Exemplo n.º 1
0
/*---------------------------------------------------------------------------*/
static void
send_packet(mac_callback_t sent, void *ptr)
{
  struct rdc_buf_list *q;
  struct neighbor_queue *n;
  static uint8_t initialized = 0;
  static uint16_t seqno;
  const rimeaddr_t *addr = packetbuf_addr(PACKETBUF_ADDR_RECEIVER);

  if(!initialized) {
    initialized = 1;
    /* Initialize the sequence number to a random value as per 802.15.4. */
    seqno = random_rand();
  }

  if(seqno == 0) {
    /* PACKETBUF_ATTR_MAC_SEQNO cannot be zero, due to a pecuilarity
       in framer-802154.c. */
    seqno++;
  }
  packetbuf_set_attr(PACKETBUF_ATTR_MAC_SEQNO, seqno++);

  /* Look for the neighbor entry */
  n = neighbor_queue_from_addr(addr);
  if(n == NULL) {
    /* Allocate a new neighbor entry */
    n = memb_alloc(&neighbor_memb);
    if(n != NULL) {
      /* Init neighbor entry */
      rimeaddr_copy(&n->addr, addr);
      n->transmissions = 0;
      n->collisions = 0;
      n->deferrals = 0;
      /* Init packet list for this neighbor */
      LIST_STRUCT_INIT(n, queued_packet_list);
      /* Add neighbor to the list */
      list_add(neighbor_list, n);
    }
  }

  if(n != NULL) {
    /* Add packet to the neighbor's queue */
    q = memb_alloc(&packet_memb);
    if(q != NULL) {
      q->ptr = memb_alloc(&metadata_memb);
      if(q->ptr != NULL) {
	q->buf = queuebuf_new_from_packetbuf();
	if(q->buf != NULL) {
	  struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
	  /* Neighbor and packet successfully allocated */
	  if(packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
	    /* Use default configuration for max transmissions */
	    metadata->max_transmissions = CSMA_MAX_MAC_TRANSMISSIONS;
	  } else {
	    metadata->max_transmissions =
                  packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
	  }
	  metadata->sent = sent;
	  metadata->cptr = ptr;

	  if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) ==
	     PACKETBUF_ATTR_PACKET_TYPE_ACK) {
	    list_push(n->queued_packet_list, q);
	  } else {
	    list_add(n->queued_packet_list, q);
	  }

	  /* If q is the first packet in the neighbor's queue, send asap */
	  if(list_head(n->queued_packet_list) == q) {
	    ctimer_set(&n->transmit_timer, 0, transmit_packet_list, n);
	  }
	  return;
	}
	memb_free(&metadata_memb, q->ptr);
	PRINTF("csma: could not allocate queuebuf, dropping packet\n");
      }
      memb_free(&packet_memb, q);
      PRINTF("csma: could not allocate queuebuf, dropping packet\n");
    }
    /* The packet allocation failed. Remove and free neighbor entry if empty. */
    if(list_length(n->queued_packet_list) == 0) {
      list_remove(neighbor_list, n);
      memb_free(&neighbor_memb, n);
    }
    PRINTF("csma: could not allocate packet, dropping packet\n");
  } else {
    PRINTF("csma: could not allocate neighbor, dropping packet\n");
  }
  mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 1);
}
Exemplo n.º 2
0
Arquivo: csma.c Projeto: cetic/6lbr
/*---------------------------------------------------------------------------*/
static void
packet_sent(void *ptr, int status, int num_transmissions)
{
  struct neighbor_queue *n;
  struct rdc_buf_list *q;

  n = ptr;
  if(n == NULL) {
    return;
  }

  /* Find out what packet this callback refers to */
  for(q = list_head(n->queued_packet_list);
      q != NULL; q = list_item_next(q)) {
#if CETIC_6LBR_MULTI_RADIO
    if(queuebuf_attr(q->buf, PACKETBUF_ATTR_MAC_SEQNO) ==
       packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO) &&
       (q->ptr == NULL ||
        ((struct qbuf_metadata *)q->ptr)->ifindex == multi_radio_input_ifindex)) {
#else
    if(queuebuf_attr(q->buf, PACKETBUF_ATTR_MAC_SEQNO) ==
       packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO)) {
#endif
      break;
    }
  }

  if(q == NULL) {
    PRINTF("csma: seqno %d not found\n",
           packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO));
    return;
  } else if(q->ptr == NULL) {
    PRINTF("csma: no metadata\n");
    return;
  }

  switch(status) {
  case MAC_TX_OK:
    tx_ok(q, n, num_transmissions);
    break;
  case MAC_TX_NOACK:
    noack(q, n, num_transmissions);
    break;
  case MAC_TX_COLLISION:
    collision(q, n, num_transmissions);
    break;
  case MAC_TX_DEFERRED:
    break;
  default:
    tx_done(status, q, n);
    break;
  }
}
/*---------------------------------------------------------------------------*/
static void
send_packet(mac_callback_t sent, void *ptr)
{
  struct rdc_buf_list *q;
  struct neighbor_queue *n;
  const linkaddr_t *addr = packetbuf_addr(PACKETBUF_ADDR_RECEIVER);

  /* Look for the neighbor entry */
  n = neighbor_queue_from_addr(addr);
  if(n == NULL) {
    /* Allocate a new neighbor entry */
    n = memb_alloc(&neighbor_memb);
    if(n != NULL) {
      /* Init neighbor entry */
      linkaddr_copy(&n->addr, addr);
      n->transmissions = 0;
      n->collisions = CSMA_MIN_BE;
      /* Init packet list for this neighbor */
      LIST_STRUCT_INIT(n, queued_packet_list);
      /* Add neighbor to the list */
      list_add(neighbor_list, n);
    }
  }

  if(n != NULL) {
    /* Add packet to the neighbor's queue */
    if(list_length(n->queued_packet_list) < CSMA_MAX_PACKET_PER_NEIGHBOR) {
      q = memb_alloc(&packet_memb);
      if(q != NULL) {
        q->ptr = memb_alloc(&metadata_memb);
        if(q->ptr != NULL) {
          q->buf = queuebuf_new_from_packetbuf();
          if(q->buf != NULL) {
            struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
            /* Neighbor and packet successfully allocated */
            if(packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
              /* Use default configuration for max transmissions */
              metadata->max_transmissions = CSMA_MAX_MAX_FRAME_RETRIES + 1;
            } else {
              metadata->max_transmissions =
                packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
            }
            metadata->sent = sent;
            metadata->cptr = ptr;
#if CETIC_6LBR_MULTI_RADIO
            metadata->ifindex = multi_radio_output_ifindex;
#endif
#if PACKETBUF_WITH_PACKET_TYPE
            if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) ==
               PACKETBUF_ATTR_PACKET_TYPE_ACK) {
              list_push(n->queued_packet_list, q);
            } else
#endif
            {
              list_add(n->queued_packet_list, q);
            }

            PRINTF("csma: send_packet, queue length %d, free packets %d\n",
                   list_length(n->queued_packet_list), memb_numfree(&packet_memb));
            /* If q is the first packet in the neighbor's queue, send asap */
            if(list_head(n->queued_packet_list) == q) {
              schedule_transmission(n);
            }
            return;
          }
          memb_free(&metadata_memb, q->ptr);
          PRINTF("csma: could not allocate queuebuf, dropping packet\n");
        }
        memb_free(&packet_memb, q);
        PRINTF("csma: could not allocate queuebuf, dropping packet\n");
      }
      /* The packet allocation failed. Remove and free neighbor entry if empty. */
      if(list_length(n->queued_packet_list) == 0) {
        list_remove(neighbor_list, n);
        memb_free(&neighbor_memb, n);
      }
    } else {
      PRINTF("csma: Neighbor queue full\n");
    }
    PRINTF("csma: could not allocate packet, dropping packet\n");
    csma_packet_overflow++;
  } else {
    PRINTF("csma: could not allocate neighbor, dropping packet\n");
    csma_neighbor_overflow++;
  }
  mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 1);
}
/*---------------------------------------------------------------------------*/
static void
input_packet(void)
{
  csma_received_packets++;
  NETSTACK_LLSEC.input();
}
Exemplo n.º 3
0
/*---------------------------------------------------------------------------*/
static void
packet_sent(void *ptr, int status, int num_transmissions)
{
  struct neighbor_queue *n;
  struct rdc_buf_list *q;
  struct qbuf_metadata *metadata;
  clock_time_t time = 0;
  mac_callback_t sent;
  void *cptr;
  int num_tx;
  int backoff_transmissions;

  n = ptr;
  if(n == NULL) {
    return;
  }
  switch(status) {
  case MAC_TX_OK:
  case MAC_TX_NOACK:
    n->transmissions++;
    break;
  case MAC_TX_COLLISION:
    n->collisions++;
    break;
  case MAC_TX_DEFERRED:
    n->deferrals++;
    break;
  }

  for(q = list_head(n->queued_packet_list);
      q != NULL; q = list_item_next(q)) {
    if(queuebuf_attr(q->buf, PACKETBUF_ATTR_MAC_SEQNO) ==
       packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO)) {
      break;
    }
  }

  if(q != NULL) {
    metadata = (struct qbuf_metadata *)q->ptr;

    if(metadata != NULL) {
      sent = metadata->sent;
      cptr = metadata->cptr;
#if CSMA_ADVANCED
      num_tx = n->transmissions + n->collisions/8;
#else
      num_tx = n->transmissions;
#endif

      if(status == MAC_TX_COLLISION ||
           status == MAC_TX_NOACK) {
        /* If the transmission was not performed because of a
           collision or noack, we must retransmit the packet. */

        switch(status) {
        case MAC_TX_COLLISION:
          PRINTF("csma: rexmit collision %d\n", n->transmissions);
          break;
        case MAC_TX_NOACK:
          PRINTF("csma: rexmit noack %d\n", n->transmissions);
          break;
        case MAC_TX_DEFERRED:
          PRINTF("phase deferred\n");
          break;
        default:
          PRINTF("csma: rexmit err %d, %d\n", status, n->transmissions);
        }
#if CSMA_ADVANCED
          int i;
          /* The retransmission time must be proportional to the channel
           check interval of the underlying radio duty cycling layer. */
          time = default_timebase() / 3;

          /* The retransmission time uses a linear backoff so that the
           interval between the transmissions increase with each
           retransmit. */
          backoff_transmissions = 1;
          for(i=0; i<num_tx-1; i++) {
            backoff_transmissions *= 3;
          }

          /* Clamp the number of backoffs so that we don't get a too long
           timeout here, since that will delay all packets in the
           queue. */
          if(backoff_transmissions > 3 * 3) {
            backoff_transmissions = 3 * 3;
          }

          time = default_timebase() + (random_rand() % (backoff_transmissions * time));

        if(num_tx < metadata->max_transmissions) {
#else
        /* The retransmission time must be proportional to the channel
           check interval of the underlying radio duty cycling layer. */
        time = default_timebase();

        /* The retransmission time uses a linear backoff so that the
           interval between the transmissions increase with each
           retransmit. */
        backoff_transmissions = n->transmissions + 1;

        /* Clamp the number of backoffs so that we don't get a too long
           timeout here, since that will delay all packets in the
           queue. */
        if(backoff_transmissions > 3) {
          backoff_transmissions = 3;
        }

        time = time + (random_rand() % (backoff_transmissions * time));
        if(n->transmissions < metadata->max_transmissions) {
#endif
          PRINTF("csma: retransmitting with time %lu %p\n", time, q);
          ctimer_set(&n->transmit_timer, time,
                     transmit_packet_list, n);
          /* This is needed to correctly attribute energy that we spent
             transmitting this packet. */
          queuebuf_update_attr_from_packetbuf(q->buf);
        } else {
          if(!rimeaddr_cmp(packetbuf_addr(PACKETBUF_ADDR_RECEIVER),
                                 &rimeaddr_null)) {
            LOG_FROM_PACKETBUF("csma: drop with status %d after %d transmissions, %d collisions",
                               status, n->transmissions, n->collisions);
          }
          free_packet(n, q);
          mac_call_sent_callback(sent, cptr, status, num_tx);
        }
      } else {
        if(status == MAC_TX_OK) {
          if(!rimeaddr_cmp(packetbuf_addr(PACKETBUF_ADDR_RECEIVER),
                                 &rimeaddr_null)) {
          LOG_FROM_PACKETBUF("csma: rexmit ok after %d transmissions, %d collisions", n->transmissions, n->collisions);
          }
        } else {
          //LOG_FROM_PACKETBUF("csma: rexmit failed %d: %d\n", n->transmissions, status);
        }
        free_packet(n, q);
        mac_call_sent_callback(sent, cptr, status, num_tx);
      }
    }
  }
}
/*---------------------------------------------------------------------------*/
static void
send_packet(mac_callback_t sent, void *ptr)
{
  struct rdc_buf_list *q;
  struct neighbor_queue *n;
  static uint16_t seqno;
  const rimeaddr_t *addr = packetbuf_addr(PACKETBUF_ADDR_RECEIVER);

  if(seqno == 0) {
    /* PACKETBUF_ATTR_MAC_SEQNO cannot be zero, due to a pecuilarity
       in framer-802154.c. */
    seqno++;
  }
  packetbuf_set_attr(PACKETBUF_ATTR_MAC_SEQNO, seqno++);

  /* Look for the neighbor entry */
  n = neighbor_queue_from_addr(addr);
  if(n == NULL) {
    /* Allocate a new neighbor entry */
    n = memb_alloc(&neighbor_memb);
    if(n != NULL) {
      /* Init neighbor entry */
      rimeaddr_copy(&n->addr, addr);
      n->transmissions = 0;
      n->collisions = 0;
      n->deferrals = 0;
      /* Init packet list for this neighbor */
      LIST_STRUCT_INIT(n, queued_packet_list);
      /* Add neighbor to the list */
      list_add(neighbor_list, n);
    }
  }

  if(n != NULL) {
    /* Add packet to the neighbor's queue */
    q = memb_alloc(&packet_memb);
    if(q != NULL) {
      q->ptr = memb_alloc(&metadata_memb);
      if(q->ptr != NULL) {
	q->buf = queuebuf_new_from_packetbuf();
	if(q->buf != NULL) {
	  struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
	  /* Neighbor and packet successfully allocated */
	  if(packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
	    /* Use default configuration for max transmissions */
	    metadata->max_transmissions = CSMA_MAX_MAC_TRANSMISSIONS;
	  } else {
	    metadata->max_transmissions =
                  packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
	  }
	  metadata->sent = sent;
	  metadata->cptr = ptr;

	  if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) ==
	     PACKETBUF_ATTR_PACKET_TYPE_ACK) {
	    list_push(n->queued_packet_list, q);
	  } else {
	    list_add(n->queued_packet_list, q);
	  }

	  /* If q is the first packet in the neighbor's queue, send asap */
	  if(list_head(n->queued_packet_list) == q) {
	    ctimer_set(&n->transmit_timer, 0, transmit_packet_list, n);
	  }
	  return;
	}
	memb_free(&metadata_memb, q->ptr);
	PRINTF("csma: could not allocate queuebuf, dropping packet\n");
      }
      memb_free(&packet_memb, q);
      PRINTF("csma: could not allocate queuebuf, dropping packet\n");
    }
    /* The packet allocation failed. Remove and free neighbor entry if empty. */
    if(list_length(n->queued_packet_list) == 0) {
      list_remove(neighbor_list, n);
      memb_free(&neighbor_memb, n);
    }
    PRINTF("csma: could not allocate packet, dropping packet\n");
  } else {
    PRINTF("csma: could not allocate neighbor, dropping packet\n");
  }
  mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 1);
}
/*---------------------------------------------------------------------------*/
static void
input_packet(void)
{
  NETSTACK_NETWORK.input();
}
/*---------------------------------------------------------------------------*/
static int
on(void)
{
  return NETSTACK_RDC.on();
}
/*---------------------------------------------------------------------------*/
static int
off(int keep_radio_on)
{
  return NETSTACK_RDC.off(keep_radio_on);
}
/*---------------------------------------------------------------------------*/
static unsigned short
channel_check_interval(void)
{
  if(NETSTACK_RDC.channel_check_interval) {
    return NETSTACK_RDC.channel_check_interval();
  }
  return 0;
}
/*---------------------------------------------------------------------------*/
static void
init(void)
{
  memb_init(&packet_memb);
  memb_init(&metadata_memb);
  memb_init(&neighbor_memb);
}
Exemplo n.º 4
0
/*---------------------------------------------------------------------------*/
static void
send_packet(mac_callback_t sent, void *ptr)
{
  struct rdc_buf_list *q;
  struct neighbor_queue *n;
  const linkaddr_t *addr = packetbuf_addr(PACKETBUF_ADDR_RECEIVER);

  /* Look for the neighbor entry */
  n = neighbor_queue_from_addr(addr);
  if(n == NULL) {
    /* Allocate a new neighbor entry */
    n = memb_alloc(&neighbor_memb);
    if(n != NULL) {
      /* Init neighbor entry */
      linkaddr_copy(&n->addr, addr);
      n->transmissions = 0;
      n->collisions = 0;
      n->deferrals = 0;
      /* Init packet list for this neighbor */
      LIST_STRUCT_INIT(n, queued_packet_list);
      /* Add neighbor to the list */
      list_add(neighbor_list, n);
    }
  }

  if(n != NULL) {
    /* Add packet to the neighbor's queue */
    if(list_length(n->queued_packet_list) < CSMA_MAX_PACKET_PER_NEIGHBOR) {
      q = memb_alloc(&packet_memb);
      if(q != NULL) {
        q->ptr = memb_alloc(&metadata_memb);
        if(q->ptr != NULL) {
          q->buf = queuebuf_new_from_packetbuf();
          if(q->buf != NULL) {
            struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
            /* Neighbor and packet successfully allocated */
            if(packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
              /* Use default configuration for max transmissions */
              metadata->max_transmissions = CSMA_MAX_MAC_TRANSMISSIONS;
            } else {
              metadata->max_transmissions =
                packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
            }
            metadata->sent = sent;
            metadata->cptr = ptr;
#if PACKETBUF_WITH_PACKET_TYPE
            if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) ==
               PACKETBUF_ATTR_PACKET_TYPE_ACK) {
              list_push(n->queued_packet_list, q);
            } else
#endif
            {
              list_add(n->queued_packet_list, q);
            }

            PRINTF("csma: send_packet, queue length %d, free packets %d\n",
                   list_length(n->queued_packet_list), memb_numfree(&packet_memb));
            /* If q is the first packet in the neighbor's queue, send asap */
            if(list_head(n->queued_packet_list) == q) {
              ctimer_set(&n->transmit_timer, 0, transmit_packet_list, n);
            }
            return;
          }
          memb_free(&metadata_memb, q->ptr);
          PRINTF("csma: could not allocate queuebuf, dropping packet\n");
        }
        memb_free(&packet_memb, q);
        PRINTF("csma: could not allocate queuebuf, dropping packet\n");
      }
      /* The packet allocation failed. Remove and free neighbor entry if empty. */
      if(list_length(n->queued_packet_list) == 0) {
        list_remove(neighbor_list, n);
        memb_free(&neighbor_memb, n);
      }
    } else {
      PRINTF("csma: Neighbor queue full\n");
    }
    PRINTF("csma: could not allocate packet, dropping packet\n");
  } else {
    PRINTF("csma: could not allocate neighbor, dropping packet\n");
  }
  mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 1);
}
/*---------------------------------------------------------------------------*/
static void
send_packet(mac_callback_t sent, void *ptr)
{
  struct rdc_buf_list *q;
  struct neighbor_queue *n;
  static uint16_t seqno;

  packetbuf_set_attr(PACKETBUF_ATTR_MAC_SEQNO, seqno++);
  
  /* If the packet is a broadcast, do not allocate a queue
     entry. Instead, just send it out.  */
  if(!rimeaddr_cmp(packetbuf_addr(PACKETBUF_ADDR_RECEIVER),&rimeaddr_null)) {
    const rimeaddr_t *addr = packetbuf_addr(PACKETBUF_ADDR_RECEIVER);

    /* Look for the neighbor entry */
    n = neighbor_queue_from_addr(addr);
    if(n == NULL) {
      /* Allocate a new neighbor entry */
      n = memb_alloc(neighbor_memb);
      if(n != NULL) {
        /* Init neighbor entry */
        rimeaddr_copy(&n->addr, addr);
        n->transmissions = 0;
        n->collisions = 0;
        n->deferrals = 0;
        /* Init packet list for this neighbor */
        n->queued_packet_list = ttc_list_create((const char*)n->queued_packet_list);
        ttc_list_init(n->queued_packet_list, (const char*)n->queued_packet_list);
        /* Add neighbor to the list */
        list_add(neighbor_list, n);
      }
    }

    if(n != NULL) {
      /* Add packet to the neighbor's queue */
      q = memb_alloc(packet_memb);
      if(q != NULL) {
        q->ptr = memb_alloc(metadata_memb);
        if(q->ptr != NULL) {
          q->buf = queuebuf_new_from_packetbuf();
          if(q->buf != NULL) {
            struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
            /* Neighbor and packet successfully allocated */
            if(packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
              /* Use default configuration for max transmissions */
              metadata->max_transmissions = CSMA_MAX_MAC_TRANSMISSIONS;
            } else {
              metadata->max_transmissions =
                  packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
            }
            metadata->sent = sent;
            metadata->cptr = ptr;

            if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) ==
                PACKETBUF_ATTR_PACKET_TYPE_ACK) {
              list_push(n->queued_packet_list, q);
            } else {
              list_add(n->queued_packet_list, q);
            }

            /* If q is the first packet in the neighbor's queue, send asap */
            if(list_head(n->queued_packet_list) == q) {
              ctimer_set(&n->transmit_timer, 0, transmit_packet_list, n);
            }
            return;
          }
          memb_free(metadata_memb, q->ptr);
          PRINTF("csma: could not allocate queuebuf, dropping packet\n");
        }
        memb_free(packet_memb, q);
        PRINTF("csma: could not allocate queuebuf, dropping packet\n");
      }
      /* The packet allocation failed. Remove and free neighbor entry if empty. */
      if(list_length(n->queued_packet_list) == 0) {
        list_remove(neighbor_list, n);
        memb_free(neighbor_memb, n);
      }
      PRINTF("csma: could not allocate packet, dropping packet\n");
    } else {
      PRINTF("csma: could not allocate neighbor, dropping packet\n");
    }
    mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 1);
  } else {
    PRINTF("csma: send broadcast\n");
    NETSTACK_RDC.send(sent, ptr);
  }
}
Exemplo n.º 6
0
/*---------------------------------------------------------------------------*/
static uint8_t
send_packet(struct net_buf *buf, mac_callback_t sent, bool last_fragment, void *ptr)
{
  struct rdc_buf_list *q;
  struct neighbor_queue *n;
  static uint8_t initialized = 0;
  static uint16_t seqno;
  const linkaddr_t *addr = packetbuf_addr(buf, PACKETBUF_ADDR_RECEIVER);

  if (!buf) {
    UIP_LOG("csma: send_packet(): net_buf is NULL, cannot send packet");
    return 0;
  }

  if(!initialized) {
    initialized = 1;
    /* Initialize the sequence number to a random value as per 802.15.4. */
    seqno = random_rand();
  }

  if(seqno == 0) {
    /* PACKETBUF_ATTR_MAC_SEQNO cannot be zero, due to a pecuilarity
       in framer-802154.c. */
    seqno++;
  }
  packetbuf_set_attr(buf, PACKETBUF_ATTR_MAC_SEQNO, seqno++);

  /* Look for the neighbor entry */
  n = neighbor_queue_from_addr(buf, addr);
  if(n == NULL) {
    /* Allocate a new neighbor entry */
    n = memb_alloc(&neighbor_memb);
    if(n != NULL) {
      /* Init neighbor entry */
      linkaddr_copy(&n->addr, addr);
      n->transmissions = 0;
      n->collisions = 0;
      n->deferrals = 0;
      /* Init packet list for this neighbor */
      LIST_STRUCT_INIT(n, queued_packet_list);
      /* Add neighbor to the list */
      list_add(uip_neighbor_list(buf), n);
    }
  }

  if(n != NULL) {
    /* Add packet to the neighbor's queue */
    if(list_length(n->queued_packet_list) < CSMA_MAX_PACKET_PER_NEIGHBOR) {
      q = memb_alloc(&packet_memb);
      if(q != NULL) {
        q->ptr = memb_alloc(&metadata_memb);
        if(q->ptr != NULL) {
          q->buf = queuebuf_new_from_packetbuf(buf);
          if(q->buf != NULL) {
            struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
            /* Neighbor and packet successfully allocated */
            if(packetbuf_attr(buf, PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
              /* Use default configuration for max transmissions */
              metadata->max_transmissions = CSMA_MAX_MAC_TRANSMISSIONS;
            } else {
              metadata->max_transmissions =
                packetbuf_attr(buf, PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
            }
            metadata->sent = sent;
            metadata->cptr = ptr;

            if(packetbuf_attr(buf, PACKETBUF_ATTR_PACKET_TYPE) ==
               PACKETBUF_ATTR_PACKET_TYPE_ACK) {
              list_push(n->queued_packet_list, q);
            } else {
              list_add(n->queued_packet_list, q);
            }

            PRINTF("csma: send_packet, queue length %d, free packets %d\n",
                   list_length(n->queued_packet_list), memb_numfree(&packet_memb));
            /* if received packet is last fragment/only one packet start sending
             * packets in list, do not start any timer.*/
            if (last_fragment) {
               transmit_packet_list(buf, n);
            }
            return 1;
          }
          memb_free(&metadata_memb, q->ptr);
          PRINTF("csma: could not allocate queuebuf, dropping packet\n");
        }
        memb_free(&packet_memb, q);
        PRINTF("csma: could not allocate queuebuf, dropping packet\n");
      }
      /* The packet allocation failed. Remove and free neighbor entry if empty. */
      if(list_length(n->queued_packet_list) == 0) {
        list_remove(uip_neighbor_list(buf), n);
        memb_free(&neighbor_memb, n);
      }
    } else {
      PRINTF("csma: Neighbor queue full\n");
    }
    PRINTF("csma: could not allocate packet, dropping packet\n");
  } else {
    PRINTF("csma: could not allocate neighbor, dropping packet\n");
  }
  mac_call_sent_callback(buf, sent, ptr, MAC_TX_ERR, 1);
  return 0;
}