Exemplo n.º 1
0
 /* Function: solve
  *
  *  Computes eigenvectors of the standard eigenvalue problem Ax = l x.
  *
  * Parameters:
  *    A              - Left-hand side matrix.
  *    ev             - Array of eigenvectors.
  *    work           - Workspace array.
  *    lwork          - Size of the input workspace array.
  *    communicator   - MPI communicator for selecting the threshold criterion. */
 void solve(K* const& A, K**& ev, K* const& work, int& lwork, const MPI_Comm& communicator) {
     int info;
     K* tau = work + lwork;
     underlying_type<K>* d = reinterpret_cast<underlying_type<K>*>(tau + Eigensolver<K>::_n);
     underlying_type<K>* e = d + Eigensolver<K>::_n;
     trd("L", &(Eigensolver<K>::_n), A, &(Eigensolver<K>::_n), d, e, tau, work, &lwork, &info);
     underlying_type<K> vl = -1.0 / HPDDM_EPS;
     underlying_type<K> vu = Eigensolver<K>::_threshold;
     int iu = Eigensolver<K>::_nu;
     int nsplit;
     underlying_type<K>* evr = e + Eigensolver<K>::_n - 1;
     int* iblock = new int[5 * Eigensolver<K>::_n];
     int* isplit = iblock + Eigensolver<K>::_n;
     int* iwork = isplit + Eigensolver<K>::_n;
     char range = Eigensolver<K>::_threshold > 0.0 ? 'V' : 'I';
     stebz(&range, "B", &(Eigensolver<K>::_n), &vl, &vu, &i__1, &iu, &(Eigensolver<K>::_tol), d, e, &(Eigensolver<K>::_nu), &nsplit, evr, iblock, isplit, reinterpret_cast<underlying_type<K>*>(work), iwork, &info);
     if(Eigensolver<K>::_nu) {
         ev = new K*[Eigensolver<K>::_nu];
         *ev = new K[Eigensolver<K>::_n * Eigensolver<K>::_nu];
         for(unsigned short i = 1; i < Eigensolver<K>::_nu; ++i)
             ev[i] = *ev + i * Eigensolver<K>::_n;
         int* ifailv = new int[Eigensolver<K>::_nu];
         stein(&(Eigensolver<K>::_n), d, e, &(Eigensolver<K>::_nu), evr, iblock, isplit, *ev, &(Eigensolver<K>::_n), reinterpret_cast<underlying_type<K>*>(work), iwork, ifailv, &info);
         delete [] ifailv;
         mtr("L", "L", "N", &(Eigensolver<K>::_n), &(Eigensolver<K>::_nu), A, &(Eigensolver<K>::_n), tau, *ev, &(Eigensolver<K>::_n), work, &lwork, &info);
         if(!Wrapper<K>::is_complex)
             lwork += 3 * Eigensolver<K>::_n - 1;
         else
             lwork += 4 * Eigensolver<K>::_n - 1;
     }
     delete [] iblock;
 }
Exemplo n.º 2
0
    bool Board::undo(BoardTransaction &tr) {
        MutableBoardTransaction mtr(tr);

        if (!mtr.isAccepted()) {
            return false; // transaction was not accepted or already undone
        }

        if (mtr.getTransactionNumber() != nextTransaction - 1) {
            return false; // not the least recently issued transaction
        }

        std::vector<BoardOp::Operation*> &ops = mtr.getBoardOps();
        bool result = true;
        size_t i = ops.size();

        if (i == 0) {
            mtr.setAccepted(false); // undo done, invalidate transaction
            nextTransaction = mtr.getTransactionNumber();

            return true; // empty transaction? strange, but undo is done ...
        }

        do  {
            i--; // undo -> replay backwards
            result &= ops[i]->undo(*this);
        } while (result && i != 0);

        if (result) {
            mtr.setAccepted(false); // undo done, invalidate transaction
            ops.clear(); // especially: clear all ops
            nextTransaction = mtr.getTransactionNumber();

            return true; // all went well, leave
        } // else: something has gone wrong, undoing undo to restore previous state

        i++; // last operation failed, increment by one to reach the first undone operation
        result = true;

        for (; result && i < ops.size(); i++) {
            result &= ops[i]->apply(*this);
        }

        if (!result) { // undo rollback has failed, too ... something is broken utterly
            // we don't bother about invalidating the transaction, this is a major
            // problem which can not be resolved
            throw std::logic_error("Undo operation failed to recover from failure");
        }

        return false; // rollback went well, don't invalidate transaction
    }
Exemplo n.º 3
0
int main(int argc,char*argv[])
{
  if(argc<2){
    LOG("usage: "<<argv[0]<<" data.csv");
    return -1;
  }
  if(argc==3)
    print_only_best=true;  
  Concrete::CData cdata(argv[1]);
  cdata.init();

  Concrete::CData bt_cdata=cdata;//.bootstrap(resize_data,0.05);

  Tree::FunctionDB* fdb=Tree::std_functions_db();

  fdb->add_variables(bt_cdata.x_count());

  //for(double i=-10.0;i<10.0;i+=0.5)
  //  fdb->add_constant(i);

  Tree::Generator*gnrt=new Tree::Generator(fdb,max_depth);
  Tree::Crossover*crossover=new Tree::Crossover;
  Tree::Mutator   mtr(gnrt,crossover);

  GpGenerator *dg=new GpGenerator(gnrt);
  //bin_dna_generator *dg=new GpGeneratorHist(fdb,max_depth);

  selector    *sel_r=new rnd_selector;
  GpMutator   *gp_mtn=new GpMutator(gnrt,crossover,fdb);
  GpCrossover*c=new GpCrossover(fdb,crossover);
  
  //std_ga* sg=new hist_gp(sel_r,gp_mtn,c,dg,10);
  std_ga* sg=new std_ga(sel_r,gp_mtn,c,dg);

  GpFitness*ftn=new GpFitness(percent_to_learn,&bt_cdata,fdb);
  sg->set_params(make_params(mtn_raiting,0.4,psize));
  sg->setFitness(ftn);
  sg->init();
  solution sln=sg->getSolution(max_steps,target_value,true,print_only_best);
  LOG("results: "<<sln.first);
  ftn->check_solution(sln.second,&cdata);
}
Exemplo n.º 4
0
    bool Board::apply(BoardTransaction &tr) {
        MutableBoardTransaction mtr(tr);

        if (mtr.isAccepted()) {
            return false; // transaction has already been accepted/applied
        }

        mtr.setTransactionNumber(nextTransaction); // assign preliminary transaction number

        if (mtr.getBoardOps().size() == 0) { // empty transaction, apply rules
            if (!inRange(mtr.getFrom()) || !inRange(mtr.getTo())) {
                throw std::out_of_range("Source or target coordinates are outside of board range");
            }

            if (mtr.getFrom() == mtr.getTo()) {
                mtr.setStateCode(bsc_SourceAndDestinationAreEqual);

                return false;
            }

            Figure *fig = board[coordsToIndex(mtr.getFrom())];
            if (fig == NULL) {
                return false; // no figure which could do something is there
            }

            if (!fig->apply(mtr)) {
                mtr.setAccepted(false);
                mtr.getBoardOps().clear();

                return false; // failed to prepare transaction
            }
        }

        std::vector<BoardOp::Operation*> &ops = mtr.getBoardOps();

        bool result = true;
        size_t i = 0;

        for (; result && i < ops.size(); i++) {
            result &= ops[i]->apply(*this);
        }

        if (result) {
            mtr.setAccepted(true);
            nextTransaction++; // Increment for next transaction

            return true; // transaction has been applied successfully
        } // else: transaction failed, rollback

        result = true;

        do {
            i--;
            result &= ops[i]->undo(*this);
        } while (result && i != 0);

        if (!result) { // rollback has failed, too ... something is broken utterly
            // we don't bother about invalidating the transaction, this is a major
            // problem which can not be resolved
            throw std::logic_error("Undo operation failed to recover from failure");
        }

        mtr.setAccepted(false);

        return false;
    }
Exemplo n.º 5
0
int main(int argc,char*argv[])
{
  if(argc<2){
    LOG("usage: "<<argv[0]<<" data.csv");
    return -1;
  }
  if(argc==3)
    print_only_best=true;  
  Concrete::CData cdata(argv[1]);
  cdata.init();
  Concrete::CData bt_cdata=cdata.bootstrap(resize_data,0.05);
  // Создаем список случайных индексов для обучения системы
  ivector numbers=Concrete::make_learn_indexes(cdata.size(),percent_to_learn);

  
  // Этап 1 - натройка с помощью ГА
  LOG("Этап 1");
  fitness           *sugeno_ftn=new bin_sugeno(&bt_cdata,numbers);
  bin_crossover     *b_crv=new bin_crossover(true);
  bin_mutator       *b_mtn=new bin_mutator(mtn_bit_count);
  bin_dna_generator *b_dg=new bin_dna_generator(0.0,1.0,sugeno_ftn->size());

  LOG("Длина ДНК: "<<sugeno_ftn->size());

  selector*     sel_r=new rnd_selector;
  std_ga* sg=new std_ga(sel_r,b_mtn,b_crv,b_dg);
  sg->set_params(make_params(0.99,0.5,30));
  sg->setFitness(sugeno_ftn);
  sg->init();
  solution sln=sg->getSolution(max_steps_ga,10.0,true);
  // Этап 2 - натройка с помощью ГП
  LOG("Этап 2");
  fuzzy::MinMax minmax=fuzzy::find_min_max(bt_cdata,numbers);

  fuzzy::MyuFunctions mf_old=fuzzy::make_myu_functions(bt_cdata,numbers,minmax);
  fuzzy::MyuFunctions mf={fuzzy::fvector(0),mf_old.y_function};

  // Построение функций принадлжености  
  const int x_count=bt_cdata.x_count();
  int i=0;
  
  for(int k=0;k<bt_cdata.size();++k)
    for(int x=0;x<x_count;++x){
      fuzzy::ExpFunction*ff=new fuzzy::ExpFunction(sln.second->get(i),sln.second->get(i+1));
      mf.x_funcs.push_back(ff);
      i+=2;
    }
  fuzzy::rule_vector rules=fuzzy::make_rules(bt_cdata,mf,numbers);

  LOG("Количество функций для X: "<<mf.x_funcs.size());

  // Настраиваем базу функций ГП

  dvector y(rules.size());
  for(int i=0;i<rules.size();++i){
    y[i]=rules[i].y();
  }
  Tree::FuzzyFDB *fuzzy_fdb=Tree::fuzzy_function_db(y,cdata.x_count());
  Tree::FunctionDB* fdb=fuzzy_fdb->fdb;

  for(int i=0;i<rules.size();++i){
    int j=0;
    for(fuzzy::fvector::const_iterator pos=rules[i].begin();
	pos!=rules[i].end();++pos,j++){
      std::string func_name="f_"+boost::lexical_cast<std::string>(i);
      std::string var_name="x-"+boost::lexical_cast<std::string>(j);
      NewFuzzyFunction ff(*pos);
      fdb->add_function(new Tree::VarFuncNode(func_name,var_name,1,ff));
    }
  }
  
  // sugeno_out+
  //   количество_if(количество правил) +
  //   количество акцедентов.
  max_depth=1+rules.size()+cdata.x_count();

  Tree::Generator*gnrt=new Tree::RootGenerator(fdb,max_depth,fuzzy_fdb->root_number,fuzzy_fdb->second_layer);
  ivector limits;
  limits<<fuzzy_fdb->root_number<<fuzzy_fdb->second_layer;
  Tree::Crossover*crossover=new Tree::LimitCrossover(limits);
  Tree::Mutator   mtr(gnrt,crossover);

  GpGenerator *dg=new GpGenerator(gnrt);

  GpMutator   *gp_mtn=new GpMutator(gnrt,crossover,fdb);
  GpCrossover*c=new GpCrossover(fdb,crossover);
  
  std_ga* gp_sg=new std_ga(sel_r,gp_mtn,c,dg);

  GpFitness*gp_ftn=new GpFitness(percent_to_learn,&bt_cdata,fdb);
  gp_ftn->set_numbers(numbers);
  gp_sg->set_params(make_params(mtn_raiting,0.4,psize));
  gp_sg->setFitness(gp_ftn);
  gp_sg->init();
  solution gp_sln=sg->getSolution(max_steps,target_value,true,print_only_best);
  LOG("results: "<<gp_sln.first);
  gp_ftn->check_solution(gp_sln.second,&cdata);
}