummy, res[i]);
      if (mpf_cmp (dummy, check_toler) > 0)
      {
#ifdef CHECK_ERRORS
	output_msg (OUTPUT_MESSAGE,
		    "\tCL1MP: equality constraint not satisfied row %d, res %e, tolerance %e.\n",
		    i, mpf_get_d (res[i]), mpf_get_d (check_toler));
#endif

	*kode = 1;
      }
    }
    /*
     *  Check inequalities
     */
    for (i = k + l; i < k + l + m; i++)
    {
      mpf_neg (dummy, check_toler);
      if (mpf_cmp (res[i], dummy) < 0)
      {
#ifdef CHECK_ERRORS
	output_msg (OUTPUT_MESSAGE,
		    "\tCL1MP: inequality constraint not satisfied row %d, res %e, tolerance %e.\n",
		    i, mpf_get_d (res[i]), mpf_get_d (check_toler));
#endif
	*kode = 1;
      }
    }
    /*
     *   Check dissolution/precipitation constraints
     */
    if (*kode_arg == 1)
    {
      for (i = 0; i < n; i++)
      {
	if (x_arg[i] < 0.0)
	{
	  mpf_sub (dummy, x[i], check_toler);
	  mpf_set_si (dummy1, 0);
	  if (mpf_cmp (dummy, dummy1) > 0)
	  {
#ifdef CHECK_ERRORS
	    output_msg (OUTPUT_MESSAGE,
			"\tCL1MP: dis/pre constraint not satisfied column %d, x %e, constraint %f.\n",
			i, mpf_get_d (x[i]), x_arg[i]);
#endif
	    *kode = 1;
	  }
	}
	else if (x_arg[i] > 0.0)
	{
	  mpf_add (dummy, x[i], check_toler);
	  mpf_set_si (dummy1, 0);
	  if (mpf_cmp (dummy, dummy1) < 0)
	  {
#ifdef CHECK_ERRORS
	    output_msg (OUTPUT_MESSAGE,
			"\tCL1MP: dis/pre constraint not satisfied column %d, x %e, constraint %f.\n",
			i, mpf_get_d (x[i]), x_arg[i]);
#endif
	    *kode = 1;
	  }
	}
      }
    }
    if (*kode == 1)
    {
      output_msg (OUTPUT_MESSAGE,
		  "\n\tCL1MP: Roundoff errors in optimization.\n\t       Deleting model.\n");
    }
  }
  /*
   * set return variables
   */
	/**error = sum;*/
  mpf_set (error, sum);
  *error_arg = mpf_get_d (error);
  *kode_arg = *kode;
  for (i = 0; i < n2d; i++)
  {
    x_arg[i] = mpf_get_d (x[i]);
  }
  for (i = 0; i < k + l + m; i++)
  {
    res_arg[i] = mpf_get_d (res[i]);
  }

  /*scratch = free_check_null (scratch); */

  for (i = 0; i < max_row_count * max_column_count; i++)
  {
    mpf_clear (q[i]);
  }
  q = (mpf_t *) free_check_null (q);
  for (i = 0; i < n2d; i++)
  {
    mpf_clear (x[i]);
  }
  x = (mpf_t *) free_check_null (x);
  for (i = 0; i < k + l + m; i++)
  {
    mpf_clear (res[i]);
  }
  res = (mpf_t *) free_check_null (res);
  for (i = 0; i < 2 * nklmd; i++)
  {
    mpf_clear (cu[i]);
  }
  cu = (mpf_t *) free_check_null (cu);
  mpf_clear (dummy);
  mpf_clear (dummy1);
  mpf_clear (sum);
  mpf_clear (error);
  mpf_clear (z);
  mpf_clear (zu);
  mpf_clear (zv);
  mpf_clear (xmax);
  mpf_clear (minus_one);
  mpf_clear (toler);
  mpf_clear (check_toler);
  mpf_clear (pivot);
  mpf_clear (xmin);
  mpf_clear (cuv);
  mpf_clear (tpivot);
  mpf_clear (sn);
  mpf_clear (censor_tol);
  kode = (int *) free_check_null (kode);
  return 0;
}
Exemplo n.º 3
0
int
main (void)
{
  mpf_t x;
  mpfr_t y, z;
  unsigned long i;
  mpfr_exp_t e;
  int inex;

  tests_start_mpfr ();

  mpfr_init (y);
  mpfr_init (z);
  mpf_init (x);

  i = 1;
  while (i)
    {
      mpfr_set_ui (y, i, MPFR_RNDN);
      if (mpfr_get_f (x, y, MPFR_RNDN) != 0 || mpf_cmp_ui (x, i))
        {
          printf ("Error: mpfr_get_f(%lu) fails\n", i);
          exit (1);
        }
      if (i <= - (unsigned long) LONG_MIN)
        {
          long j = i < - (unsigned long) LONG_MIN ? - (long) i : LONG_MIN;
          mpfr_set_si (y, j, MPFR_RNDN);
          if (mpfr_get_f (x, y, MPFR_RNDN) != 0 || mpf_cmp_si (x, j))
            {
              printf ("Error: mpfr_get_f(-%lu) fails\n", i);
              exit (1);
            }
        }
      i *= 2;
    }

  /* same tests, but with a larger precision for y, which requires to
     round it */
  mpfr_set_prec (y, 100);
  i = 1;
  while (i)
    {
      mpfr_set_ui (y, i, MPFR_RNDN);
      inex = mpfr_get_f (x, y, MPFR_RNDN);
      if (! SAME_SIGN (inex, - mpfr_cmp_f (y, x)) || mpf_cmp_ui (x, i))
        {
          printf ("Error: mpfr_get_f(%lu) fails\n", i);
          exit (1);
        }
      mpfr_set_si (y, (signed long) -i, MPFR_RNDN);
      inex = mpfr_get_f (x, y, MPFR_RNDN);
      if (! SAME_SIGN (inex, - mpfr_cmp_f (y, x))
          || mpf_cmp_si (x, (signed long) -i))
        {
          printf ("Error: mpfr_get_f(-%lu) fails\n", i);
          exit (1);
        }
      i *= 2;
    }

  /* bug reported by Jim White */
  for (e = 0; e <= 2 * GMP_NUMB_BITS; e++)
    {
      /* test with 2^(-e) */
      mpfr_set_ui (y, 1, MPFR_RNDN);
      mpfr_div_2exp (y, y, e, MPFR_RNDN);
      inex = mpfr_get_f (x, y, MPFR_RNDN);
      mpf_mul_2exp (x, x, e);
      if (inex != 0 || mpf_cmp_ui (x, 1) != 0)
        {
          printf ("Error: mpfr_get_f(x,y,MPFR_RNDN) fails\n");
          printf ("y=");
          mpfr_dump (y);
          printf ("x=");
          mpf_div_2exp (x, x, e);
          mpf_out_str (stdout, 2, 0, x);
          exit (1);
        }

      /* test with 2^(e) */
      mpfr_set_ui (y, 1, MPFR_RNDN);
      mpfr_mul_2exp (y, y, e, MPFR_RNDN);
      inex = mpfr_get_f (x, y, MPFR_RNDN);
      mpf_div_2exp (x, x, e);
      if (inex != 0 || mpf_cmp_ui (x, 1) != 0)
        {
          printf ("Error: mpfr_get_f(x,y,MPFR_RNDN) fails\n");
          printf ("y=");
          mpfr_dump (y);
          printf ("x=");
          mpf_mul_2exp (x, x, e);
          mpf_out_str (stdout, 2, 0, x);
          exit (1);
        }
    }

  /* Bug reported by Yury Lukach on 2006-04-05 */
  mpfr_set_prec (y, 32);
  mpfr_set_prec (z, 32);
  mpf_set_prec (x, 32);
  mpfr_set_ui_2exp (y, 0xc1234567, -30, MPFR_RNDN);
  mpfr_get_f (x, y, MPFR_RNDN);
  inex = mpfr_set_f (z, x, MPFR_RNDN);
  if (inex != 0 || ! mpfr_equal_p (y, z))
    {
      printf ("Error in mpfr_get_f:\n  inex = %d, y = ", inex);
      mpfr_dump (z);
      printf ("Expected:\n  inex = 0, y = ");
      mpfr_dump (y);
      exit (1);
    }

  mpfr_clear (y);
  mpfr_clear (z);
  mpf_clear (x);

  special_test ();
  prec_test ();
  ternary_test ();

  tests_end_mpfr ();
  return 0;
}