int fc3d_Panagiotopoulos_FixedPoint_setDefaultSolverOptions(SolverOptions* options)
{

  numerics_printf("fc3d_Panagiotopoulos_FixedPoint_setDefaultSolverOptions", "set default options");

  options->solverId = SICONOS_FRICTION_3D_PFP;
  options->numberOfInternalSolvers = 1;
  options->isSet = 1;
  options->filterOn = 1;
  options->iSize = 8;
  options->dSize = 8;
  options->iparam = (int *)calloc(options->iSize, sizeof(int));
  options->dparam = (double *)calloc(options->dSize, sizeof(double));
  solver_options_nullify(options);

  options->iparam[SICONOS_IPARAM_MAX_ITER] = 1000;
  options->iparam[SICONOS_FRICTION_3D_IPARAM_INTERNAL_ERROR_STRATEGY] =  SICONOS_FRICTION_3D_INTERNAL_ERROR_STRATEGY_ADAPTIVE;
  options->dparam[SICONOS_DPARAM_TOL] = 1e-4;
  options->dparam[SICONOS_FRICTION_3D_DPARAM_INTERNAL_ERROR_RATIO] =10.0;



  options->numberOfInternalSolvers=2;
  options->internalSolvers = (SolverOptions *)malloc(options->numberOfInternalSolvers*sizeof(SolverOptions));

  linearComplementarity_pgs_setDefaultSolverOptions(&options->internalSolvers[0]);
  options->internalSolvers[0].iparam[SICONOS_IPARAM_MAX_ITER] =1000;

  convexQP_VI_solver_setDefaultSolverOptions(&options->internalSolvers[1]);
  options->internalSolvers[1].iparam[SICONOS_IPARAM_MAX_ITER] =1000;
  /* convexQP_ProjectedGradient_setDefaultSolverOptions(&options->internalSolvers[1]); */
  /* options->internalSolvers[1].iparam[SICONOS_IPARAM_MAX_ITER] =1000; */
 return 0;
}
Exemplo n.º 2
0
int soclcp_driver(SecondOrderConeLinearComplementarityProblem* problem,
                  double *r, double *v,
                  SolverOptions* options)
{
  if(options == NULL)
    numerics_error("soclcp_driver", "null input for solver and/or global options");

  assert(options->isSet);

  if(verbose > 0)
    solver_options_print(options);

  /* Solver name */
  /*const char* const  name = options->solverName;*/

  int info = -1 ;

  /* Check for trivial case */
  info = soclcp_checkTrivialCase(problem, v, r, options);


  if(info == 0)
    return info;


  switch(options->solverId)
  {
  /* Non Smooth Gauss Seidel (NSGS) */
  case SICONOS_SOCLCP_NSGS:
  {
    numerics_printf(" ========================== Call NSGS solver for Second Order Cone LCP problem ==========================\n");
    soclcp_nsgs(problem, r , v , &info , options);
    break;
  }
  /* case SICONOS_SOCLCP_NSGSV: */
  /* { */
  /*   numerics_printf(numerics_printf(" ========================== Call NSGSV solver for Second Order Cone LCP problem ==========================\n"); */
  /*   soclcp_nsgs_v(problem, r , v , &info , options); */
  /*   break; */
  /* } */
  /* /\* Proximal point algorithm *\/ */
  /* case SICONOS_SOCLCP_PROX: */
  /* { */
  /*   numerics_printf(numerics_printf(" ========================== Call PROX (Proximal Point) solver for Second Order Cone LCP problem ==========================\n"); */
  /*   soclcp_proximal(problem, r , v , &info , options); */
  /*   break; */
  /* } */
  /* /\* Tresca Fixed point algorithm *\/ */
  /* case SICONOS_SOCLCP_TFP: */
  /* { */
  /*   numerics_printf(" ========================== Call TFP (Tresca Fixed Point) solver for Second Order Cone LCP problem ==========================\n"); */
  /*   soclcp_TrescaFixedPoint(problem, r , v , &info , options); */
  /*   break; */
  /* } */
  case SICONOS_SOCLCP_VI_FPP:
  {
    numerics_printf(" ========================== Call VI_FixedPointProjection (VI_FPP) solver for Second Order Cone LCP problem ==========================\n");
    soclcp_VI_FixedPointProjection(problem, r , v , &info , options);
    break;
  }
  /* VI Extra Gradient algorithm */
  case SICONOS_SOCLCP_VI_EG:
  {
    numerics_printf(" ========================== Call VI_ExtraGradient (VI_EG) solver for Second Order Cone LCP problem ==========================\n");
    soclcp_VI_ExtraGradient(problem, r , v , &info , options);
    break;
  }
  /* /\* Hyperplane Projection algorithm *\/ */
  /* case SICONOS_SOCLCP_HP: */
  /* { */
  /*   numerics_printf(" ========================== Call Hyperplane Projection (HP) solver for Second Order Cone LCP problem ==========================\n"); */
  /*   soclcp_HyperplaneProjection(problem, r , v , &info , options); */
  /*   break; */
  /* } */
  /* /\* Alart Curnier in local coordinates *\/ */
  /* case SICONOS_SOCLCP_NSN_AC: */
  /* { */
  /*   numerics_printf(" ========================== Call Alart Curnier solver for Second Order Cone LCP problem ==========================\n"); */
  /*   if (problem->M->matrix0) */
  /*   { */
  /*     soclcp_nonsmooth_Newton_AlartCurnier(problem, r , v , &info , options); */
  /*   } */
  /*   else */
  /*   { */
  /*     soclcp_nonsmooth_Newton_AlartCurnier(problem, r , v , &info , options); */
  /*   } */
  /*   break; */
  /* } */
  /* /\* Fischer Burmeister in local coordinates *\/ */
  /* case SICONOS_SOCLCP_NSN_FB: */
  /* { */
  /*   numerics_printf(" ========================== Call Fischer Burmeister solver for Second Order Cone LCP problem ==========================\n"); */
  /*   soclcp_nonsmooth_Newton_FischerBurmeister(problem, r , v , &info , options); */
  /*   break; */
  /* } */
  /* case SICONOS_SOCLCP_QUARTIC_NU: */
  /* case SICONOS_SOCLCP_QUARTIC: */
  /* { */
  /*   numerics_printf(" ========================== Call Quartic solver for Second Order Cone LCP problem ==========================\n"); */
  /*   soclcp_unitary_enumerative(problem, r , v , &info , options); */
  /*   break; */
  /* } */
  /* case SICONOS_SOCLCP_AlartCurnierNewton: */
  /* case SICONOS_SOCLCP_DampedAlartCurnierNewton: */
  /* { */
  /*   numerics_printf(" ========================== Call Quartic solver for Second Order Cone LCP problem ==========================\n"); */
  /*   info =soclcp_Newton_solve(problem, r , options); */
  /*   break; */
  /* } */
  default:
  {
    fprintf(stderr, "Numerics, SecondOrderConeLinearComplementarity_driver failed. Unknown solver.\n");
    exit(EXIT_FAILURE);

  }
  }

  return info;

}
static void fc3d_AC_initialize(FrictionContactProblem* problem,
                               FrictionContactProblem* localproblem,
                               SolverOptions * options)
{
  /** In initialize, these operators are "connected" to their corresponding static variables,
   * that will be used to build local problem for each considered contact.
   * Local problem is built during call to update (which depends on the storage type for M).
   */

  DEBUG_PRINTF("fc3d_AC_initialize starts with options->iparam[10] = %i\n",
               options->iparam[SICONOS_FRICTION_3D_NSN_FORMULATION]);

  if (options->iparam[SICONOS_FRICTION_3D_NSN_FORMULATION] ==
      SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_STD )
  {
    Function = &(computeAlartCurnierSTD);
  }
  else if (options->iparam[SICONOS_FRICTION_3D_NSN_FORMULATION] ==
           SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_STD )
  {
    Function = &(computeAlartCurnierJeanMoreau);
  }
  else if (options->iparam[SICONOS_FRICTION_3D_NSN_FORMULATION] ==
           SICONOS_FRICTION_3D_NSN_FORMULATION_ALARTCURNIER_GENERATED )
  {
    Function = &(fc3d_AlartCurnierFunctionGenerated);
  }
  else if (options->iparam[SICONOS_FRICTION_3D_NSN_FORMULATION] ==
           SICONOS_FRICTION_3D_NSN_FORMULATION_JEANMOREAU_GENERATED )
  {
    Function = &fc3d_AlartCurnierJeanMoreauFunctionGenerated;;
  }
  else if (options->iparam[SICONOS_FRICTION_3D_NSN_FORMULATION] ==
           SICONOS_FRICTION_3D_NSN_FORMULATION_NULL)
  {
    Function = NULL;
  }

  /* Compute and store default value of rho value */
  int nc = problem->numberOfContacts;

  double avg_rho[3] = {0.0, 0.0, 0.0};

  if (options->solverId == SICONOS_FRICTION_3D_ONECONTACT_NSN ||
      options->solverId == SICONOS_FRICTION_3D_ONECONTACT_NSN_GP)
  {
    if (!options->dWork ||
        options->dWorkSize < 3*nc)
    {
      options->dWork = (double *)realloc(options->dWork,
                                         3*nc * sizeof(double));
      options->dWorkSize = 3*nc ;
    }
  }
  else if (options->solverId == SICONOS_FRICTION_3D_ONECONTACT_NSN_GP_HYBRID)
  {
    if (!options->dWork ||
        options->dWorkSize < 4*nc)
    {
      options->dWork = (double *)realloc(options->dWork,
                                         4*nc * sizeof(double));
      options->dWorkSize = 4*nc ;
    }
  }

  

  double  * rho;
  for (int contact =0; contact <nc ; contact++)
  {
    if (options->solverId == SICONOS_FRICTION_3D_ONECONTACT_NSN ||
        options->solverId == SICONOS_FRICTION_3D_ONECONTACT_NSN_GP)
    {
      rho = &options->dWork[3*contact];
    }
    else if (options->solverId == SICONOS_FRICTION_3D_ONECONTACT_NSN_GP_HYBRID)
    {
      options->dWork[contact] = 1.0; // for PLI algorithm.
      rho = &options->dWork[3*contact+nc];
    }
    numerics_printf("fc3d_AC_initialize "" compute rho for contact = %i",contact);

    if (options->iparam[SICONOS_FRICTION_3D_NSN_RHO_STRATEGY] == SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPLIT_SPECTRAL_NORM_COND)
    {
      fc3d_local_problem_fill_M(problem, localproblem, contact);
      compute_rho_split_spectral_norm_cond(localproblem, rho);
    }
    else if (options->iparam[SICONOS_FRICTION_3D_NSN_RHO_STRATEGY] == SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPLIT_SPECTRAL_NORM)
    {
      fc3d_local_problem_fill_M(problem, localproblem, contact);
      compute_rho_split_spectral_norm(localproblem, rho);
    }
    else if (options->iparam[SICONOS_FRICTION_3D_NSN_RHO_STRATEGY] == SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_SPECTRAL_NORM)
    {
      fc3d_local_problem_fill_M(problem, localproblem, contact);
      compute_rho_spectral_norm(localproblem, rho);
    }
    else if (options->iparam[SICONOS_FRICTION_3D_NSN_RHO_STRATEGY] == SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_CONSTANT)
    {
      rho[0]=options->dparam[SICONOS_FRICTION_3D_NSN_RHO];
      rho[1]=options->dparam[SICONOS_FRICTION_3D_NSN_RHO];
      rho[2]=options->dparam[SICONOS_FRICTION_3D_NSN_RHO];
    }
    else if (options->iparam[SICONOS_FRICTION_3D_NSN_RHO_STRATEGY] == SICONOS_FRICTION_3D_NSN_FORMULATION_RHO_STRATEGY_ADAPTIVE)
    {
      numerics_error("fc3d_AC_initialize", "Adaptive strategy for computing rho not yet implemented");
    }
    else
      numerics_error("fc3d_AC_initialize", "unknown strategy for computing rho");


    if (verbose >0)
    {
      avg_rho[0] += rho[0];
      avg_rho[1] += rho[1];
      avg_rho[2] += rho[2];
    }
    numerics_printf("fc3d_AC_initialize""contact = %i, rho[0] = %4.2e, rho[1] = %4.2e, rho[2] = %4.2e", contact, rho[0], rho[1], rho[2]);

    fc3d_local_problem_fill_M(problem, localproblem, contact);
    double m_row_norm = 0.0, sum;
    for (int i =0; i<3; i++ )
    {
      sum =0.0;
      for (int j =0; j<3; j++ )
      {
        sum += fabs(localproblem->M->matrix0[i+j*3]);
      }
      m_row_norm = max(sum, m_row_norm);
    }
    numerics_printf("fc3d_AC_initialize" " inverse of norm of M = %e", 1.0/hypot9(localproblem->M->matrix0) );
    numerics_printf("fc3d_AC_initialize" " inverse of row norm of M = %e", 1.0/m_row_norm );

    DEBUG_EXPR(NM_display(localproblem->M););

  }
Exemplo n.º 4
0
int fc3d_driver(FrictionContactProblem* problem,
		double *reaction, double *velocity,
		SolverOptions* options)
{
  if (options == NULL)
    numerics_error("fc3d_driver", "null input for solver options");

  assert(options->isSet); /* true(1) if the SolverOptions structure has been filled in else false(0) */

  if (verbose > 1)
    solver_options_print(options);

  int info = -1 ;

  if (problem->dimension != 3)
    numerics_error("fc3d_driver", "Dimension of the problem : problem-> dimension is not compatible or is not set");

  /* Check for trivial case */
  info = checkTrivialCase(problem, velocity, reaction, options);
  if (info == 0)
  {
    /* If a trivial solution is found, we set the number of iterations to 0
       and the reached acuracy to 0.0 .
       Since the indexing of parameters is non uniform, this may have side 
       effects for some solvers. The two main return parameters iparam[7] and 
       dparam[1] have to be defined and protected by means of enum*/ 
    options->iparam[7] = 0;
    options->dparam[1] = 0.0;
    goto exit;
  }


  switch (options->solverId)
  {
    /* Non Smooth Gauss Seidel (NSGS) */
  case SICONOS_FRICTION_3D_NSGS:
  {
    numerics_printf(" ========================== Call NSGS solver for Friction-Contact 3D problem ==========================\n");
    fc3d_nsgs(problem, reaction , velocity , &info , options);
    break;
  }
  case SICONOS_FRICTION_3D_NSGSV:
  {
    numerics_printf(" ========================== Call NSGSV solver for Friction-Contact 3D problem ==========================\n");
    fc3d_nsgs_velocity(problem, reaction , velocity , &info , options);
    break;
  }
  /* Proximal point algorithm */
  case SICONOS_FRICTION_3D_PROX:
  {
    numerics_printf(" ========================== Call PROX (Proximal Point) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_proximal(problem, reaction , velocity , &info , options);
    break;
  }
  /* Tresca Fixed point algorithm */
  case SICONOS_FRICTION_3D_TFP:
  {
    numerics_printf(" ========================== Call TFP (Tresca Fixed Point) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_TrescaFixedPoint(problem, reaction , velocity , &info , options);
    break;
  }
  /* ACLM Fixed point algorithm */
  case SICONOS_FRICTION_3D_ACLMFP:
  {
    numerics_printf(" ========================== Call ACLM (Acary Cadoux Lemarechal Malick Fixed Point) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_ACLMFixedPoint(problem, reaction , velocity , &info , options);
    break;
  }
  /* SOCLCP Fixed point algorithm */
  case SICONOS_FRICTION_3D_SOCLCP:
  {
    numerics_printf(" ========================== Call SOCLCP solver for Friction-Contact 3D problem (Associated one) ==========================\n");
    fc3d_SOCLCP(problem, reaction , velocity , &info , options);
    break;
  }
  /* De Saxce Fixed point algorithm */
  case SICONOS_FRICTION_3D_DSFP:
  {
    numerics_printf(" ========================== Call DeSaxce Fixed Point (DSFP) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_DeSaxceFixedPoint(problem, reaction , velocity , &info , options);
    break;
  }
  /* Fixed point projection algorithm */
  case SICONOS_FRICTION_3D_FPP:
  {
    numerics_printf(" ========================== Call Fixed Point Projection (FPP) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_fixedPointProjection(problem, reaction , velocity , &info , options);
    break;
  }

  /* Extra Gradient algorithm */
  case SICONOS_FRICTION_3D_EG:
  {
    numerics_printf(" ========================== Call ExtraGradient (EG) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_ExtraGradient(problem, reaction , velocity , &info , options);
    break;
  }
  /* VI Fixed Point Projection algorithm */
  case SICONOS_FRICTION_3D_VI_FPP:
  {
    numerics_printf(" ========================== Call VI_FixedPointProjection (VI_FPP) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_VI_FixedPointProjection(problem, reaction , velocity , &info , options);
    break;
  }
  /* VI Extra Gradient algorithm */
  case SICONOS_FRICTION_3D_VI_EG:
  {
    numerics_printf(" ========================== Call VI_ExtraGradient (VI_EG) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_VI_ExtraGradient(problem, reaction , velocity , &info , options);
    break;
  }
  /* Hyperplane Projection algorithm */
  case SICONOS_FRICTION_3D_HP:
  {
    numerics_printf(" ========================== Call Hyperplane Projection (HP) solver for Friction-Contact 3D problem ==========================\n");
    fc3d_HyperplaneProjection(problem, reaction , velocity , &info , options);
    break;
  }
  /* Alart Curnier in local coordinates */
  case SICONOS_FRICTION_3D_NSN_AC:
  {
    numerics_printf(" ========================== Call Alart Curnier solver for Friction-Contact 3D problem ==========================\n");
    if (problem->M->matrix0)
    {
      fc3d_nonsmooth_Newton_AlartCurnier(problem, reaction , velocity , &info , options);
    }
    else
    {
      fc3d_nonsmooth_Newton_AlartCurnier(problem, reaction , velocity , &info , options);
    }
    break;
  }
  /* Fischer Burmeister in local coordinates */
  case SICONOS_FRICTION_3D_NSN_FB:
  {
    numerics_printf(" ========================== Call Fischer Burmeister solver for Friction-Contact 3D problem ==========================\n");
    fc3d_nonsmooth_Newton_FischerBurmeister(problem, reaction , velocity , &info , options);
    break;
  }
  case SICONOS_FRICTION_3D_NSN_NM:
  {
    numerics_printf(" ========================== Call natural map solver for Friction-Contact 3D problem ==========================\n");
    fc3d_nonsmooth_Newton_NaturalMap(problem, reaction , velocity , &info , options);
    break;
  }
  case SICONOS_FRICTION_3D_ONECONTACT_QUARTIC_NU:
  case SICONOS_FRICTION_3D_ONECONTACT_QUARTIC:
  {
    numerics_printf(" ========================== Call Quartic solver for Friction-Contact 3D problem ==========================\n");
    fc3d_unitary_enumerative(problem, reaction , velocity , &info , options);
    break;
  }
  case SICONOS_FRICTION_3D_ONECONTACT_NSN:
  case SICONOS_FRICTION_3D_ONECONTACT_NSN_GP:
  {
    numerics_printf(" ========================== Call Newton-based solver for one contact Friction-Contact 3D problem ==========================\n");
    fc3d_onecontact_nonsmooth_Newton_solvers_initialize(problem, problem, options);
    info = fc3d_onecontact_nonsmooth_Newton_solvers_solve(problem, reaction , options);
    break;
  }
  case SICONOS_FRICTION_3D_ONECONTACT_ProjectionOnConeWithLocalIteration:
  {
    numerics_printf(" ========================== Call Projection on cone solver for one contact Friction-Contact 3D problem ==========================\n");
    fc3d_projectionOnConeWithLocalIteration_initialize(problem, problem, options);
    info = fc3d_projectionOnConeWithLocalIteration_solve(problem, reaction , options);
    fc3d_projectionOnConeWithLocalIteration_free(problem, problem, options);

    break;
  }
  case SICONOS_FRICTION_3D_GAMS_PATH:
  {
    numerics_printf(" ========================== Call PATH solver via GAMS for an AVI Friction-Contact 3D problem ==========================\n");
    fc3d_AVI_gams_path(problem, reaction , velocity, &info, options);
    break;
  }
  case SICONOS_FRICTION_3D_GAMS_PATHVI:
  {
    numerics_printf(" ========================== Call PATHVI solver via GAMS for an AVI Friction-Contact 3D problem ==========================\n");
    fc3d_AVI_gams_pathvi(problem, reaction , velocity, &info, options);
    break;
  }
  case SICONOS_FRICTION_3D_GAMS_LCP_PATH:
  {
    numerics_printf(" ========================== Call PATH solver via GAMS for an LCP-based reformulation of the AVI Friction-Contact 3D problem ==========================\n");
    fc3d_lcp_gams_path(problem, reaction , velocity, &info, options);
    break;
  }
  case SICONOS_FRICTION_3D_GAMS_LCP_PATHVI:
  {
    numerics_printf(" ========================== Call PATHVI solver via GAMS for an LCP-based reformulation of the AVI Friction-Contact 3D problem ==========================\n");
    fc3d_lcp_gams_pathvi(problem, reaction , velocity, &info, options);
    break;
  }
  default:
  {
    fprintf(stderr, "Numerics, fc3d_driver failed. Unknown solver.\n");
    exit(EXIT_FAILURE);

  }
  }

exit:

  return info;

}