Exemplo n.º 1
0
static BaseType_t prvTestWaitCondition( const EventBits_t uxCurrentEventBits, const EventBits_t uxBitsToWaitFor, const BaseType_t xWaitForAllBits )
{
BaseType_t xWaitConditionMet = pdFALSE;

	if( xWaitForAllBits == pdFALSE )
	{
		/* Task only has to wait for one bit within uxBitsToWaitFor to be
		set.  Is one already set? */
		if( ( uxCurrentEventBits & uxBitsToWaitFor ) != ( EventBits_t ) 0 )
		{
			xWaitConditionMet = pdTRUE;
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
	else
	{
		/* Task has to wait for all the bits in uxBitsToWaitFor to be set.
		Are they set already? */
		if( ( uxCurrentEventBits & uxBitsToWaitFor ) == uxBitsToWaitFor )
		{
			xWaitConditionMet = pdTRUE;
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}

	return xWaitConditionMet;
}
Exemplo n.º 2
0
void vPortFree(void *pv, const char * file, unsigned line)
#endif
{
uint8_t *puc = ( uint8_t * ) pv;
BlockLink_t *pxLink;

	if( pv != NULL )
	{
		/* The memory being freed will have an BlockLink_t structure immediately
		before it. */
		puc -= uxHeapStructSize;

		/* This casting is to keep the compiler from issuing warnings. */
		pxLink = ( void * ) puc;

		/* Check the block is actually allocated. */
		configASSERT( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 );
		configASSERT( pxLink->pxNextFreeBlock == NULL );

		if( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 )
		{
#ifndef MEMLEAK_DEBUG
			if( pxLink->pxNextFreeBlock == NULL )
#endif
			{
				/* The block is being returned to the heap - it is no longer
				allocated. */
				pxLink->xBlockSize &= ~xBlockAllocatedBit;

				//vTaskSuspendAll();
				ETS_INTR_LOCK();
#ifdef MEMLEAK_DEBUG
				if(prvRemoveBlockFromUsedList(pxLink) < 0){
					ets_printf("%x already freed\n", pv);
				}
				else
#endif
				{
					/* Add this block to the list of free blocks. */
					xFreeBytesRemaining += pxLink->xBlockSize;
					traceFREE( pv, pxLink->xBlockSize );
					prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
				}
				// ( void ) xTaskResumeAll();
                ETS_INTR_UNLOCK();
			}
#ifndef MEMLEAK_DEBUG
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
#endif
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
}
Exemplo n.º 3
0
static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert )
{
    BlockLink_t *pxIterator;
    uint8_t *puc;

    /* Iterate through the list until a block is found that has a higher address
    than the block being inserted. */
    for( pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert; pxIterator = pxIterator->pxNextFreeBlock )
    {
        /* Nothing to do here, just iterate to the right position. */
    }

    /* Do the block being inserted, and the block it is being inserted after
    make a contiguous block of memory? */
    puc = ( uint8_t * ) pxIterator;
    if( ( puc + pxIterator->xBlockSize ) == ( uint8_t * ) pxBlockToInsert )
    {
        pxIterator->xBlockSize += pxBlockToInsert->xBlockSize;
        pxBlockToInsert = pxIterator;
    }
    else
    {
        mtCOVERAGE_TEST_MARKER();
    }

    /* Do the block being inserted, and the block it is being inserted before
    make a contiguous block of memory? */
    puc = ( uint8_t * ) pxBlockToInsert;
    if( ( puc + pxBlockToInsert->xBlockSize ) == ( uint8_t * ) pxIterator->pxNextFreeBlock )
    {
        if( pxIterator->pxNextFreeBlock != pxEnd )
        {
            /* Form one big block from the two blocks. */
            pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize;
            pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock;
        }
        else
        {
            pxBlockToInsert->pxNextFreeBlock = pxEnd;
        }
    }
    else
    {
        pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock;
    }

    /* If the block being inserted plugged a gab, so was merged with the block
    before and the block after, then it's pxNextFreeBlock pointer will have
    already been set, and should not be set here as that would make it point
    to itself. */
    if( pxIterator != pxBlockToInsert )
    {
        pxIterator->pxNextFreeBlock = pxBlockToInsert;
    }
    else
    {
        mtCOVERAGE_TEST_MARKER();
    }
}
Exemplo n.º 4
0
static void prvCheckForValidListAndQueue( void )
{
	/* Check that the list from which active timers are referenced, and the
	queue used to communicate with the timer service, have been
	initialised. */
	taskENTER_CRITICAL();
	{
		if( xTimerQueue == NULL )
		{
			vListInitialise( &xActiveTimerList1 );
			vListInitialise( &xActiveTimerList2 );
			pxCurrentTimerList = &xActiveTimerList1;
			pxOverflowTimerList = &xActiveTimerList2;

			#if( configSUPPORT_STATIC_ALLOCATION == 1 )
			{
				/* The timer queue is allocated statically in case
				configSUPPORT_DYNAMIC_ALLOCATION is 0. */
				static StaticQueue_t xStaticTimerQueue; /*lint !e956 Ok to declare in this manner to prevent additional conditional compilation guards in other locations. */
				static uint8_t ucStaticTimerQueueStorage[ ( size_t ) configTIMER_QUEUE_LENGTH * sizeof( DaemonTaskMessage_t ) ]; /*lint !e956 Ok to declare in this manner to prevent additional conditional compilation guards in other locations. */

				xTimerQueue = xQueueCreateStatic( ( UBaseType_t ) configTIMER_QUEUE_LENGTH, ( UBaseType_t ) sizeof( DaemonTaskMessage_t ), &( ucStaticTimerQueueStorage[ 0 ] ), &xStaticTimerQueue );
			}
			#else
			{
				xTimerQueue = xQueueCreate( ( UBaseType_t ) configTIMER_QUEUE_LENGTH, sizeof( DaemonTaskMessage_t ) );
			}
			#endif

			#if ( configQUEUE_REGISTRY_SIZE > 0 )
			{
				if( xTimerQueue != NULL )
				{
					vQueueAddToRegistry( xTimerQueue, "TmrQ" );
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			#endif /* configQUEUE_REGISTRY_SIZE */
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
	taskEXIT_CRITICAL();
}
Exemplo n.º 5
0
void vPortFree( void *pv )
{
uint8_t *puc = ( uint8_t * ) pv;
BlockLink_t *pxLink;

    if( pv != NULL )
    {
        /* The memory being freed will have an BlockLink_t structure immediately
        before it. */
        puc -= xHeapStructSize;

        configASSERT( ((pv > ucHeap) && (pv < ucHeapEnd)) );

        /* This casting is to keep the compiler from issuing warnings. */
        pxLink = ( void * ) puc;

        /* Check the block is actually allocated. */
        configASSERT( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 );
        configASSERT( pxLink->pxNextFreeBlock == NULL );

        if( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 )
        {
            if( pxLink->pxNextFreeBlock == NULL )
            {
                /* The block is being returned to the heap - it is no longer
                allocated. */
                pxLink->xBlockSize &= ~xBlockAllocatedBit;

                __malloc_lock(NULL);
                {
                    /* Add this block to the list of free blocks. */
                    xFreeBytesRemaining += pxLink->xBlockSize;
                    traceFREE( pv, pxLink->xBlockSize );
                    prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
                }
                __malloc_unlock(NULL);
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }
    }
}
Exemplo n.º 6
0
UBaseType_t uxListRemove( ListItem_t *const pxItemToRemove )
{
    /* The list item knows which list it is in.  Obtain the list from the list
    item. */
    List_t *const pxList = ( List_t *) pxItemToRemove->pvContainer;

    pxItemToRemove->pxNext->pxPrevious = pxItemToRemove->pxPrevious;
    pxItemToRemove->pxPrevious->pxNext = pxItemToRemove->pxNext;

    /* Only used during decision coverage testing. */
    mtCOVERAGE_TEST_DELAY();

    /* Make sure the index is left pointing to a valid item. */
    if ( pxList->pxIndex == pxItemToRemove )
    {
        pxList->pxIndex = pxItemToRemove->pxPrevious;
    }
    else
    {
        mtCOVERAGE_TEST_MARKER();
    }

    pxItemToRemove->pvContainer = NULL;
    ( pxList->uxNumberOfItems )--;

    return pxList->uxNumberOfItems;
}
Exemplo n.º 7
0
static void prvProcessTimerOrBlockTask( const TickType_t xNextExpireTime, BaseType_t xListWasEmpty )
{
TickType_t xTimeNow;
BaseType_t xTimerListsWereSwitched;

	vTaskSuspendAll();
	{
		/* Obtain the time now to make an assessment as to whether the timer
		has expired or not.  If obtaining the time causes the lists to switch
		then don't process this timer as any timers that remained in the list
		when the lists were switched will have been processed within the
		prvSampleTimeNow() function. */
		xTimeNow = prvSampleTimeNow( &xTimerListsWereSwitched );
		if( xTimerListsWereSwitched == pdFALSE )
		{
			/* The tick count has not overflowed, has the timer expired? */
			if( ( xListWasEmpty == pdFALSE ) && ( xNextExpireTime <= xTimeNow ) )
			{
				( void ) xTaskResumeAll();
				prvProcessExpiredTimer( xNextExpireTime, xTimeNow );
			}
			else
			{
				/* The tick count has not overflowed, and the next expire
				time has not been reached yet.  This task should therefore
				block to wait for the next expire time or a command to be
				received - whichever comes first.  The following line cannot
				be reached unless xNextExpireTime > xTimeNow, except in the
				case when the current timer list is empty. */
				if( xListWasEmpty != pdFALSE )
				{
					/* The current timer list is empty - is the overflow list
					also empty? */
					xListWasEmpty = listLIST_IS_EMPTY( pxOverflowTimerList );
				}

				vQueueWaitForMessageRestricted( xTimerQueue, ( xNextExpireTime - xTimeNow ), xListWasEmpty );

				if( xTaskResumeAll() == pdFALSE )
				{
					/* Yield to wait for either a command to arrive, or the
					block time to expire.  If a command arrived between the
					critical section being exited and this yield then the yield
					will not cause the task to block. */
					portYIELD_WITHIN_API();
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
		}
		else
		{
			( void ) xTaskResumeAll();
		}
	}
}
Exemplo n.º 8
0
static void prvSwitchTimerLists( void )
{
TickType_t xNextExpireTime, xReloadTime;
List_t *pxTemp;
Timer_t *pxTimer;
BaseType_t xResult;

	/* The tick count has overflowed.  The timer lists must be switched.
	If there are any timers still referenced from the current timer list
	then they must have expired and should be processed before the lists
	are switched. */
	while( listLIST_IS_EMPTY( pxCurrentTimerList ) == pdFALSE )
	{
		xNextExpireTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxCurrentTimerList );

		/* Remove the timer from the list. */
		pxTimer = ( Timer_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxCurrentTimerList );
		( void ) uxListRemove( &( pxTimer->xTimerListItem ) );
		traceTIMER_EXPIRED( pxTimer );

		/* Execute its callback, then send a command to restart the timer if
		it is an auto-reload timer.  It cannot be restarted here as the lists
		have not yet been switched. */
		pxTimer->pxCallbackFunction( ( TimerHandle_t ) pxTimer );

		if( pxTimer->uxAutoReload == ( UBaseType_t ) pdTRUE )
		{
			/* Calculate the reload value, and if the reload value results in
			the timer going into the same timer list then it has already expired
			and the timer should be re-inserted into the current list so it is
			processed again within this loop.  Otherwise a command should be sent
			to restart the timer to ensure it is only inserted into a list after
			the lists have been swapped. */
			xReloadTime = ( xNextExpireTime + pxTimer->xTimerPeriodInTicks );
			if( xReloadTime > xNextExpireTime )
			{
				listSET_LIST_ITEM_VALUE( &( pxTimer->xTimerListItem ), xReloadTime );
				listSET_LIST_ITEM_OWNER( &( pxTimer->xTimerListItem ), pxTimer );
				vListInsert( pxCurrentTimerList, &( pxTimer->xTimerListItem ) );
			}
			else
			{
				xResult = xTimerGenericCommand( pxTimer, tmrCOMMAND_START_DONT_TRACE, xNextExpireTime, NULL, tmrNO_DELAY );
				configASSERT( xResult );
				( void ) xResult;
			}
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}

	pxTemp = pxCurrentTimerList;
	pxCurrentTimerList = pxOverflowTimerList;
	pxOverflowTimerList = pxTemp;
}
Exemplo n.º 9
0
BaseType_t xTimerCreateTimerTask( void )
{
BaseType_t xReturn = pdFAIL;

	/* This function is called when the scheduler is started if
	configUSE_TIMERS is set to 1.  Check that the infrastructure used by the
	timer service task has been created/initialised.  If timers have already
	been created then the initialisation will already have been performed. */
	prvCheckForValidListAndQueue();

	if( xTimerQueue != NULL )
	{
		#if( configSUPPORT_STATIC_ALLOCATION == 1 )
		{
			StaticTask_t *pxTimerTaskTCBBuffer = NULL;
			StackType_t *pxTimerTaskStackBuffer = NULL;
			uint32_t ulTimerTaskStackSize;

			vApplicationGetTimerTaskMemory( &pxTimerTaskTCBBuffer, &pxTimerTaskStackBuffer, &ulTimerTaskStackSize );
			xTimerTaskHandle = xTaskCreateStatic(	prvTimerTask,
													configTIMER_SERVICE_TASK_NAME,
													ulTimerTaskStackSize,
													NULL,
													( ( UBaseType_t ) configTIMER_TASK_PRIORITY ) | portPRIVILEGE_BIT,
													pxTimerTaskStackBuffer,
													pxTimerTaskTCBBuffer );

			if( xTimerTaskHandle != NULL )
			{
				xReturn = pdPASS;
			}
		}
		#else
		{
			xReturn = xTaskCreate(	prvTimerTask,
									configTIMER_SERVICE_TASK_NAME,
									configTIMER_TASK_STACK_DEPTH,
									NULL,
									( ( UBaseType_t ) configTIMER_TASK_PRIORITY ) | portPRIVILEGE_BIT,
									&xTimerTaskHandle );
		}
		#endif /* configSUPPORT_STATIC_ALLOCATION */
	}
	else
	{
		mtCOVERAGE_TEST_MARKER();
	}

	configASSERT( xReturn );
	return xReturn;
}
Exemplo n.º 10
0
static void prvProcessExpiredTimer( const TickType_t xNextExpireTime, const TickType_t xTimeNow )
{
BaseType_t xResult;
Timer_t * const pxTimer = ( Timer_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxCurrentTimerList );

	/* Remove the timer from the list of active timers.  A check has already
	been performed to ensure the list is not empty. */
	( void ) uxListRemove( &( pxTimer->xTimerListItem ) );
	traceTIMER_EXPIRED( pxTimer );

	/* If the timer is an auto reload timer then calculate the next
	expiry time and re-insert the timer in the list of active timers. */
	if( pxTimer->uxAutoReload == ( UBaseType_t ) pdTRUE )
	{
		/* The timer is inserted into a list using a time relative to anything
		other than the current time.  It will therefore be inserted into the
		correct list relative to the time this task thinks it is now. */
		if( prvInsertTimerInActiveList( pxTimer, ( xNextExpireTime + pxTimer->xTimerPeriodInTicks ), xTimeNow, xNextExpireTime ) != pdFALSE )
		{
			/* The timer expired before it was added to the active timer
			list.  Reload it now.  */
			xResult = xTimerGenericCommand( pxTimer, tmrCOMMAND_START_DONT_TRACE, xNextExpireTime, NULL, tmrNO_DELAY );
			configASSERT( xResult );
			( void ) xResult;
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
	else
	{
		mtCOVERAGE_TEST_MARKER();
	}

	/* Call the timer callback. */
	pxTimer->pxCallbackFunction( ( TimerHandle_t ) pxTimer );
}
Exemplo n.º 11
0
static void prvCheckForValidListAndQueue( void )
{
	/* Check that the list from which active timers are referenced, and the
	queue used to communicate with the timer service, have been
	initialised. */
	taskENTER_CRITICAL();
	{
		if( xTimerQueue == NULL )
		{
			vListInitialise( &xActiveTimerList1 );
			vListInitialise( &xActiveTimerList2 );
			pxCurrentTimerList = &xActiveTimerList1;
			pxOverflowTimerList = &xActiveTimerList2;
			xTimerQueue = xQueueCreate( ( UBaseType_t ) configTIMER_QUEUE_LENGTH, sizeof( DaemonTaskMessage_t ) );
			configASSERT( xTimerQueue );

			#if ( configQUEUE_REGISTRY_SIZE > 0 )
			{
				if( xTimerQueue != NULL )
				{
					vQueueAddToRegistry( xTimerQueue, "TmrQ" );
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			#endif /* configQUEUE_REGISTRY_SIZE */
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
	taskEXIT_CRITICAL();
}
Exemplo n.º 12
0
BaseType_t xTimerCreateTimerTask( void )
{
BaseType_t xReturn = pdFAIL;
StaticTask_t *pxTimerTaskTCBBuffer = NULL;
StackType_t *pxTimerTaskStackBuffer = NULL;
uint16_t usTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;


	/* This function is called when the scheduler is started if
	configUSE_TIMERS is set to 1.  Check that the infrastructure used by the
	timer service task has been created/initialised.  If timers have already
	been created then the initialisation will already have been performed. */
	prvCheckForValidListAndQueue();

	if( xTimerQueue != NULL )
	{

		#if( configSUPPORT_STATIC_ALLOCATION == 1 )
		{
			vApplicationGetTimerTaskMemory( &pxTimerTaskTCBBuffer, &pxTimerTaskStackBuffer, &usTimerTaskStackSize );
		}
		#endif /* configSUPPORT_STATIC_ALLOCATION */

		#if ( INCLUDE_xTimerGetTimerDaemonTaskHandle == 1 )
		{
			/* Create the timer task, storing its handle in xTimerTaskHandle so
			it can be returned by the xTimerGetTimerDaemonTaskHandle() function. */
			xReturn = xTaskGenericCreate( prvTimerTask, "Tmr Svc", usTimerTaskStackSize, NULL, ( ( UBaseType_t ) configTIMER_TASK_PRIORITY ) | portPRIVILEGE_BIT, &xTimerTaskHandle, pxTimerTaskStackBuffer, pxTimerTaskTCBBuffer, NULL );
		}
		#else
		{
			/* Create the timer task without storing its handle. */
			xReturn = xTaskGenericCreate( prvTimerTask, "Tmr Svc", usTimerTaskStackSize, NULL, ( ( UBaseType_t ) configTIMER_TASK_PRIORITY ) | portPRIVILEGE_BIT, NULL, pxTimerTaskStackBuffer, pxTimerTaskTCBBuffer, NULL );
		}
		#endif
	}
	else
	{
		mtCOVERAGE_TEST_MARKER();
	}

	configASSERT( xReturn );
	return xReturn;
}
Exemplo n.º 13
0
BaseType_t xTimerGenericCommand( TimerHandle_t xTimer, const BaseType_t xCommandID, const TickType_t xOptionalValue, BaseType_t * const pxHigherPriorityTaskWoken, const TickType_t xTicksToWait )
{
BaseType_t xReturn = pdFAIL;
DaemonTaskMessage_t xMessage;

	configASSERT( xTimer );

	/* Send a message to the timer service task to perform a particular action
	on a particular timer definition. */
	if( xTimerQueue != NULL )
	{
		/* Send a command to the timer service task to start the xTimer timer. */
		xMessage.xMessageID = xCommandID;
		xMessage.u.xTimerParameters.xMessageValue = xOptionalValue;
		xMessage.u.xTimerParameters.pxTimer = ( Timer_t * ) xTimer;

		if( xCommandID < tmrFIRST_FROM_ISR_COMMAND )
		{
			if( xTaskGetSchedulerState() == taskSCHEDULER_RUNNING )
			{
				xReturn = xQueueSendToBack( xTimerQueue, &xMessage, xTicksToWait );
			}
			else
			{
				xReturn = xQueueSendToBack( xTimerQueue, &xMessage, tmrNO_DELAY );
			}
		}
		else
		{
			xReturn = xQueueSendToBackFromISR( xTimerQueue, &xMessage, pxHigherPriorityTaskWoken );
		}

		traceTIMER_COMMAND_SEND( xTimer, xCommandID, xOptionalValue, xReturn );
	}
	else
	{
		mtCOVERAGE_TEST_MARKER();
	}

	return xReturn;
}
Exemplo n.º 14
0
static void	prvProcessReceivedCommands( void )
{
DaemonTaskMessage_t xMessage;
Timer_t *pxTimer;
BaseType_t xTimerListsWereSwitched, xResult;
TickType_t xTimeNow;

	while( xQueueReceive( xTimerQueue, &xMessage, tmrNO_DELAY ) != pdFAIL ) /*lint !e603 xMessage does not have to be initialised as it is passed out, not in, and it is not used unless xQueueReceive() returns pdTRUE. */
	{
		#if ( INCLUDE_xTimerPendFunctionCall == 1 )
		{
			/* Negative commands are pended function calls rather than timer
			commands. */
			if( xMessage.xMessageID < ( BaseType_t ) 0 )
			{
				const CallbackParameters_t * const pxCallback = &( xMessage.u.xCallbackParameters );

				/* The timer uses the xCallbackParameters member to request a
				callback be executed.  Check the callback is not NULL. */
				configASSERT( pxCallback );

				/* Call the function. */
				pxCallback->pxCallbackFunction( pxCallback->pvParameter1, pxCallback->ulParameter2 );
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		#endif /* INCLUDE_xTimerPendFunctionCall */

		/* Commands that are positive are timer commands rather than pended
		function calls. */
		if( xMessage.xMessageID >= ( BaseType_t ) 0 )
		{
			/* The messages uses the xTimerParameters member to work on a
			software timer. */
			pxTimer = xMessage.u.xTimerParameters.pxTimer;

			if( listIS_CONTAINED_WITHIN( NULL, &( pxTimer->xTimerListItem ) ) == pdFALSE ) /*lint !e961. The cast is only redundant when NULL is passed into the macro. */
			{
				/* The timer is in a list, remove it. */
				( void ) uxListRemove( &( pxTimer->xTimerListItem ) );
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}

			traceTIMER_COMMAND_RECEIVED( pxTimer, xMessage.xMessageID, xMessage.u.xTimerParameters.xMessageValue );

			/* In this case the xTimerListsWereSwitched parameter is not used, but
			it must be present in the function call.  prvSampleTimeNow() must be
			called after the message is received from xTimerQueue so there is no
			possibility of a higher priority task adding a message to the message
			queue with a time that is ahead of the timer daemon task (because it
			pre-empted the timer daemon task after the xTimeNow value was set). */
			xTimeNow = prvSampleTimeNow( &xTimerListsWereSwitched );

			switch( xMessage.xMessageID )
			{
				case tmrCOMMAND_START :
			    case tmrCOMMAND_START_FROM_ISR :
			    case tmrCOMMAND_RESET :
			    case tmrCOMMAND_RESET_FROM_ISR :
				case tmrCOMMAND_START_DONT_TRACE :
					/* Start or restart a timer. */
					if( prvInsertTimerInActiveList( pxTimer,  xMessage.u.xTimerParameters.xMessageValue + pxTimer->xTimerPeriodInTicks, xTimeNow, xMessage.u.xTimerParameters.xMessageValue ) != pdFALSE )
					{
						/* The timer expired before it was added to the active
						timer list.  Process it now. */
						pxTimer->pxCallbackFunction( ( TimerHandle_t ) pxTimer );
						traceTIMER_EXPIRED( pxTimer );

						if( pxTimer->uxAutoReload == ( UBaseType_t ) pdTRUE )
						{
							xResult = xTimerGenericCommand( pxTimer, tmrCOMMAND_START_DONT_TRACE, xMessage.u.xTimerParameters.xMessageValue + pxTimer->xTimerPeriodInTicks, NULL, tmrNO_DELAY );
							configASSERT( xResult );
							( void ) xResult;
						}
						else
						{
							mtCOVERAGE_TEST_MARKER();
						}
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}
					break;

				case tmrCOMMAND_STOP :
				case tmrCOMMAND_STOP_FROM_ISR :
					/* The timer has already been removed from the active list.
					There is nothing to do here. */
					break;

				case tmrCOMMAND_CHANGE_PERIOD :
				case tmrCOMMAND_CHANGE_PERIOD_FROM_ISR :
					pxTimer->xTimerPeriodInTicks = xMessage.u.xTimerParameters.xMessageValue;
					configASSERT( ( pxTimer->xTimerPeriodInTicks > 0 ) );

					/* The new period does not really have a reference, and can
					be longer or shorter than the old one.  The command time is
					therefore set to the current time, and as the period cannot
					be zero the next expiry time can only be in the future,
					meaning (unlike for the xTimerStart() case above) there is
					no fail case that needs to be handled here. */
					( void ) prvInsertTimerInActiveList( pxTimer, ( xTimeNow + pxTimer->xTimerPeriodInTicks ), xTimeNow, xTimeNow );
					break;

				case tmrCOMMAND_DELETE :
					/* The timer has already been removed from the active list,
					just free up the memory if the memory was dynamically
					allocated. */
					#if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
					{
						/* The timer can only have been allocated dynamically -
						free it again. */
						vPortFree( pxTimer );
					}
					#elif( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
					{
						/* The timer could have been allocated statically or
						dynamically, so check before attempting to free the
						memory. */
						if( pxTimer->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
						{
							vPortFree( pxTimer );
						}
						else
						{
							mtCOVERAGE_TEST_MARKER();
						}
					}
					#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
					break;

				default	:
					/* Don't expect to get here. */
					break;
			}
		}
	}
}
Exemplo n.º 15
0
void *pvPortMalloc( size_t xWantedSize )
{
    BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
    void *pvReturn = NULL;

    vTaskSuspendAll();
    {
        /* If this is the first call to malloc then the heap will require
        initialisation to setup the list of free blocks. */
        if( pxEnd == NULL )
        {
            prvHeapInit();
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        /* Check the requested block size is not so large that the top bit is
        set.  The top bit of the block size member of the BlockLink_t structure
        is used to determine who owns the block - the application or the
        kernel, so it must be free. */
        if( ( xWantedSize & xBlockAllocatedBit ) == 0 )
        {
            /* The wanted size is increased so it can contain a BlockLink_t
            structure in addition to the requested amount of bytes. */
            if( xWantedSize > 0 )
            {
                xWantedSize += xHeapStructSize;

                /* Ensure that blocks are always aligned to the required number
                of bytes. */
                if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 )
                {
                    /* Byte alignment required. */
                    xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
                    configASSERT( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) == 0 );
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }

            if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) )
            {
                /* Traverse the list from the start	(lowest address) block until
                one	of adequate size is found. */
                pxPreviousBlock = &xStart;
                pxBlock = xStart.pxNextFreeBlock;
                while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
                {
                    pxPreviousBlock = pxBlock;
                    pxBlock = pxBlock->pxNextFreeBlock;
                }

                /* If the end marker was reached then a block of adequate size
                was	not found. */
                if( pxBlock != pxEnd )
                {
                    /* Return the memory space pointed to - jumping over the
                    BlockLink_t structure at its start. */
                    pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + xHeapStructSize );

                    /* This block is being returned for use so must be taken out
                    of the list of free blocks. */
                    pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;

                    /* If the block is larger than required it can be split into
                    two. */
                    if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
                    {
                        /* This block is to be split into two.  Create a new
                        block following the number of bytes requested. The void
                        cast is used to prevent byte alignment warnings from the
                        compiler. */
                        pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );
                        configASSERT( ( ( ( size_t ) pxNewBlockLink ) & portBYTE_ALIGNMENT_MASK ) == 0 );

                        /* Calculate the sizes of two blocks split from the
                        single block. */
                        pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
                        pxBlock->xBlockSize = xWantedSize;

                        /* Insert the new block into the list of free blocks. */
                        prvInsertBlockIntoFreeList( pxNewBlockLink );
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }

                    xFreeBytesRemaining -= pxBlock->xBlockSize;

                    if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining )
                    {
                        xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }

                    /* The block is being returned - it is allocated and owned
                    by the application and has no "next" block. */
                    pxBlock->xBlockSize |= xBlockAllocatedBit;
                    pxBlock->pxNextFreeBlock = NULL;
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        traceMALLOC( pvReturn, xWantedSize );
    }
    ( void ) xTaskResumeAll();

#if( configUSE_MALLOC_FAILED_HOOK == 1 )
    {
        if( pvReturn == NULL )
        {
            extern void vApplicationMallocFailedHook( void );
            vApplicationMallocFailedHook();
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }
    }
#endif

    configASSERT( ( ( ( size_t ) pvReturn ) & ( size_t ) portBYTE_ALIGNMENT_MASK ) == 0 );
    return pvReturn;
}
Exemplo n.º 16
0
EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet )
{
ListItem_t *pxListItem, *pxNext;
ListItem_t const *pxListEnd;
List_t *pxList;
EventBits_t uxBitsToClear = 0, uxBitsWaitedFor, uxControlBits;
EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
BaseType_t xMatchFound = pdFALSE;

	/* Check the user is not attempting to set the bits used by the kernel
	itself. */
	configASSERT( ( uxBitsToSet & eventEVENT_BITS_CONTROL_BYTES ) == 0 );

	pxList = &( pxEventBits->xTasksWaitingForBits );
	pxListEnd = listGET_END_MARKER( pxList ); /*lint !e826 !e740 The mini list structure is used as the list end to save RAM.  This is checked and valid. */
	vTaskSuspendAll();
	{
		traceEVENT_GROUP_SET_BITS( xEventGroup, uxBitsToSet );

		pxListItem = listGET_HEAD_ENTRY( pxList );

		/* Set the bits. */
		pxEventBits->uxEventBits |= uxBitsToSet;

		/* See if the new bit value should unblock any tasks. */
		while( pxListItem != pxListEnd )
		{
			pxNext = listGET_NEXT( pxListItem );
			uxBitsWaitedFor = listGET_LIST_ITEM_VALUE( pxListItem );
			xMatchFound = pdFALSE;

			/* Split the bits waited for from the control bits. */
			uxControlBits = uxBitsWaitedFor & eventEVENT_BITS_CONTROL_BYTES;
			uxBitsWaitedFor &= ~eventEVENT_BITS_CONTROL_BYTES;

			if( ( uxControlBits & eventWAIT_FOR_ALL_BITS ) == ( EventBits_t ) 0 )
			{
				/* Just looking for single bit being set. */
				if( ( uxBitsWaitedFor & pxEventBits->uxEventBits ) != ( EventBits_t ) 0 )
				{
					xMatchFound = pdTRUE;
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else if( ( uxBitsWaitedFor & pxEventBits->uxEventBits ) == uxBitsWaitedFor )
			{
				/* All bits are set. */
				xMatchFound = pdTRUE;
			}
			else
			{
				/* Need all bits to be set, but not all the bits were set. */
			}

			if( xMatchFound != pdFALSE )
			{
				/* The bits match.  Should the bits be cleared on exit? */
				if( ( uxControlBits & eventCLEAR_EVENTS_ON_EXIT_BIT ) != ( EventBits_t ) 0 )
				{
					uxBitsToClear |= uxBitsWaitedFor;
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}

				/* Store the actual event flag value in the task's event list
				item before removing the task from the event list.  The
				eventUNBLOCKED_DUE_TO_BIT_SET bit is set so the task knows
				that is was unblocked due to its required bits matching, rather
				than because it timed out. */
				( void ) xTaskRemoveFromUnorderedEventList( pxListItem, pxEventBits->uxEventBits | eventUNBLOCKED_DUE_TO_BIT_SET );
			}

			/* Move onto the next list item.  Note pxListItem->pxNext is not
			used here as the list item may have been removed from the event list
			and inserted into the ready/pending reading list. */
			pxListItem = pxNext;
		}

		/* Clear any bits that matched when the eventCLEAR_EVENTS_ON_EXIT_BIT
		bit was set in the control word. */
		pxEventBits->uxEventBits &= ~uxBitsToClear;
	}
	( void ) xTaskResumeAll();

	return pxEventBits->uxEventBits;
}
Exemplo n.º 17
0
EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToWaitFor, const BaseType_t xClearOnExit, const BaseType_t xWaitForAllBits, TickType_t xTicksToWait )
{
EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
EventBits_t uxReturn, uxControlBits = 0;
BaseType_t xWaitConditionMet, xAlreadyYielded;

	/* Check the user is not attempting to wait on the bits used by the kernel
	itself, and that at least one bit is being requested. */
	configASSERT( ( uxBitsToWaitFor & eventEVENT_BITS_CONTROL_BYTES ) == 0 );
	configASSERT( uxBitsToWaitFor != 0 );
	#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
	{
		configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
	}
	#endif

	vTaskSuspendAll();
	{
		const EventBits_t uxCurrentEventBits = pxEventBits->uxEventBits;

		traceEVENT_GROUP_WAIT_BITS_START( xEventGroup, uxBitsToWaitFor );

		/* Check to see if the wait condition is already met or not. */
		xWaitConditionMet = prvTestWaitCondition( uxCurrentEventBits, uxBitsToWaitFor, xWaitForAllBits );

		if( xWaitConditionMet != pdFALSE )
		{
			/* The wait condition has already been met so there is no need to
			block. */
			uxReturn = uxCurrentEventBits;
			xTicksToWait = ( TickType_t ) 0;

			/* Clear the wait bits if requested to do so. */
			if( xClearOnExit != pdFALSE )
			{
				pxEventBits->uxEventBits &= ~uxBitsToWaitFor;
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		else if( xTicksToWait == ( TickType_t ) 0 )
		{
			/* The wait condition has not been met, but no block time was
			specified, so just return the current value. */
			uxReturn = uxCurrentEventBits;
		}
		else
		{
			/* The task is going to block to wait for its required bits to be
			set.  uxControlBits are used to remember the specified behaviour of
			this call to xEventGroupWaitBits() - for use when the event bits
			unblock the task. */
			if( xClearOnExit != pdFALSE )
			{
				uxControlBits |= eventCLEAR_EVENTS_ON_EXIT_BIT;
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}

			if( xWaitForAllBits != pdFALSE )
			{
				uxControlBits |= eventWAIT_FOR_ALL_BITS;
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}

			/* Store the bits that the calling task is waiting for in the
			task's event list item so the kernel knows when a match is
			found.  Then enter the blocked state. */
			vTaskPlaceOnUnorderedEventList( &( pxEventBits->xTasksWaitingForBits ), ( uxBitsToWaitFor | uxControlBits ), xTicksToWait );

			/* This is obsolete as it will get set after the task unblocks, but
			some compilers mistakenly generate a warning about the variable
			being returned without being set if it is not done. */
			uxReturn = 0;
		}
	}
	xAlreadyYielded = xTaskResumeAll();

	if( xTicksToWait != ( TickType_t ) 0 )
	{
		if( xAlreadyYielded == pdFALSE )
		{
			portYIELD_WITHIN_API();
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}

		/* The task blocked to wait for its required bits to be set - at this
		point either the required bits were set or the block time expired.  If
		the required bits were set they will have been stored in the task's
		event list item, and they should now be retrieved then cleared. */
		uxReturn = uxTaskResetEventItemValue();

		if( ( uxReturn & eventUNBLOCKED_DUE_TO_BIT_SET ) == ( EventBits_t ) 0 )
		{
			taskENTER_CRITICAL();
			{
				/* The task timed out, just return the current event bit value. */
				uxReturn = pxEventBits->uxEventBits;

				/* It is possible that the event bits were updated between this
				task leaving the Blocked state and running again. */
				if( prvTestWaitCondition( uxReturn, uxBitsToWaitFor, xWaitForAllBits ) != pdFALSE )
				{
					if( xClearOnExit != pdFALSE )
					{
						pxEventBits->uxEventBits &= ~uxBitsToWaitFor;
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			taskEXIT_CRITICAL();
		}
		else
		{
			/* The task unblocked because the bits were set.  Clear the control
			bits before returning the value. */
			uxReturn &= ~eventEVENT_BITS_CONTROL_BYTES;
		}
	}

	traceEVENT_GROUP_WAIT_BITS_END( xEventGroup, uxReturn );
	return uxReturn;
}
Exemplo n.º 18
0
EventBits_t xEventGroupSync( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, const EventBits_t uxBitsToWaitFor, TickType_t xTicksToWait )
{
EventBits_t uxOriginalBitValue, uxReturn;
EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
BaseType_t xAlreadyYielded;

	configASSERT( ( uxBitsToWaitFor & eventEVENT_BITS_CONTROL_BYTES ) == 0 );
	configASSERT( uxBitsToWaitFor != 0 );
	#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
	{
		configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
	}
	#endif

	vTaskSuspendAll();
	{
		traceEVENT_GROUP_SYNC_START( xEventGroup, uxBitsToSet );

		uxOriginalBitValue = pxEventBits->uxEventBits;

		( void ) xEventGroupSetBits( xEventGroup, uxBitsToSet );

		if( ( ( uxOriginalBitValue | uxBitsToSet ) & uxBitsToWaitFor ) == uxBitsToWaitFor )
		{
			/* All the rendezvous bits are now set - no need to block. */
			uxReturn = ( uxOriginalBitValue | uxBitsToSet );

			/* Rendezvous always clear the bits.  They will have been cleared
			already unless this is the only task in the rendezvous. */
			pxEventBits->uxEventBits &= uxBitsToWaitFor;

			xTicksToWait = 0;
		}
		else
		{
			if( xTicksToWait != ( TickType_t ) 0 )
			{
				/* Store the bits that the calling task is waiting for in the
				task's event list item so the kernel knows when a match is
				found.  Then enter the blocked state. */
				vTaskPlaceOnUnorderedEventList( &( pxEventBits->xTasksWaitingForBits ), ( uxBitsToWaitFor | eventCLEAR_EVENTS_ON_EXIT_BIT | eventWAIT_FOR_ALL_BITS ), xTicksToWait );

				/* This assignment is obsolete as uxReturn will get set after
				the task unblocks, but some compilers mistakenly generate a
				warning about uxReturn being returned without being set if the
				assignment is omitted. */
				uxReturn = 0;
			}
			else
			{
				/* The rendezvous bits were not set, but no block time was
				specified - just return the current event bit value. */
				uxReturn = pxEventBits->uxEventBits;
			}
		}
	}
	xAlreadyYielded = xTaskResumeAll();

	if( xTicksToWait != ( TickType_t ) 0 )
	{
		if( xAlreadyYielded == pdFALSE )
		{
			portYIELD_WITHIN_API();
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}

		/* The task blocked to wait for its required bits to be set - at this
		point either the required bits were set or the block time expired.  If
		the required bits were set they will have been stored in the task's
		event list item, and they should now be retrieved then cleared. */
		uxReturn = uxTaskResetEventItemValue();

		if( ( uxReturn & eventUNBLOCKED_DUE_TO_BIT_SET ) == ( EventBits_t ) 0 )
		{
			/* The task timed out, just return the current event bit value. */
			taskENTER_CRITICAL();
			{
				uxReturn = pxEventBits->uxEventBits;

				/* Although the task got here because it timed out before the
				bits it was waiting for were set, it is possible that since it
				unblocked another task has set the bits.  If this is the case
				then it may be required to clear the bits before exiting. */
				if( ( uxReturn & uxBitsToWaitFor ) == uxBitsToWaitFor )
				{
					pxEventBits->uxEventBits &= ~uxBitsToWaitFor;
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			taskEXIT_CRITICAL();
		}
		else
		{
			/* The task unblocked because the bits were set.  Clear the control
			bits before returning the value. */
			uxReturn &= ~eventEVENT_BITS_CONTROL_BYTES;
		}
	}

	traceEVENT_GROUP_SYNC_END( xEventGroup, uxReturn );
	return uxReturn;
}
Exemplo n.º 19
0
void *pvPortMalloc( size_t xWantedSize, const char * file, unsigned line, bool use_iram)
#endif
{
BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
void *pvReturn = NULL;
static bool is_inited = false;

    if (!is_inited) {
        void vPortDefineHeapRegions( const HeapRegion_t * const pxHeapRegions );
        xHeapRegions[0].pucStartAddress = ( uint8_t * )&_heap_start;
        xHeapRegions[0].xSizeInBytes = (( size_t)( 0x40000000 - (uint32)&_heap_start));
        
        xHeapRegions[1].pucStartAddress = ( uint8_t * )&_lit4_end;
        xHeapRegions[1].xSizeInBytes = (( size_t)( 0x4010C000 - (uint32)&_lit4_end));

        is_inited = true;
        vPortDefineHeapRegions(xHeapRegions);
    }

	/* The heap must be initialised before the first call to
	prvPortMalloc(). */
	configASSERT( pxEnd );

//	vTaskSuspendAll();
	ETS_INTR_LOCK();
	{
		/* Check the requested block size is not so large that the top bit is
		set.  The top bit of the block size member of the BlockLink_t structure
		is used to determine who owns the block - the application or the
		kernel, so it must be free. */
		if( ( xWantedSize & xBlockAllocatedBit ) == 0 )
		{
			/* The wanted size is increased so it can contain a BlockLink_t
			structure in addition to the requested amount of bytes. */
			if( xWantedSize > 0 )
			{
				xWantedSize += uxHeapStructSize;

				/* Ensure that blocks are always aligned to the required number
				of bytes. */
				if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 )
				{
					/* Byte alignment required. */
					xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}

			if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) )
			{
				/* Traverse the list from the start	(lowest address) block until
				one	of adequate size is found. */
				pxPreviousBlock = &xStart;
				pxBlock = xStart.pxNextFreeBlock;

                BlockLink_t *pxIterator;
                /* Iterate through the list until a block is found that has a higher address
                than the block being inserted. */
                for( pxIterator = &xStart; pxIterator->pxNextFreeBlock != 0; pxIterator = pxIterator->pxNextFreeBlock )
                {
                    if ((line == 0 || use_iram == true) && (uint32)pxIterator->pxNextFreeBlock > 0x40000000 && pxIterator->pxNextFreeBlock->xBlockSize > xWantedSize) {
                        pxPreviousBlock = pxIterator;
                        pxBlock = pxIterator->pxNextFreeBlock;
                        break;
                    }
                }

				while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
				{
					pxPreviousBlock = pxBlock;
					pxBlock = pxBlock->pxNextFreeBlock;
				}

				/* If the end marker was reached then a block of adequate size
				was	not found. */
				if( pxBlock != pxEnd )
				{
					/* Return the memory space pointed to - jumping over the
					BlockLink_t structure at its start. */
					pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + uxHeapStructSize );

					/* This block is being returned for use so must be taken out
					of the list of free blocks. */
					pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;

					/* If the block is larger than required it can be split into
					two. */
					if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
					{
						/* This block is to be split into two.  Create a new
						block following the number of bytes requested. The void
						cast is used to prevent byte alignment warnings from the
						compiler. */
						pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );

						/* Calculate the sizes of two blocks split from the
						single block. */
						pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
						pxBlock->xBlockSize = xWantedSize;

						/* Insert the new block into the list of free blocks. */
						prvInsertBlockIntoFreeList( ( pxNewBlockLink ) );
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}

					xFreeBytesRemaining -= pxBlock->xBlockSize;

					if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining )
					{
						xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}

					/* The block is being returned - it is allocated and owned
					by the application and has no "next" block. */
					pxBlock->xBlockSize |= xBlockAllocatedBit;
					pxBlock->pxNextFreeBlock = NULL;
                    
#ifdef MEMLEAK_DEBUG
					if(uxHeapStructSize >= sizeof( BlockLink_t )){
						pxBlock->file = file;
						pxBlock->line = line;
					}
					//link the use block
					prvInsertBlockIntoUsedList(pxBlock);
#endif
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}

		traceMALLOC( pvReturn, xWantedSize );
	}
	// ( void ) xTaskResumeAll();
    ETS_INTR_UNLOCK();

	#if( configUSE_MALLOC_FAILED_HOOK == 1 )
	{
		if( pvReturn == NULL )
		{
			extern void vApplicationMallocFailedHook( void );
			vApplicationMallocFailedHook();
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
	#endif

	return pvReturn;
}