extern "C" void initScan(cl_context cxGPUContext, cl_command_queue cqParamCommandQue, const char **argv) {
    cl_int ciErrNum;
    size_t kernelLength;

    shrLog(" ...loading Scan.cl\n");
    char *cScan = oclLoadProgSource(shrFindFilePath("Scan.cl", argv[0]), "// My comment\n", &kernelLength);
    oclCheckError(cScan != NULL, shrTRUE);

    shrLog(" ...creating scan program\n");
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cScan, &kernelLength, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    shrLog(" ...building scan program\n");
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, compileOptions, NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclScan.ptx");
        oclCheckError(ciErrNum, CL_SUCCESS);
    }

    shrLog(" ...creating scan kernels\n");
    ckScanExclusiveLocal1 = clCreateKernel(cpProgram, "scanExclusiveLocal1", &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    ckScanExclusiveLocal2 = clCreateKernel(cpProgram, "scanExclusiveLocal2", &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    ckUniformUpdate = clCreateKernel(cpProgram, "uniformUpdate", &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    shrLog( " ...checking minimum supported workgroup size\n");
    //Check for work group size
    cl_device_id device;
    size_t szScanExclusiveLocal1, szScanExclusiveLocal2, szUniformUpdate;

    ciErrNum  = clGetCommandQueueInfo(cqParamCommandQue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device, NULL);
    ciErrNum |= clGetKernelWorkGroupInfo(ckScanExclusiveLocal1,  device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &szScanExclusiveLocal1, NULL);
    ciErrNum |= clGetKernelWorkGroupInfo(ckScanExclusiveLocal2, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &szScanExclusiveLocal2, NULL);
    ciErrNum |= clGetKernelWorkGroupInfo(ckUniformUpdate, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &szUniformUpdate, NULL);
    oclCheckError(ciErrNum, CL_SUCCESS);

    if( (szScanExclusiveLocal1 < WORKGROUP_SIZE) || (szScanExclusiveLocal2 < WORKGROUP_SIZE) || (szUniformUpdate < WORKGROUP_SIZE) ) {
        shrLog("ERROR: Minimum work-group size %u required by this application is not supported on this device.\n", WORKGROUP_SIZE);
        exit(0);
    }

    shrLog(" ...allocating internal buffers\n");
    d_Buffer = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE, (MAX_BATCH_ELEMENTS / (4 * WORKGROUP_SIZE)) * sizeof(uint), NULL, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    //Discard temp storage
    free(cScan);
}
extern "C" void initHistogram64(cl_context cxGPUContext, cl_command_queue cqParamCommandQue, const char **argv){
    cl_int ciErrNum;
    size_t kernelLength;

    shrLog("...loading Histogram64.cl from file\n");
        char *cHistogram64 = oclLoadProgSource(shrFindFilePath("Histogram64.cl", argv[0]), "// My comment\n", &kernelLength);
        shrCheckError(cHistogram64 != NULL, shrTRUE);

    shrLog("...creating histogram64 program\n");
         cpHistogram64 = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cHistogram64, &kernelLength, &ciErrNum);
        shrCheckError(ciErrNum, CL_SUCCESS);

    shrLog("...building histogram64 program\n");
        ciErrNum = clBuildProgram(cpHistogram64, 0, NULL, compileOptions, NULL, NULL);
        shrCheckError(ciErrNum, CL_SUCCESS);

    shrLog("...creating histogram64 kernels\n");
        ckHistogram64 = clCreateKernel(cpHistogram64, "histogram64", &ciErrNum);
        shrCheckError(ciErrNum, CL_SUCCESS);
        ckMergeHistogram64 = clCreateKernel(cpHistogram64, "mergeHistogram64", &ciErrNum);
        shrCheckError(ciErrNum, CL_SUCCESS);

    shrLog("...allocating internal histogram64 buffer\n");
        d_PartialHistograms = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE, MAX_PARTIAL_HISTOGRAM64_COUNT * HISTOGRAM64_BIN_COUNT * sizeof(uint), NULL, &ciErrNum);
        shrCheckError(ciErrNum, CL_SUCCESS);

    //Save default command queue
    cqDefaultCommandQue = cqParamCommandQue;

    //Discard temp storage
    free(cHistogram64);

    //Save ptx code to separate file
    oclLogPtx(cpHistogram64, oclGetFirstDev(cxGPUContext), "Histogram64.ptx");
}
Exemplo n.º 3
0
//-----------------------------------------------------------------------------
// Name: CreateKernelProgram()
// Desc: Creates OpenCL program and kernel instances
//-----------------------------------------------------------------------------
HRESULT CreateKernelProgram(
	const char *exepath, const char *clName, const char *clPtx, const char *kernelEntryPoint,
	cl_program			&cpProgram,
	cl_kernel			&ckKernel )
{
    // Program Setup
    size_t program_length;
    const char* source_path = shrFindFilePath(clName, exepath);
    char *source = oclLoadProgSource(source_path, "", &program_length);
    oclCheckErrorEX(source != NULL, shrTRUE, pCleanup);

    // create the program
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1,(const char **) &source, &program_length, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    free(source);

    // build the program
#ifdef USE_STAGING_BUFFER
	static char *opts = "-cl-fast-relaxed-math -DUSE_STAGING_BUFFER";
#else
	static char *opts = "-cl-fast-relaxed-math";
#endif
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, opts, NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), clPtx);
        Cleanup(EXIT_FAILURE); 
    }

    // create the kernel
    ckKernel = clCreateKernel(cpProgram, kernelEntryPoint, &ciErrNum);
    if (!ckKernel)
    {
        Cleanup(EXIT_FAILURE); 
    }

    // set the args values
	return ciErrNum ? E_FAIL : S_OK;
}
Exemplo n.º 4
0
// ****************************************************************************
// Method:  dumpPTXCode
//
// Purpose:
//
//
// Arguments:
//   ctx          context
//   prg          program
//   name         file name prefix to output to
//
// Programmer:  Gabriel Marin
// Creation:    July 14, 2009
//
// ****************************************************************************
inline bool
dumpPTXCode (cl_context ctx, cl_program prog, const char *name)
{
    std::cout << "Dumping the PTX code" << std::endl;
    size_t ptx_length;
    char* ptx_code;
    char buf[64];
    oclGetProgBinary (prog, oclGetFirstDev(ctx), &ptx_code, &ptx_length);

    FILE* ptxFile = NULL;
    sprintf (buf, "%.59s.ptx", name);
#ifdef WIN32
    fopen_s (&ptxFile, buf, "w");
#else
    ptxFile = fopen (buf,"w");
#endif
    if (ptxFile)
    {
        fwrite (ptx_code, ptx_length, 1, ptxFile);
        fclose (ptxFile);
    }
    free (ptx_code);
    return (ptx_code!=0);
}
// Main function
// *********************************************************************
int main(int argc, char **argv)
{
    gp_argc = &argc;
    gp_argv = &argv;

    shrQAStart(argc, argv);

    // Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);
    shrLog("clGetPlatformID...\n");

    // Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);
    shrLog("clGetPlatformID...\n");

    //Get all the devices
    cl_uint uiNumDevices = 0;           // Number of devices available
    cl_uint uiTargetDevice = 0;	        // Default Device to compute on
    cl_uint uiNumComputeUnits;          // Number of compute units (SM's on NV GPU)
    shrLog("Get the Device info and select Device...\n");
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &uiNumDevices);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);
    cdDevices = (cl_device_id *)malloc(uiNumDevices * sizeof(cl_device_id) );
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, uiNumDevices, cdDevices, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);

    // Get command line device options and config accordingly
    shrLog("  # of Devices Available = %u\n", uiNumDevices);
    if(shrGetCmdLineArgumentu(argc, (const char**)argv, "device", &uiTargetDevice)== shrTRUE)
    {
        uiTargetDevice = CLAMP(uiTargetDevice, 0, (uiNumDevices - 1));
    }
    shrLog("  Using Device %u: ", uiTargetDevice);
    oclPrintDevName(LOGBOTH, cdDevices[uiTargetDevice]);
    ciErrNum = clGetDeviceInfo(cdDevices[uiTargetDevice], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(uiNumComputeUnits), &uiNumComputeUnits, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);
    shrLog("\n  # of Compute Units = %u\n", uiNumComputeUnits);

    // get command line arg for quick test, if provided
    bNoPrompt = shrCheckCmdLineFlag(argc, (const char**)argv, "noprompt");

    // start logs
    cExecutableName = argv[0];
    shrSetLogFileName ("oclDotProduct.txt");
    shrLog("%s Starting...\n\n# of float elements per Array \t= %u\n", argv[0], iNumElements);

    // set and log Global and Local work size dimensions
    szLocalWorkSize = 256;
    szGlobalWorkSize = shrRoundUp((int)szLocalWorkSize, iNumElements);  // rounded up to the nearest multiple of the LocalWorkSize
    shrLog("Global Work Size \t\t= %u\nLocal Work Size \t\t= %u\n# of Work Groups \t\t= %u\n\n",
           szGlobalWorkSize, szLocalWorkSize, (szGlobalWorkSize % szLocalWorkSize + szGlobalWorkSize/szLocalWorkSize));

    // Allocate and initialize host arrays
    shrLog( "Allocate and Init Host Mem...\n");
    srcA = (void *)malloc(sizeof(cl_float4) * szGlobalWorkSize);
    srcB = (void *)malloc(sizeof(cl_float4) * szGlobalWorkSize);
    dst = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
    Golden = (void *)malloc(sizeof(cl_float) * iNumElements);
    shrFillArray((float*)srcA, 4 * iNumElements);
    shrFillArray((float*)srcB, 4 * iNumElements);

    // Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Get a GPU device
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &cdDevices[uiTargetDevice], NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Create the context
    cxGPUContext = clCreateContext(0, 1, &cdDevices[uiTargetDevice], NULL, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Create a command-queue
    shrLog("clCreateCommandQueue...\n");
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevices[uiTargetDevice], 0, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Allocate the OpenCL buffer memory objects for source and result on the device GMEM
    shrLog("clCreateBuffer (SrcA, SrcB and Dst in Device GMEM)...\n");
    cmDevSrcA = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize * 4, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cmDevSrcB = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize * 4, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cmDevDst = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Read the OpenCL kernel in from source file
    shrLog("oclLoadProgSource (%s)...\n", cSourceFile);
    cPathAndName = shrFindFilePath(cSourceFile, argv[0]);
    oclCheckErrorEX(cPathAndName != NULL, shrTRUE, pCleanup);
    cSourceCL = oclLoadProgSource(cPathAndName, "", &szKernelLength);
    oclCheckErrorEX(cSourceCL != NULL, shrTRUE, pCleanup);

    // Create the program
    shrLog("clCreateProgramWithSource...\n");
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, &ciErrNum);

    // Build the program with 'mad' Optimization option
#ifdef MAC
    char* flags = "-cl-fast-relaxed-math -DMAC";
#else
    char* flags = "-cl-fast-relaxed-math";
#endif
    shrLog("clBuildProgram...\n");
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclDotProduct.ptx");
        Cleanup(EXIT_FAILURE);
    }

    // Create the kernel
    shrLog("clCreateKernel (DotProduct)...\n");
    ckKernel = clCreateKernel(cpProgram, "DotProduct", &ciErrNum);

    // Set the Argument values
    shrLog("clSetKernelArg 0 - 3...\n\n");
    ciErrNum = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void*)&cmDevSrcA);
    ciErrNum |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void*)&cmDevSrcB);
    ciErrNum |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&cmDevDst);
    ciErrNum |= clSetKernelArg(ckKernel, 3, sizeof(cl_int), (void*)&iNumElements);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // --------------------------------------------------------
    // Core sequence... copy input data to GPU, compute, copy results back

    // Asynchronous write of data to GPU device
    shrLog("clEnqueueWriteBuffer (SrcA and SrcB)...\n");
    ciErrNum = clEnqueueWriteBuffer(cqCommandQueue, cmDevSrcA, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize * 4, srcA, 0, NULL, NULL);
    ciErrNum |= clEnqueueWriteBuffer(cqCommandQueue, cmDevSrcB, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize * 4, srcB, 0, NULL, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Launch kernel
    shrLog("clEnqueueNDRangeKernel (DotProduct)...\n");
    ciErrNum = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL, &szGlobalWorkSize, &szLocalWorkSize, 0, NULL, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Read back results and check accumulated errors
    shrLog("clEnqueueReadBuffer (Dst)...\n\n");
    ciErrNum = clEnqueueReadBuffer(cqCommandQueue, cmDevDst, CL_TRUE, 0, sizeof(cl_float) * szGlobalWorkSize, dst, 0, NULL, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Compute and compare results for golden-host and report errors and pass/fail
    shrLog("Comparing against Host/C++ computation...\n\n");
    DotProductHost ((const float*)srcA, (const float*)srcB, (float*)Golden, iNumElements);
    shrBOOL bMatch = shrComparefet((const float*)Golden, (const float*)dst, (unsigned int)iNumElements, 0.0f, 0);

    // Cleanup and leave
    Cleanup (EXIT_SUCCESS);
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv)
{
    shrQAStart(argc, argv);
    // start logs 
    shrSetLogFileName ("oclSimpleMultiGPU.txt");
    shrLog("%s Starting, Array = %u float values...\n\n", argv[0], DATA_N); 

    // OpenCL
    cl_platform_id cpPlatform;
    cl_uint ciDeviceCount;
    cl_device_id* cdDevices;
    cl_context cxGPUContext;
    cl_device_id cdDevice;                          // GPU device
    int deviceNr[MAX_GPU_COUNT];
    cl_command_queue commandQueue[MAX_GPU_COUNT];
    cl_mem d_Data[MAX_GPU_COUNT];
    cl_mem d_Result[MAX_GPU_COUNT];
    cl_program cpProgram; 
    cl_kernel reduceKernel[MAX_GPU_COUNT];
    cl_event GPUDone[MAX_GPU_COUNT];
    cl_event GPUExecution[MAX_GPU_COUNT];
    size_t programLength;
    cl_int ciErrNum;			               
    char cDeviceName [256];
    cl_mem h_DataBuffer;

    // Vars for reduction results
    float h_SumGPU[MAX_GPU_COUNT * ACCUM_N];   
    float *h_Data;
    double sumGPU;
    double sumCPU, dRelError;

    // allocate and init host buffer with with some random generated input data
    h_Data = (float *)malloc(DATA_N * sizeof(float));
    shrFillArray(h_Data, DATA_N);

    // start timer & logs 
    shrLog("Setting up OpenCL on the Host...\n\n"); 
    shrDeltaT(1);

    // Annotate profiling state
    #ifdef GPU_PROFILING
        shrLog("OpenCL Profiling is enabled...\n\n"); 
    #endif

     //Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clGetPlatformID...\n"); 

    //Get the devices
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &ciDeviceCount);
    oclCheckError(ciErrNum, CL_SUCCESS);
    cdDevices = (cl_device_id *)malloc(ciDeviceCount * sizeof(cl_device_id) );
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, ciDeviceCount, cdDevices, NULL);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clGetDeviceIDs...\n"); 

    //Create the context
    cxGPUContext = clCreateContext(0, ciDeviceCount, cdDevices, NULL, NULL, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clCreateContext...\n");

    // Set up command queue(s) for GPU's specified on the command line or all GPU's
    if(shrCheckCmdLineFlag(argc, (const char **)argv, "device"))
    {
        // User specified GPUs
        int ciMaxDeviceID = ciDeviceCount-1;

        ciDeviceCount = 0;
        char* deviceList;
        char* deviceStr;
        char* next_token;
        shrGetCmdLineArgumentstr(argc, (const char **)argv, "device", &deviceList);

        #ifdef WIN32
            deviceStr = strtok_s (deviceList," ,.-", &next_token);
        #else
            deviceStr = strtok (deviceList," ,.-");
        #endif   

        // Create command queues for all Requested GPU's
        while(deviceStr != NULL) 
        {
            // get & log device index # and name
            deviceNr[ciDeviceCount] = atoi(deviceStr);
            if( deviceNr[ciDeviceCount] > ciMaxDeviceID ) {
                shrLog(" Invalid user specified device ID: %d\n", deviceNr[ciDeviceCount]);
                return 1;
            }

            cdDevice = oclGetDev(cxGPUContext, deviceNr[ciDeviceCount]);
            ciErrNum = clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(cDeviceName), cDeviceName, NULL);
            oclCheckError(ciErrNum, CL_SUCCESS);
            shrLog(" Device %i: %s\n\n", deviceNr[ciDeviceCount], cDeviceName);

            // create a command que
            commandQueue[ciDeviceCount] = clCreateCommandQueue(cxGPUContext, cdDevice, CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
            oclCheckError(ciErrNum, CL_SUCCESS);
            shrLog("clCreateCommandQueue\n"); 

            ++ciDeviceCount;

            #ifdef WIN32
                deviceStr = strtok_s (NULL," ,.-", &next_token);
            #else            
                deviceStr = strtok (NULL," ,.-");
            #endif
        }

        free(deviceList);
    } 
    else 
    {
        // Find out how many GPU's to compute on all available GPUs
        size_t nDeviceBytes;
        ciErrNum = clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &nDeviceBytes);
        oclCheckError(ciErrNum, CL_SUCCESS);
        ciDeviceCount = (cl_uint)nDeviceBytes/sizeof(cl_device_id);

        for(unsigned int i = 0; i < ciDeviceCount; ++i ) 
        {
            // get & log device index # and name
            deviceNr[i] = i;
            cdDevice = oclGetDev(cxGPUContext, i);
            ciErrNum = clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(cDeviceName), cDeviceName, NULL);
            oclCheckError(ciErrNum, CL_SUCCESS);
            shrLog(" Device %i: %s\n", i, cDeviceName);

            // create a command que
            commandQueue[i] = clCreateCommandQueue(cxGPUContext, cdDevice, CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
            oclCheckError(ciErrNum, CL_SUCCESS);
            shrLog("clCreateCommandQueue\n\n"); 
        }
    }

    // Load the OpenCL source code from the .cl file 
    const char* source_path = shrFindFilePath("simpleMultiGPU.cl", argv[0]);
    char *source = oclLoadProgSource(source_path, "", &programLength);
    oclCheckError(source != NULL, shrTRUE);
    shrLog("oclLoadProgSource\n"); 

    // Create the program for all GPUs in the context
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&source, &programLength, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clCreateProgramWithSource\n"); 
    
    // build the program
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-fast-relaxed-math", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclSimpleMultiGPU.ptx");
        oclCheckError(ciErrNum, CL_SUCCESS); 
    }
    shrLog("clBuildProgram\n"); 

    // Create host buffer with page-locked memory
    h_DataBuffer = clCreateBuffer(cxGPUContext, CL_MEM_COPY_HOST_PTR | CL_MEM_ALLOC_HOST_PTR,
                                  DATA_N * sizeof(float), h_Data, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clCreateBuffer (Page-locked Host)\n\n"); 

    // Create buffers for each GPU, with data divided evenly among GPU's
    int sizePerGPU = DATA_N / ciDeviceCount;
    int workOffset[MAX_GPU_COUNT];
    int workSize[MAX_GPU_COUNT];
    workOffset[0] = 0;
    for(unsigned int i = 0; i < ciDeviceCount; ++i ) 
    {
        workSize[i] = (i != (ciDeviceCount - 1)) ? sizePerGPU : (DATA_N - workOffset[i]);        

        // Input buffer
        d_Data[i] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, workSize[i] * sizeof(float), NULL, &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS);
        shrLog("clCreateBuffer (Input)\t\tDev %i\n", i); 

        // Copy data from host to device
        ciErrNum = clEnqueueCopyBuffer(commandQueue[i], h_DataBuffer, d_Data[i], workOffset[i] * sizeof(float), 
                                      0, workSize[i] * sizeof(float), 0, NULL, NULL);        
        shrLog("clEnqueueCopyBuffer (Input)\tDev %i\n", i);

        // Output buffer
        d_Result[i] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, ACCUM_N * sizeof(float), NULL, &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS);
        shrLog("clCreateBuffer (Output)\t\tDev %i\n", i);
        
        // Create kernel
        reduceKernel[i] = clCreateKernel(cpProgram, "reduce", &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS);
        shrLog("clCreateKernel\t\t\tDev %i\n", i); 
        
        // Set the args values and check for errors
        ciErrNum |= clSetKernelArg(reduceKernel[i], 0, sizeof(cl_mem), &d_Result[i]);
        ciErrNum |= clSetKernelArg(reduceKernel[i], 1, sizeof(cl_mem), &d_Data[i]);
        ciErrNum |= clSetKernelArg(reduceKernel[i], 2, sizeof(int), &workSize[i]);
        oclCheckError(ciErrNum, CL_SUCCESS);
        shrLog("clSetKernelArg\t\t\tDev %i\n\n", i);

        workOffset[i + 1] = workOffset[i] + workSize[i];
    }

    // Set # of work items in work group and total in 1 dimensional range
    size_t localWorkSize[] = {THREAD_N};        
    size_t globalWorkSize[] = {ACCUM_N};        

    // Start timer and launch reduction kernel on each GPU, with data split between them 
    shrLog("Launching Kernels on GPU(s)...\n\n");
    for(unsigned int i = 0; i < ciDeviceCount; i++) 
    {        
        ciErrNum = clEnqueueNDRangeKernel(commandQueue[i], reduceKernel[i], 1, 0, globalWorkSize, localWorkSize,
                                         0, NULL, &GPUExecution[i]);
        oclCheckError(ciErrNum, CL_SUCCESS);
    }
    
    // Copy result from device to host for each device
    for(unsigned int i = 0; i < ciDeviceCount; i++) 
    {
        ciErrNum = clEnqueueReadBuffer(commandQueue[i], d_Result[i], CL_FALSE, 0, ACCUM_N * sizeof(float), 
                            h_SumGPU + i *  ACCUM_N, 0, NULL, &GPUDone[i]);
        oclCheckError(ciErrNum, CL_SUCCESS);
    }

    // Synchronize with the GPUs and do accumulated error check
    clWaitForEvents(ciDeviceCount, GPUDone);
    shrLog("clWaitForEvents complete...\n\n"); 

    // Aggregate results for multiple GPU's and stop/log processing time
    sumGPU = 0;
    for(unsigned int i = 0; i < ciDeviceCount * ACCUM_N; i++)
    {
         sumGPU += h_SumGPU[i];
    }

    // Print Execution Times for each GPU
    #ifdef GPU_PROFILING
        shrLog("Profiling Information for GPU Processing:\n\n");
        for(unsigned int i = 0; i < ciDeviceCount; i++) 
        {
            cdDevice = oclGetDev(cxGPUContext, deviceNr[i]);
            clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(cDeviceName), cDeviceName, NULL);
            shrLog("Device %i : %s\n", deviceNr[i], cDeviceName);
            shrLog("  Reduce Kernel     : %.5f s\n", executionTime(GPUExecution[i]));
            shrLog("  Copy Device->Host : %.5f s\n\n\n", executionTime(GPUDone[i]));
        }
    #endif

    // Run the computation on the Host CPU and log processing time 
    shrLog("Launching Host/CPU C++ Computation...\n\n");
    sumCPU = 0;
    for(unsigned int i = 0; i < DATA_N; i++)
    {
        sumCPU += h_Data[i];
    }

    // Check GPU result against CPU result 
    dRelError = 100.0 * fabs(sumCPU - sumGPU) / fabs(sumCPU);
    shrLog("Comparing against Host/C++ computation...\n"); 
    shrLog(" GPU sum: %f\n CPU sum: %f\n", sumGPU, sumCPU);
    shrLog(" Relative Error (100.0 * Error / Golden) = %f \n\n", dRelError);

    // cleanup 
    free(source);
    free(h_Data);
    for(unsigned int i = 0; i < ciDeviceCount; ++i ) 
    {
        clReleaseKernel(reduceKernel[i]);
        clReleaseCommandQueue(commandQueue[i]);
    }
    clReleaseProgram(cpProgram);
    clReleaseContext(cxGPUContext);

    // finish
    shrQAFinishExit(argc, (const char **)argv, (dRelError < 1e-4) ? QA_PASSED : QA_FAILED);
  }
extern "C" void initBlackScholes(cl_context cxGPUContext, cl_command_queue cqParamCommandQueue, const char **argv){
    cl_int ciErrNum;
    size_t kernelLength;

    shrLog("...loading BlackScholes.cl\n");
        char *cPathAndName = shrFindFilePath("BlackScholes.cl", argv[0]);
        shrCheckError(cPathAndName != NULL, shrTRUE);
        char *cBlackScholes = oclLoadProgSource(cPathAndName, "// My comment\n", &kernelLength);
        shrCheckError(cBlackScholes != NULL, shrTRUE);

    shrLog("...creating BlackScholes program\n");
        cpBlackScholes = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cBlackScholes, &kernelLength, &ciErrNum);
        shrCheckError(ciErrNum, CL_SUCCESS);

    shrLog("...building BlackScholes program\n");
        ciErrNum = clBuildProgram(cpBlackScholes, 0, NULL, "-cl-fast-relaxed-math -Werror", NULL, NULL);

        if(ciErrNum != CL_BUILD_SUCCESS){
            shrLog("*** Compilation failure ***\n");

            size_t deviceNum;
            cl_device_id *cdDevices;
            ciErrNum = clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &deviceNum);
            shrCheckError(ciErrNum, CL_SUCCESS);

            cdDevices = (cl_device_id *)malloc(deviceNum * sizeof(cl_device_id));
            shrCheckError(cdDevices != NULL, shrTRUE);

            ciErrNum = clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, deviceNum * sizeof(cl_device_id), cdDevices, NULL);
            shrCheckError(ciErrNum, CL_SUCCESS);

            size_t logSize;
            char *logTxt;

            ciErrNum = clGetProgramBuildInfo(cpBlackScholes, cdDevices[0], CL_PROGRAM_BUILD_LOG, 0, NULL, &logSize);
            shrCheckError(ciErrNum, CL_SUCCESS);

            logTxt = (char *)malloc(logSize);
            shrCheckError(logTxt != NULL, shrTRUE);

            ciErrNum = clGetProgramBuildInfo(cpBlackScholes, cdDevices[0], CL_PROGRAM_BUILD_LOG, logSize, logTxt, NULL);
            shrCheckError(ciErrNum, CL_SUCCESS);

            shrLog("%s\n", logTxt);
            shrLog("*** Exiting ***\n");
            free(logTxt);
            free(cdDevices);
            exit(666);
        }

    //Save ptx code to separate file
    oclLogPtx(cpBlackScholes, oclGetFirstDev(cxGPUContext), "BlackScholes.ptx");

    shrLog("...creating BlackScholes kernels\n");
        ckBlackScholes = clCreateKernel(cpBlackScholes, "BlackScholes", &ciErrNum);
        shrCheckError(ciErrNum, CL_SUCCESS);

    cqDefaultCommandQueue = cqParamCommandQueue;
    free(cBlackScholes);
    free(cPathAndName);
}
Exemplo n.º 8
0
// Main function 
// *********************************************************************
int main(int argc, char** argv)
{
    shrQAStart(argc, argv);
    // get command line arg for quick test, if provided
    bNoPrompt = shrCheckCmdLineFlag(argc, (const char **)argv, "noprompt");

    // start logs
	cExecutableName = argv[0];
    shrSetLogFileName ("oclMatVecMul.txt");
    shrLog("%s Starting...\n\n", argv[0]); 

    // calculate matrix height given GPU memory
    shrLog("Determining Matrix height from available GPU mem...\n");
    memsize_t memsize;
    getTargetDeviceGlobalMemSize(&memsize, argc, (const char **)argv);
    height = memsize/width/16;
    if (height > MAX_HEIGHT)
        height = MAX_HEIGHT;
    shrLog(" Matrix width\t= %u\n Matrix height\t= %u\n\n", width, height); 

    // Allocate and initialize host arrays
    shrLog("Allocate and Init Host Mem...\n\n");
    unsigned int size = width * height;
    unsigned int mem_size_M = size * sizeof(float);
    M = (float*)malloc(mem_size_M);
    unsigned int mem_size_V = width * sizeof(float);
    V = (float*)malloc(mem_size_V);
    unsigned int mem_size_W = height * sizeof(float);
    W = (float*)malloc(mem_size_W);
    shrFillArray(M, size);
    shrFillArray(V, width);
    Golden = (float*)malloc(mem_size_W);
    MatVecMulHost(M, V, width, height, Golden);

    //Get the NVIDIA platform
    shrLog("Get the Platform ID...\n\n");
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    //Get all the devices
    shrLog("Get the Device info and select Device...\n");
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &uiNumDevices);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cdDevices = (cl_device_id *)malloc(uiNumDevices * sizeof(cl_device_id) );
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, uiNumDevices, cdDevices, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Set target device and Query number of compute units on targetDevice
    shrLog(" # of Devices Available = %u\n", uiNumDevices); 
    if(shrGetCmdLineArgumentu(argc, (const char **)argv, "device", &targetDevice)== shrTRUE) 
    {
        targetDevice = CLAMP(targetDevice, 0, (uiNumDevices - 1));
    }
    shrLog(" Using Device %u: ", targetDevice); 
    oclPrintDevName(LOGBOTH, cdDevices[targetDevice]);  
    cl_uint num_compute_units;
    clGetDeviceInfo(cdDevices[targetDevice], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(num_compute_units), &num_compute_units, NULL);
    shrLog("\n # of Compute Units = %u\n\n", num_compute_units); 

    //Create the context
    shrLog("clCreateContext...\n"); 
    cxGPUContext = clCreateContext(0, uiNumDevsUsed, &cdDevices[targetDevice], NULL, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Create a command-queue
    shrLog("clCreateCommandQueue...\n"); 
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevices[targetDevice], CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Allocate the OpenCL buffer memory objects for source and result on the device GMEM
    shrLog("clCreateBuffer (M, V and W in device global memory, mem_size_m = %u)...\n", mem_size_M); 
    cmM = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, mem_size_M, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cmV = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, mem_size_V, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cmW = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, mem_size_W, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Read the OpenCL kernel in from source file
    shrLog("oclLoadProgSource (%s)...\n", cSourceFile); 
    cPathAndName = shrFindFilePath(cSourceFile, argv[0]);
    oclCheckErrorEX(cPathAndName != NULL, shrTRUE, pCleanup);
    cSourceCL = oclLoadProgSource(cPathAndName, "", &szKernelLength);
    oclCheckErrorEX(cSourceCL != NULL, shrTRUE, pCleanup);

    // Create the program
    shrLog("clCreateProgramWithSource...\n"); 
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, &ciErrNum);

    // Build the program
    shrLog("clBuildProgram...\n"); 
    ciErrNum = clBuildProgram(cpProgram, uiNumDevsUsed, &cdDevices[targetDevice], "-cl-fast-relaxed-math", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclMatVecMul.ptx");
        shrQAFinish(argc, (const char **)argv, QA_FAILED);
        Cleanup(EXIT_FAILURE); 
    }

    // --------------------------------------------------------
    // Core sequence... copy input data to GPU, compute, copy results back

    // Asynchronous write of data to GPU device
    shrLog("clEnqueueWriteBuffer (M and V)...\n\n"); 
    ciErrNum = clEnqueueWriteBuffer(cqCommandQueue, cmM, CL_FALSE, 0, mem_size_M, M, 0, NULL, NULL);
    ciErrNum |= clEnqueueWriteBuffer(cqCommandQueue, cmV, CL_FALSE, 0, mem_size_V, V, 0, NULL, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Kernels
    const char* kernels[] = {
        "MatVecMulUncoalesced0",
        "MatVecMulUncoalesced1",
        "MatVecMulCoalesced0",
        "MatVecMulCoalesced1",
        "MatVecMulCoalesced2",
        "MatVecMulCoalesced3" };

    for (int k = 0; k < (int)(sizeof(kernels)/sizeof(char*)); ++k) {
        shrLog("Running with Kernel %s...\n\n", kernels[k]); 

        // Clear result
        shrLog("  Clear result with clEnqueueWriteBuffer (W)...\n"); 
        memset(W, 0, mem_size_W);
        ciErrNum = clEnqueueWriteBuffer(cqCommandQueue, cmW, CL_FALSE, 0, mem_size_W, W, 0, NULL, NULL);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

        // Create the kernel
        shrLog("  clCreateKernel...\n"); 
        if (ckKernel) {
            clReleaseKernel(ckKernel);
            ckKernel = 0;
        }
        ckKernel = clCreateKernel(cpProgram, kernels[k], &ciErrNum);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

        // Set and log Global and Local work size dimensions
        szLocalWorkSize = 256;
        if (k == 0)
            szGlobalWorkSize = shrRoundUp((int)szLocalWorkSize, height);  // rounded up to the nearest multiple of the LocalWorkSize
        else
            // Some experiments should be done here for determining the best global work size for a given device
            // We will assume here that we can run 2 work-groups per compute unit
            szGlobalWorkSize = 2 * num_compute_units * szLocalWorkSize;
        shrLog("  Global Work Size \t\t= %u\n  Local Work Size \t\t= %u\n  # of Work Groups \t\t= %u\n", 
               szGlobalWorkSize, szLocalWorkSize, (szGlobalWorkSize % szLocalWorkSize + szGlobalWorkSize/szLocalWorkSize)); 

        // Set the Argument values
        shrLog("  clSetKernelArg...\n\n");
        int n = 0;
        ciErrNum = clSetKernelArg(ckKernel,  n++, sizeof(cl_mem), (void*)&cmM);
        ciErrNum |= clSetKernelArg(ckKernel, n++, sizeof(cl_mem), (void*)&cmV);
        ciErrNum |= clSetKernelArg(ckKernel, n++, sizeof(cl_int), (void*)&width);
        ciErrNum |= clSetKernelArg(ckKernel, n++, sizeof(cl_int), (void*)&height);
        ciErrNum |= clSetKernelArg(ckKernel, n++, sizeof(cl_mem), (void*)&cmW);
        if (k > 1)
            ciErrNum |= clSetKernelArg(ckKernel, n++, szLocalWorkSize * sizeof(float), 0);    
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

        // Launch kernel
        shrLog("  clEnqueueNDRangeKernel (%s)...\n", kernels[k]); 
        ciErrNum = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL, &szGlobalWorkSize, &szLocalWorkSize, 0, NULL, &ceEvent);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

        // Read back results and check accumulated errors
        shrLog("  clEnqueueReadBuffer (W)...\n"); 
        ciErrNum = clEnqueueReadBuffer(cqCommandQueue, cmW, CL_TRUE, 0, mem_size_W, W, 0, NULL, NULL);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    #ifdef GPU_PROFILING
        // Execution time
        ciErrNum = clWaitForEvents(1, &ceEvent);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        cl_ulong start, end;
        ciErrNum = clGetEventProfilingInfo(ceEvent, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL);
        ciErrNum |= clGetEventProfilingInfo(ceEvent, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        double dSeconds = 1.0e-9 * (double)(end - start);
        shrLog("  Kernel execution time: %.5f s\n\n", dSeconds);
    #endif

        // Compare results for golden-host and report errors and pass/fail
        shrLog("  Comparing against Host/C++ computation...\n\n"); 
        shrBOOL res = shrCompareL2fe(Golden, W, height, 1e-6f);
        shrLog("    GPU Result %s CPU Result within allowable tolerance\n\n", (res == shrTRUE) ? "MATCHES" : "DOESN'T MATCH");
        bPassFlag &= (res == shrTRUE); 

        // Release event
        ciErrNum = clReleaseEvent(ceEvent);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        ceEvent = 0;
    }

    // Master status Pass/Fail (all tests)
    shrQAFinish(argc, (const char **)argv, (bPassFlag ? QA_PASSED : QA_FAILED) );

    // Cleanup and leave
    Cleanup (EXIT_SUCCESS);
}
// Main function
// *********************************************************************
int main(int argc, char** argv) 
{
    shrQAStart(argc, argv);
    
    int use_gpu = 0;
    for(int i = 0; i < argc && argv; i++)
    {
        if(!argv[i])
            continue;
          
        if(strstr(argv[i], "cpu"))
            use_gpu = 0;        

        else if(strstr(argv[i], "gpu"))
            use_gpu = 1;
    }

    // start logs
    shrSetLogFileName ("oclDXTCompression.txt");
    shrLog("%s Starting...\n\n", argv[0]); 

    cl_platform_id cpPlatform = NULL;
    cl_uint uiNumDevices = 0;
    cl_device_id *cdDevices = NULL;
    cl_context cxGPUContext;
    cl_command_queue cqCommandQueue;
    cl_program cpProgram;
    cl_kernel ckKernel;
    cl_mem cmMemObjs[3];
    cl_mem cmAlphaTable4, cmProds4;
    cl_mem cmAlphaTable3, cmProds3;
    size_t szGlobalWorkSize[1];
    size_t szLocalWorkSize[1];
    cl_int ciErrNum;

    // Get the path of the filename
    char *filename;
    if (shrGetCmdLineArgumentstr(argc, (const char **)argv, "image", &filename)) {
        image_filename = filename;
    }
    // load image
    const char* image_path = shrFindFilePath(image_filename, argv[0]);
    oclCheckError(image_path != NULL, shrTRUE);
    shrLoadPPM4ub(image_path, (unsigned char **)&h_img, &width, &height);
    oclCheckError(h_img != NULL, shrTRUE);
    shrLog("Loaded '%s', %d x %d pixels\n\n", image_path, width, height);

    // Convert linear image to block linear. 
    const uint memSize = width * height * sizeof(cl_uint);
    uint* block_image = (uint*)malloc(memSize);

    // Convert linear image to block linear. 
    for(uint by = 0; by < height/4; by++) {
        for(uint bx = 0; bx < width/4; bx++) {
            for (int i = 0; i < 16; i++) {
                const int x = i & 3;
                const int y = i / 4;
                block_image[(by * width/4 + bx) * 16 + i] = 
                    ((uint *)h_img)[(by * 4 + y) * 4 * (width/4) + bx * 4 + x];
            }
        }
    }

    // Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // Get the platform's GPU devices
    ciErrNum = clGetDeviceIDs(cpPlatform, use_gpu?CL_DEVICE_TYPE_GPU:CL_DEVICE_TYPE_CPU, 0, NULL, &uiNumDevices);
    oclCheckError(ciErrNum, CL_SUCCESS);
    cdDevices = (cl_device_id *)malloc(uiNumDevices * sizeof(cl_device_id) );
    ciErrNum = clGetDeviceIDs(cpPlatform, use_gpu?CL_DEVICE_TYPE_GPU:CL_DEVICE_TYPE_CPU, uiNumDevices, cdDevices, NULL);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // Create the context
    cxGPUContext = clCreateContext(0, uiNumDevices, cdDevices, NULL, NULL, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // get and log device
    cl_device_id device;
    if( shrCheckCmdLineFlag(argc, (const char **)argv, "device") ) {
      int device_nr = 0;
      shrGetCmdLineArgumenti(argc, (const char **)argv, "device", &device_nr);
      device = oclGetDev(cxGPUContext, device_nr);
      if( device == (cl_device_id)-1 ) {
          shrLog(" Invalid GPU Device: devID=%d.  %d valid GPU devices detected\n\n", device_nr, uiNumDevices);
		  shrLog(" exiting...\n");
          return -1;
      }
    } else {
      device = oclGetMaxFlopsDev(cxGPUContext);
    }

    oclPrintDevName(LOGBOTH, device);
    shrLog("\n");

    // create a command-queue
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, device, 0, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // Memory Setup

    // Constants
    cmAlphaTable4 = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 4 * sizeof(cl_float), (void*)&alphaTable4[0], &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    cmProds4 = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 4 * sizeof(cl_int), (void*)&prods4[0], &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    cmAlphaTable3 = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 4 * sizeof(cl_float), (void*)&alphaTable3[0], &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    cmProds3 = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 4 * sizeof(cl_int), (void*)&prods3[0], &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // Compute permutations.
    cl_uint permutations[1024];
    computePermutations(permutations);

    // Upload permutations.
    cmMemObjs[0] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                  sizeof(cl_uint) * 1024, permutations, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // Image
    cmMemObjs[1] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, memSize, NULL, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    
    // Result
    const uint compressedSize = (width / 4) * (height / 4) * 8;
    cmMemObjs[2] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, compressedSize, NULL , &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    
    unsigned int * h_result = (uint*)malloc(compressedSize);

    // Program Setup
    size_t program_length;
    const char* source_path = shrFindFilePath("DXTCompression.cl", argv[0]);
    oclCheckError(source_path != NULL, shrTRUE);
    char *source = oclLoadProgSource(source_path, "", &program_length);
    oclCheckError(source != NULL, shrTRUE);

    // create the program
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1,
        (const char **) &source, &program_length, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // build the program
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-fast-relaxed-math", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclDXTCompression.ptx");
        oclCheckError(ciErrNum, CL_SUCCESS); 
    }

    // create the kernel
    ckKernel = clCreateKernel(cpProgram, "compress", &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // set the args values
    ciErrNum  = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void *) &cmMemObjs[0]);
    ciErrNum |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void *) &cmMemObjs[1]);
    ciErrNum |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void *) &cmMemObjs[2]);
    ciErrNum |= clSetKernelArg(ckKernel, 3, sizeof(cl_mem), (void*)&cmAlphaTable4);
    ciErrNum |= clSetKernelArg(ckKernel, 4, sizeof(cl_mem), (void*)&cmProds4);
    ciErrNum |= clSetKernelArg(ckKernel, 5, sizeof(cl_mem), (void*)&cmAlphaTable3);
    ciErrNum |= clSetKernelArg(ckKernel, 6, sizeof(cl_mem), (void*)&cmProds3);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // Copy input data host to device
    clEnqueueWriteBuffer(cqCommandQueue, cmMemObjs[1], CL_FALSE, 0, sizeof(cl_uint) * width * height, block_image, 0,0,0);

    // Determine launch configuration and run timed computation numIterations times
	int blocks = ((width + 3) / 4) * ((height + 3) / 4); // rounds up by 1 block in each dim if %4 != 0

	// Restrict the numbers of blocks to launch on low end GPUs to avoid kernel timeout
	cl_uint compute_units;
    clGetDeviceInfo(device, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(compute_units), &compute_units, NULL);
	int blocksPerLaunch = MIN(blocks, 768 * (int)compute_units);

    // set work-item dimensions
    szGlobalWorkSize[0] = blocksPerLaunch * NUM_THREADS;
    szLocalWorkSize[0]= NUM_THREADS;

#ifdef GPU_PROFILING
    shrLog("\nRunning DXT Compression on %u x %u image...\n", width, height);
    shrLog("\n%u Workgroups, %u Work Items per Workgroup, %u Work Items in NDRange...\n\n", 
           blocks, NUM_THREADS, blocks * NUM_THREADS);

    int numIterations = 50;
    for (int i = -1; i < numIterations; ++i) {
        if (i == 0) { // start timing only after the first warmup iteration
            clFinish(cqCommandQueue); // flush command queue
            shrDeltaT(0); // start timer
        }
#endif
        // execute kernel
		for( int j=0; j<blocks; j+= blocksPerLaunch ) {
			clSetKernelArg(ckKernel, 7, sizeof(int), &j);
			szGlobalWorkSize[0] = MIN( blocksPerLaunch, blocks-j ) * NUM_THREADS;
			ciErrNum = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL,
				                              szGlobalWorkSize, szLocalWorkSize, 
					                          0, NULL, NULL);
			oclCheckError(ciErrNum, CL_SUCCESS);
		}

#ifdef GPU_PROFILING
    }
    clFinish(cqCommandQueue);
    double dAvgTime = shrDeltaT(0) / (double)numIterations;
    shrLogEx(LOGBOTH | MASTER, 0, "oclDXTCompression, Throughput = %.4f MPixels/s, Time = %.5f s, Size = %u Pixels, NumDevsUsed = %i, Workgroup = %d\n", 
           (1.0e-6 * (double)(width * height)/ dAvgTime), dAvgTime, (width * height), 1, szLocalWorkSize[0]); 
#endif

    // blocking read output
    ciErrNum = clEnqueueReadBuffer(cqCommandQueue, cmMemObjs[2], CL_TRUE, 0,
                                   compressedSize, h_result, 0, NULL, NULL);
    oclCheckError(ciErrNum, CL_SUCCESS);

    // Write DDS file.
    FILE* fp = NULL;
    char output_filename[1024];
    #ifdef WIN32
        strcpy_s(output_filename, 1024, image_path);
        strcpy_s(output_filename + strlen(image_path) - 3, 1024 - strlen(image_path) + 3, "dds");
        fopen_s(&fp, output_filename, "wb");
    #else
        strcpy(output_filename, image_path);
        strcpy(output_filename + strlen(image_path) - 3, "dds");
        fp = fopen(output_filename, "wb");
    #endif
    oclCheckError(fp != NULL, shrTRUE);

    DDSHeader header;
    header.fourcc = FOURCC_DDS;
    header.size = 124;
    header.flags  = (DDSD_WIDTH|DDSD_HEIGHT|DDSD_CAPS|DDSD_PIXELFORMAT|DDSD_LINEARSIZE);
    header.height = height;
    header.width = width;
    header.pitch = compressedSize;
    header.depth = 0;
    header.mipmapcount = 0;
    memset(header.reserved, 0, sizeof(header.reserved));
    header.pf.size = 32;
    header.pf.flags = DDPF_FOURCC;
    header.pf.fourcc = FOURCC_DXT1;
    header.pf.bitcount = 0;
    header.pf.rmask = 0;
    header.pf.gmask = 0;
    header.pf.bmask = 0;
    header.pf.amask = 0;
    header.caps.caps1 = DDSCAPS_TEXTURE;
    header.caps.caps2 = 0;
    header.caps.caps3 = 0;
    header.caps.caps4 = 0;
    header.notused = 0;

    fwrite(&header, sizeof(DDSHeader), 1, fp);
    fwrite(h_result, compressedSize, 1, fp);

    fclose(fp);

    // Make sure the generated image matches the reference image (regression check)
    shrLog("\nComparing against Host/C++ computation...\n");     
    const char* reference_image_path = shrFindFilePath(refimage_filename, argv[0]);
    oclCheckError(reference_image_path != NULL, shrTRUE);

    // read in the reference image from file
    #ifdef WIN32
        fopen_s(&fp, reference_image_path, "rb");
    #else
        fp = fopen(reference_image_path, "rb");
    #endif
    oclCheckError(fp != NULL, shrTRUE);
    fseek(fp, sizeof(DDSHeader), SEEK_SET);
    uint referenceSize = (width / 4) * (height / 4) * 8;
    uint * reference = (uint *)malloc(referenceSize);
    fread(reference, referenceSize, 1, fp);
    fclose(fp);

    // compare the reference image data to the sample/generated image
    float rms = 0;
    for (uint y = 0; y < height; y += 4)
    {
        for (uint x = 0; x < width; x += 4)
        {
            // binary comparison of data
            uint referenceBlockIdx = ((y/4) * (width/4) + (x/4));
            uint resultBlockIdx = ((y/4) * (width/4) + (x/4));
            int cmp = compareBlock(((BlockDXT1 *)h_result) + resultBlockIdx, ((BlockDXT1 *)reference) + referenceBlockIdx);

            // log deviations, if any
            if (cmp != 0.0f) 
            {
                compareBlock(((BlockDXT1 *)h_result) + resultBlockIdx, ((BlockDXT1 *)reference) + referenceBlockIdx);
                shrLog("Deviation at (%d, %d):\t%f rms\n", x/4, y/4, float(cmp)/16/3);
            }
            rms += cmp;
        }
    }
    rms /= width * height * 3;
    shrLog("RMS(reference, result) = %f\n\n", rms);

    // Free OpenCL resources
    oclDeleteMemObjs(cmMemObjs, 3);
    clReleaseMemObject(cmAlphaTable4);
    clReleaseMemObject(cmProds4);
    clReleaseMemObject(cmAlphaTable3);
    clReleaseMemObject(cmProds3);
    clReleaseKernel(ckKernel);
    clReleaseProgram(cpProgram);
    clReleaseCommandQueue(cqCommandQueue);
    clReleaseContext(cxGPUContext);

    // Free host memory
    free(source);
    free(h_img);

    // finish
    shrQAFinishExit(argc, (const char **)argv, (rms <= ERROR_THRESHOLD) ? QA_PASSED : QA_FAILED);
}
// Main program
//*****************************************************************************
int main(int argc, char** argv)
{
	pArgc = &argc;
	pArgv = argv;

	shrQAStart(argc, argv);

    // Start logs 
	cExecutableName = argv[0];
    shrSetLogFileName ("oclSobelFilter.txt");
    shrLog("%s Starting (Using %s)...\n\n", argv[0], clSourcefile); 

    // Get command line args for quick test or QA test, if provided
    bNoPrompt = (bool)shrCheckCmdLineFlag(argc, (const char**)argv, "noprompt");
    bQATest   = (bool)shrCheckCmdLineFlag(argc, (const char**)argv, "qatest");

    // Menu items
    if (!(bQATest))
    {
        ShowMenuItems();
    }

    // Find the path from the exe to the image file 
    cPathAndName = shrFindFilePath(cImageFile, argv[0]);
    oclCheckErrorEX(cPathAndName != NULL, shrTRUE, pCleanup);
    shrLog("Image File\t = %s\nImage Dimensions = %u w x %u h x %u bpp\n\n", cPathAndName, uiImageWidth, uiImageHeight, sizeof(unsigned int)<<3);

    // Initialize OpenGL items (if not No-GL QA test)
    shrLog("%sInitGL...\n\n", bQATest ? "Skipping " : "Calling "); 
    if (!(bQATest))
    {
        InitGL(&argc, argv);
    }

    //Get the NVIDIA platform if available, otherwise use default
    char cBuffer[1024];
    bool bNV = false;
    shrLog("Get Platform ID... ");
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    ciErrNum = clGetPlatformInfo (cpPlatform, CL_PLATFORM_NAME, sizeof(cBuffer), cBuffer, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    shrLog("%s\n\n", cBuffer);
    bNV = (strstr(cBuffer, "NVIDIA") != NULL);

    //Get the devices
    shrLog("Get Device Info...\n");
    cl_uint uiNumAllDevs = 0;
    GpuDevMngr = new DeviceManager(cpPlatform, &uiNumAllDevs, pCleanup);

    // Get selected device if specified, otherwise examine avaiable ones and choose by perf
    cl_int iSelectedDevice = 0;
    if((shrGetCmdLineArgumenti(argc, (const char**)argv, "device", &iSelectedDevice)) || (uiNumAllDevs == 1)) 
    {
        // Use 1 selected device
        GpuDevMngr->uiUsefulDevCt = 1;  
        iSelectedDevice = CLAMP((cl_uint)iSelectedDevice, 0, (uiNumAllDevs - 1));
        GpuDevMngr->uiUsefulDevs[0] = iSelectedDevice;
        GpuDevMngr->fLoadProportions[0] = 1.0f;
        shrLog("  Using 1 Selected Device for Sobel Filter Computation...\n"); 
 
    } 
    else 
    {
        // Use available useful devices and Compute the device load proportions
        ciErrNum = GpuDevMngr->GetDevLoadProportions(bNV);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        if (GpuDevMngr->uiUsefulDevCt == 1)
        {
            iSelectedDevice = GpuDevMngr->uiUsefulDevs[0];
        }
        shrLog("    Using %u Device(s) for Sobel Filter Computation\n", GpuDevMngr->uiUsefulDevCt); 
    }

    //Create the context
    shrLog("\nclCreateContext...\n\n");
    cxGPUContext = clCreateContext(0, uiNumAllDevs, GpuDevMngr->cdDevices, NULL, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Allocate per-device OpenCL objects for useful devices
    cqCommandQueue = new cl_command_queue[GpuDevMngr->uiUsefulDevCt];
    ckSobel = new cl_kernel[GpuDevMngr->uiUsefulDevCt];
    cmDevBufIn = new cl_mem[GpuDevMngr->uiUsefulDevCt];
    cmDevBufOut = new cl_mem[GpuDevMngr->uiUsefulDevCt];
    szAllocDevBytes = new size_t[GpuDevMngr->uiUsefulDevCt];
    uiInHostPixOffsets = new cl_uint[GpuDevMngr->uiUsefulDevCt];
    uiOutHostPixOffsets = new cl_uint[GpuDevMngr->uiUsefulDevCt];
    uiDevImageHeight = new cl_uint[GpuDevMngr->uiUsefulDevCt];

    // Create command queue(s) for device(s)     
    shrLog("clCreateCommandQueue...\n");
    for (cl_uint i = 0; i < GpuDevMngr->uiUsefulDevCt; i++) 
    {
        cqCommandQueue[i] = clCreateCommandQueue(cxGPUContext, GpuDevMngr->cdDevices[GpuDevMngr->uiUsefulDevs[i]], 0, &ciErrNum);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        shrLog("  CommandQueue %u, Device %u, Device Load Proportion = %.2f, ", i, GpuDevMngr->uiUsefulDevs[i], GpuDevMngr->fLoadProportions[i]); 
        oclPrintDevName(LOGBOTH, GpuDevMngr->cdDevices[GpuDevMngr->uiUsefulDevs[i]]);  
        shrLog("\n");
    }

    // Allocate pinned input and output host image buffers:  mem copy operations to/from pinned memory is much faster than paged memory
    szBuffBytes = uiImageWidth * uiImageHeight * sizeof (unsigned int);
    cmPinnedBufIn = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, szBuffBytes, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cmPinnedBufOut = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, szBuffBytes, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    shrLog("\nclCreateBuffer (Input and Output Pinned Host buffers)...\n"); 

    // Get mapped pointers for writing to pinned input and output host image pointers 
    uiInput = (cl_uint*)clEnqueueMapBuffer(cqCommandQueue[0], cmPinnedBufIn, CL_TRUE, CL_MAP_WRITE, 0, szBuffBytes, 0, NULL, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    uiOutput = (cl_uint*)clEnqueueMapBuffer(cqCommandQueue[0], cmPinnedBufOut, CL_TRUE, CL_MAP_READ, 0, szBuffBytes, 0, NULL, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    shrLog("clEnqueueMapBuffer (Pointer to Input and Output pinned host buffers)...\n"); 

    // Load image data from file to pinned input host buffer
    ciErrNum = shrLoadPPM4ub(cPathAndName, (unsigned char **)&uiInput, &uiImageWidth, &uiImageHeight);
    oclCheckErrorEX(ciErrNum, shrTRUE, pCleanup);
    shrLog("Load Input Image to Input pinned host buffer...\n"); 

    // Read the kernel in from file
    free(cPathAndName);
    cPathAndName = shrFindFilePath(clSourcefile, argv[0]);
    oclCheckErrorEX(cPathAndName != NULL, shrTRUE, pCleanup);
    cSourceCL = oclLoadProgSource(cPathAndName, "// My comment\n", &szKernelLength);
    oclCheckErrorEX(cSourceCL != NULL, shrTRUE, pCleanup);
    shrLog("Load OpenCL Prog Source from File...\n"); 

    // Create the program object
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    shrLog("clCreateProgramWithSource...\n"); 

    // Build the program with 'mad' Optimization option
#ifdef MAC
    char *flags = "-cl-fast-relaxed-math -DMAC";
#else
    char *flags = "-cl-fast-relaxed-math";
#endif

    ciErrNum = clBuildProgram(cpProgram, 0, NULL, flags, NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // On error: write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclSobelFilter.ptx");
        Cleanup(EXIT_FAILURE);
    }
    shrLog("clBuildProgram...\n\n"); 

    // Determine, the size/shape of the image portions for each dev and create the device buffers
    unsigned uiSumHeight = 0;
    for (cl_uint i = 0; i < GpuDevMngr->uiUsefulDevCt; i++)
    {
        // Create kernel instance
        ckSobel[i] = clCreateKernel(cpProgram, "ckSobel", &ciErrNum);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        shrLog("clCreateKernel (ckSobel), Device %u...\n", i); 

        // Allocations and offsets for the portion of the image worked on by each device
        if (GpuDevMngr->uiUsefulDevCt == 1)
        {
            // One device processes the whole image with no offset 
            uiDevImageHeight[i] = uiImageHeight; 
            uiInHostPixOffsets[i] = 0;
            uiOutHostPixOffsets[i] = 0;
            szAllocDevBytes[i] = uiDevImageHeight[i] * uiImageWidth * sizeof(cl_uint);
        }
        else if (i == 0)
        {
            // Multiple devices, top stripe zone including topmost row of image:  
            // Over-allocate on device by 1 row 
            // Set offset and size to copy extra 1 padding row H2D (below bottom of stripe)
            // Won't return the last row (dark/garbage row) D2H
            uiInHostPixOffsets[i] = 0;
            uiOutHostPixOffsets[i] = 0;
            uiDevImageHeight[i] = (cl_uint)(GpuDevMngr->fLoadProportions[GpuDevMngr->uiUsefulDevs[i]] * (float)uiImageHeight);     // height is proportional to dev perf 
            uiSumHeight += uiDevImageHeight[i];
            uiDevImageHeight[i] += 1;
            szAllocDevBytes[i] = uiDevImageHeight[i] * uiImageWidth * sizeof(cl_uint);
        }
        else if (i < (GpuDevMngr->uiUsefulDevCt - 1))
        {
            // Multiple devices, middle stripe zone:  
            // Over-allocate on device by 2 rows 
            // Set offset and size to copy extra 2 padding rows H2D (above top and below bottom of stripe)
            // Won't return the first and last rows (dark/garbage rows) D2H
            uiInHostPixOffsets[i] = (uiSumHeight - 1) * uiImageWidth;
            uiOutHostPixOffsets[i] = uiInHostPixOffsets[i] + uiImageWidth;
            uiDevImageHeight[i] = (cl_uint)(GpuDevMngr->fLoadProportions[GpuDevMngr->uiUsefulDevs[i]] * (float)uiImageHeight);     // height is proportional to dev perf 
            uiSumHeight += uiDevImageHeight[i];
            uiDevImageHeight[i] += 2;
            szAllocDevBytes[i] = uiDevImageHeight[i] * uiImageWidth * sizeof(cl_uint);
        }
        else 
        {
            // Multiple devices, last boundary tile:  
            // Over-allocate on device by 1 row 
            // Set offset and size to copy extra 1 padding row H2D (above top of stripe)
            // Won't return the first row (dark/garbage rows D2H 
            uiInHostPixOffsets[i] = (uiSumHeight - 1) * uiImageWidth;
            uiOutHostPixOffsets[i] = uiInHostPixOffsets[i] + uiImageWidth;
            uiDevImageHeight[i] = uiImageHeight - uiSumHeight;                              // "leftover" rows 
            uiSumHeight += uiDevImageHeight[i];
            uiDevImageHeight[i] += 1;
            szAllocDevBytes[i] = uiDevImageHeight[i] * uiImageWidth * sizeof(cl_uint);
        }
        shrLog("Image Height (rows) for Device %u = %u...\n", i, uiDevImageHeight[i]); 

        // Create the device buffers in GMEM on each device
        cmDevBufIn[i] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, szAllocDevBytes[i], NULL, &ciErrNum);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        cmDevBufOut[i] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, szAllocDevBytes[i], NULL, &ciErrNum);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        shrLog("clCreateBuffer (Input and Output GMEM buffers, Device %u)...\n", i); 

        // Set the common argument values for the Median kernel instance for each device
        int iLocalPixPitch = iBlockDimX + 2;
        ciErrNum = clSetKernelArg(ckSobel[i], 0, sizeof(cl_mem), (void*)&cmDevBufIn[i]);
        ciErrNum |= clSetKernelArg(ckSobel[i], 1, sizeof(cl_mem), (void*)&cmDevBufOut[i]);
        ciErrNum |= clSetKernelArg(ckSobel[i], 2, (iLocalPixPitch * (iBlockDimY + 2) * sizeof(cl_uchar4)), NULL);
        ciErrNum |= clSetKernelArg(ckSobel[i], 3, sizeof(cl_int), (void*)&iLocalPixPitch);
        ciErrNum |= clSetKernelArg(ckSobel[i], 4, sizeof(cl_uint), (void*)&uiImageWidth);
        ciErrNum |= clSetKernelArg(ckSobel[i], 6, sizeof(cl_float), (void*)&fThresh);        
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        shrLog("clSetKernelArg (0-4), Device %u...\n\n", i); 
    }

    // Set common global and local work sizes for Median kernel
    szLocalWorkSize[0] = iBlockDimX;
    szLocalWorkSize[1] = iBlockDimY;
    szGlobalWorkSize[0] = shrRoundUp((int)szLocalWorkSize[0], uiImageWidth); 

    // init running timers
    shrDeltaT(0);   // timer 0 used for computation timing 
    shrDeltaT(1);   // timer 1 used for fps computation

    // Start main GLUT rendering loop for processing and rendering, 
    // or otherwise run No-GL Q/A test sequence
    if (!(bQATest))
    {
        glutMainLoop();
    }
    else 
    {
        TestNoGL();
    }

    Cleanup(EXIT_SUCCESS);
}
Exemplo n.º 11
0
/**
 * Helper function that will load the OpenCL source program, build and return a handle to that OpenCL kernel
 * @param context - the OpenCL context
 * @param device - the device to compile for
 * @param program - the program that is being built (in/out)
 * @param sourcePath - full path to the source file
 * @param options - build options, e.g. define flags("-D name=value")
 * @return an error code on failure, 0 on success
 */
cl_program CLState::compileOCLProgram(const char* sourcePath,
		const std::string& options) {
	cl_int errNum;

	size_t program_length;
	oclCheckError(sourcePath != NULL, shrTRUE);
	char *source = oclLoadProgSource(sourcePath, "", &program_length);
	if (!source) {
		shrLog("Error: Failed to load compute program %s!\n", sourcePath);
		BOOST_THROW_EXCEPTION(
				runtime_error()
						<< error_message(
								(std::string(
										"Error: Failed to load cl program source from ")
										+ sourcePath).c_str()));
	}

	// create the simple increment OpenCL program
	cl_program program = clCreateProgramWithSource(context, 1,
			(const char **) &source, &program_length, &errNum);
	if (errNum != CL_SUCCESS) {
		shrLog("Error: Failed to create program\n");
		BOOST_THROW_EXCEPTION(runtime_error() << cl_error_code(errNum));
	} else {
		shrLog("clCreateProgramWithSource <%s> succeeded, program_length=%d\n",
				sourcePath, program_length);
	}
	free(source);

	// build the program
	cl_build_status build_status = CL_SUCCESS;

	errNum =
			clBuildProgram(program, 0, NULL,
					std::string(
							"-cl-fast-relaxed-math -cl-nv-verbose" + options).c_str(),
					NULL, NULL);
	if (errNum != CL_SUCCESS) {
		// write out standard error, Build Log and PTX, then return error
		shrLogEx(LOGBOTH | ERRORMSG, errNum, STDERROR);
		oclLogBuildInfo(program, oclGetFirstDev(context));
		oclLogPtx(program, oclGetFirstDev(context), "build_error.ptx");
		BOOST_THROW_EXCEPTION(runtime_error() << cl_error_code(errNum));
	} else {
		shrLog("clBuildProgram <%s> succeeded\n", sourcePath);
		if (this->execDevices != NULL) {
			for (uint iDevice = 0;
					iDevice < this->execDeviceCount
							&& build_status == CL_SUCCESS
							&& errNum == CL_SUCCESS; iDevice++) {
				cl_device_id device = this->execDevices[iDevice];
				errNum = clGetProgramBuildInfo(program, device,
				CL_PROGRAM_BUILD_STATUS, sizeof(cl_build_status), &build_status,
				NULL);
				shrLog("clGetProgramBuildInfo returned: ");
				if (build_status == CL_SUCCESS) {
					shrLog("CL_SUCCESS\n");
				} else {
					shrLog("CLErrorNumber = %d\n", errNum);
				}
				// print out the build log, note in the case where there is nothing shown, some OpenCL PTX->SASS caching has happened
				{
					char *build_log;
					size_t ret_val_size;

					errNum = clGetProgramBuildInfo(program, device,
					CL_PROGRAM_BUILD_LOG, 0, NULL, &ret_val_size);

					if (errNum != CL_SUCCESS) {
						shrLog(
								"clGetProgramBuildInfo device %d, failed to get the log size at line %d\n",
								device, __LINE__);
					}
					build_log = (char *) malloc(ret_val_size + 1);

					errNum = clGetProgramBuildInfo(program, device,
					CL_PROGRAM_BUILD_LOG, ret_val_size, build_log, NULL);

					if (errNum != CL_SUCCESS) {
						shrLog(
								"clGetProgramBuildInfo device %d, failed to get the build log at line %d\n",
								device, __LINE__);
					}
					// to be carefully, terminate with \0
					// there's no information in the reference whether the string is 0 terminated or not
					build_log[ret_val_size] = '\0';
					shrLog("%s\n", build_log);
				}
			}
		}
	}
	this->programs.push_back(program);
	return program;
}
// Init OpenCL
//*****************************************************************************
int initCL(int argc, const char** argv)
{
    cl_platform_id cpPlatform;
    cl_uint uiDevCount;
    cl_device_id *cdDevices;

    //Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Get the number of GPU devices available to the platform
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &uiDevCount);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Create the device list
    cdDevices = new cl_device_id [uiDevCount];
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, uiDevCount, cdDevices, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Get device requested on command line, if any
    unsigned int uiDeviceUsed = 0;
    unsigned int uiEndDev = uiDevCount - 1;
    if(shrGetCmdLineArgumentu(argc, argv, "device", &uiDeviceUsed))
    {
      uiDeviceUsed = CLAMP(uiDeviceUsed, 0, uiEndDev);
      uiEndDev = uiDeviceUsed; 
    } 

    // Check if the requested device (or any of the devices if none requested) supports context sharing with OpenGL   
    if(bGLinterop && !bQATest)
    {
        bool bSharingSupported = false;
        for(unsigned int i = uiDeviceUsed; (!bSharingSupported && (i <= uiEndDev)); ++i) 
        {
            size_t extensionSize;
            ciErrNum = clGetDeviceInfo(cdDevices[i], CL_DEVICE_EXTENSIONS, 0, NULL, &extensionSize );
            oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
            if(extensionSize > 0) 
            {
                char* extensions = (char*)malloc(extensionSize);
                ciErrNum = clGetDeviceInfo(cdDevices[i], CL_DEVICE_EXTENSIONS, extensionSize, extensions, &extensionSize);
                oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
                std::string stdDevString(extensions);
                free(extensions);

                size_t szOldPos = 0;
                size_t szSpacePos = stdDevString.find(' ', szOldPos); // extensions string is space delimited
                while (szSpacePos != stdDevString.npos)
                {
                    if( strcmp(GL_SHARING_EXTENSION, stdDevString.substr(szOldPos, szSpacePos - szOldPos).c_str()) == 0 ) 
                    {
                        // Device supports context sharing with OpenGL
                        uiDeviceUsed = i;
                        bSharingSupported = true;
                        break;
                    }
                    do 
                    {
                        szOldPos = szSpacePos + 1;
                        szSpacePos = stdDevString.find(' ', szOldPos);
                    } 
                    while (szSpacePos == szOldPos);
                }
            }
        }
       
        shrLog("%s...\n\n", bSharingSupported ? "Using CL-GL Interop" : "No device found that supports CL/GL context sharing");  
        oclCheckErrorEX(bSharingSupported, true, pCleanup);

        // Define OS-specific context properties and create the OpenCL context
        #if defined (__APPLE__) || defined (MACOSX)
            CGLContextObj kCGLContext = CGLGetCurrentContext();
            CGLShareGroupObj kCGLShareGroup = CGLGetShareGroup(kCGLContext);
            cl_context_properties props[] = 
            {
                CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE, (cl_context_properties)kCGLShareGroup, 
                0 
            };
            cxGPUContext = clCreateContext(props, 0,0, NULL, NULL, &ciErrNum);
        #else
            #ifdef UNIX
                cl_context_properties props[] = 
                {
                    CL_GL_CONTEXT_KHR, (cl_context_properties)glXGetCurrentContext(), 
                    CL_GLX_DISPLAY_KHR, (cl_context_properties)glXGetCurrentDisplay(), 
                    CL_CONTEXT_PLATFORM, (cl_context_properties)cpPlatform, 
                    0
                };
                cxGPUContext = clCreateContext(props, 1, &cdDevices[uiDeviceUsed], NULL, NULL, &ciErrNum);
            #else // Win32
                cl_context_properties props[] = 
                {
                    CL_GL_CONTEXT_KHR, (cl_context_properties)wglGetCurrentContext(), 
                    CL_WGL_HDC_KHR, (cl_context_properties)wglGetCurrentDC(), 
                    CL_CONTEXT_PLATFORM, (cl_context_properties)cpPlatform, 
                    0
                };
                cxGPUContext = clCreateContext(props, 1, &cdDevices[uiDeviceUsed], NULL, NULL, &ciErrNum);
            #endif
        #endif
    }
    else 
    {
		// No GL interop
        cl_context_properties props[] = {CL_CONTEXT_PLATFORM, (cl_context_properties)cpPlatform, 0};
        cxGPUContext = clCreateContext(props, 1, &cdDevices[uiDeviceUsed], NULL, NULL, &ciErrNum);

		bGLinterop = shrFALSE;
    }

    shrCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Log device used 
    shrLog("Device # %u, ", uiDeviceUsed);
    oclPrintDevName(LOGBOTH, cdDevices[uiDeviceUsed]);
    shrLog("\n");

    // create a command-queue
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevices[uiDeviceUsed], 0, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Memory Setup
	if( bGLinterop ) {
        cl_pbos[0] = clCreateFromGLBuffer(cxGPUContext, CL_MEM_READ_ONLY, pbo_source, &ciErrNum);
        cl_pbos[1] = clCreateFromGLBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, pbo_dest, &ciErrNum);
	} else {
        cl_pbos[0] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, 4 * image_width * image_height, NULL, &ciErrNum);
        cl_pbos[1] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, 4 * image_width * image_height, NULL, &ciErrNum);
	}
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Program Setup
    size_t program_length;
    const char* source_path = shrFindFilePath(clSourcefile, argv[0]);
    char *source = oclLoadProgSource(source_path, "", &program_length);
    oclCheckErrorEX(source != NULL, shrTRUE, pCleanup);

    // create the program
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1,(const char **) &source, &program_length, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    free(source);

    // build the program
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-fast-relaxed-math", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclPostProcessGL.ptx");
        Cleanup(EXIT_FAILURE); 
    }

    // create the kernel
    ckKernel = clCreateKernel(cpProgram, "postprocess", &ciErrNum);

    // set the args values
    ciErrNum |= clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void *) &(cl_pbos[0]));
    ciErrNum |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void *) &(cl_pbos[1]));
    ciErrNum |= clSetKernelArg(ckKernel, 2, sizeof(image_width), &image_width);
    ciErrNum |= clSetKernelArg(ckKernel, 3, sizeof(image_width), &image_height);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    
    return 0;
}
Exemplo n.º 13
0
int InitOpenCLContext() 
{
	// start logs
	shrSetLogFileName ("oclVolumeRender.txt");

	// get command line arg for quick test, if provided
	// process command line arguments

	// First initialize OpenGL context, so we can properly setup the OpenGL / OpenCL interop.

// 	glewInit();
// 	GLboolean bGLEW = glewIsSupported("GL_VERSION_2_0 GL_ARB_pixel_buffer_object"); 
// 	oclCheckErrorEX(bGLEW, shrTRUE, pCleanup);
	g_glInterop = true;


	// Create OpenCL context, get device info, select device, select options for image/texture and CL-GL interop
	createCLContext();

	// Print device info
	clGetDeviceInfo(cdDevices[uiDeviceUsed], CL_DEVICE_IMAGE_SUPPORT, sizeof(g_bImageSupport), &g_bImageSupport, NULL);
	//shrLog("%s...\n\n", g_bImageSupport ? "Using Image (Texture)" : "No Image (Texuture) Support");      
//	shrLog("Detailed Device info:\n\n");
	oclPrintDevInfo(LOGBOTH, cdDevices[uiDeviceUsed]);

	// create a command-queue
	cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevices[uiDeviceUsed], 0, &ciErrNum);
	oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

	// Program Setup
	size_t program_length;
	cPathAndName = shrFindFilePath("Transform.cl", ".");
	oclCheckErrorEX(cPathAndName != NULL, shrTRUE, pCleanup);
	cSourceCL = oclLoadProgSource(cPathAndName, "", &program_length);
	oclCheckErrorEX(cSourceCL != NULL, shrTRUE, pCleanup);

	// create the program
	cpProgram = clCreateProgramWithSource(cxGPUContext, 1,
		(const char **)&cSourceCL, &program_length, &ciErrNum);
	oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

	// build the program
	std::string buildOpts = "-cl-single-precision_constant";
//	buildOpts += g_bImageSupport ? " -DIMAGE_SUPPORT" : "";
//	ciErrNum = clBuildProgram(cpProgram, 1, &cdDevices[uiDeviceUsed],"-cl-fast-relaxed-math", NULL, NULL);
	ciErrNum = clBuildProgram(cpProgram, 1, &cdDevices[uiDeviceUsed],NULL, NULL, NULL);
	if (ciErrNum != CL_SUCCESS)
	{
		// write out standard error, Build Log and PTX, then cleanup and return error
		shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
		oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
		oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclVolumeRender.ptx");
		Cleanup(EXIT_FAILURE); 
	}

	// create the kernel
	ScalseKernel = clCreateKernel(cpProgram, "d_render", &ciErrNum);
	oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

	TransformKernel = clCreateKernel(cpProgram, "angle", &ciErrNum);
	oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

	LongToShortKernel = clCreateKernel(cpProgram, "transfer", &ciErrNum);
	oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
	return TRUE;
}
// Main function
// *********************************************************************
int main(const int argc, const char** argv) 
{
    // start logs
    shrSetLogFileName ("oclDXTCompression.txt");
    shrLog(LOGBOTH, 0, "%s Starting...\n\n", argv[0]); 

    cl_context cxGPUContext;
    cl_command_queue cqCommandQueue;
    cl_program cpProgram;
    cl_kernel ckKernel;
    cl_mem cmMemObjs[3];
    size_t szGlobalWorkSize[1];
    size_t szLocalWorkSize[1];
    cl_int ciErrNum;

    // Get the path of the filename
    char *filename;
    if (shrGetCmdLineArgumentstr(argc, argv, "image", &filename)) {
        image_filename = filename;
    }
    // load image
    const char* image_path = shrFindFilePath(image_filename, argv[0]);
    shrCheckError(image_path != NULL, shrTRUE);
    shrLoadPPM4ub(image_path, (unsigned char **)&h_img, &width, &height);
    shrCheckError(h_img != NULL, shrTRUE);
    shrLog(LOGBOTH, 0, "Loaded '%s', %d x %d pixels\n", image_path, width, height);

    // Convert linear image to block linear. 
    uint * block_image = (uint *) malloc(width * height * 4);

    // Convert linear image to block linear. 
    for(uint by = 0; by < height/4; by++) {
        for(uint bx = 0; bx < width/4; bx++) {
            for (int i = 0; i < 16; i++) {
                const int x = i & 3;
                const int y = i / 4;
                block_image[(by * width/4 + bx) * 16 + i] = 
                    ((uint *)h_img)[(by * 4 + y) * 4 * (width/4) + bx * 4 + x];
            }
        }
    }

    // create the OpenCL context on a GPU device
    cxGPUContext = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, &ciErrNum);
    shrCheckError(ciErrNum, CL_SUCCESS);

    // get and log device
    cl_device_id device;
    if( shrCheckCmdLineFlag(argc, argv, "device") ) {
      int device_nr = 0;
      shrGetCmdLineArgumenti(argc, argv, "device", &device_nr);
      device = oclGetDev(cxGPUContext, device_nr);
    } else {
      device = oclGetMaxFlopsDev(cxGPUContext);
    }
    oclPrintDevInfo(LOGBOTH, device);

    // create a command-queue
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, device, 0, &ciErrNum);
    shrCheckError(ciErrNum, CL_SUCCESS);

    // Memory Setup

    // Compute permutations.
    cl_uint permutations[1024];
    computePermutations(permutations);

    // Upload permutations.
    cmMemObjs[0] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                  sizeof(cl_uint) * 1024, permutations, &ciErrNum);
    shrCheckError(ciErrNum, CL_SUCCESS);

    // Image
    cmMemObjs[1] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY ,
                                  sizeof(cl_uint) * width * height, NULL, &ciErrNum);
    shrCheckError(ciErrNum, CL_SUCCESS);
    
    // Result
    const uint compressedSize = (width / 4) * (height / 4) * 8;

    cmMemObjs[2] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY,
                                  compressedSize, NULL , &ciErrNum);
    shrCheckError(ciErrNum, CL_SUCCESS);
    
    unsigned int * h_result = (uint *)malloc(compressedSize);

    // Program Setup
    size_t program_length;
    const char* source_path = shrFindFilePath("DXTCompression.cl", argv[0]);
    shrCheckError(source_path != NULL, shrTRUE);
    char *source = oclLoadProgSource(source_path, "", &program_length);
    shrCheckError(source != NULL, shrTRUE);

    // create the program
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1,
        (const char **) &source, &program_length, &ciErrNum);
    shrCheckError(ciErrNum, CL_SUCCESS);

    // build the program
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-mad-enable", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLog(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclDXTCompression.ptx");
        shrCheckError(ciErrNum, CL_SUCCESS); 
    }

    // create the kernel
    ckKernel = clCreateKernel(cpProgram, "compress", &ciErrNum);
    shrCheckError(ciErrNum, CL_SUCCESS);

    // set the args values
    ciErrNum  = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void *) &cmMemObjs[0]);
    ciErrNum |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void *) &cmMemObjs[1]);
    ciErrNum |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void *) &cmMemObjs[2]);
    ciErrNum |= clSetKernelArg(ckKernel, 3, sizeof(float) * 4 * 16, NULL);
    ciErrNum |= clSetKernelArg(ckKernel, 4, sizeof(float) * 4 * 16, NULL);
    ciErrNum |= clSetKernelArg(ckKernel, 5, sizeof(int) * 64, NULL);
    ciErrNum |= clSetKernelArg(ckKernel, 6, sizeof(float) * 16 * 6, NULL);
    ciErrNum |= clSetKernelArg(ckKernel, 7, sizeof(unsigned int) * 160, NULL);
    ciErrNum |= clSetKernelArg(ckKernel, 8, sizeof(int) * 16, NULL);
    shrCheckError(ciErrNum, CL_SUCCESS);

    shrLog(LOGBOTH, 0, "Running DXT Compression on %u x %u image...\n\n", width, height);

    // Upload the image
    clEnqueueWriteBuffer(cqCommandQueue, cmMemObjs[1], CL_FALSE, 0, sizeof(cl_uint) * width * height, block_image, 0,0,0);

    // set work-item dimensions
    szGlobalWorkSize[0] = width * height * (NUM_THREADS/16);
    szLocalWorkSize[0]= NUM_THREADS;
    
#ifdef GPU_PROFILING
    int numIterations = 100;
    for (int i = -1; i < numIterations; ++i) {
        if (i == 0) { // start timing only after the first warmup iteration
            clFinish(cqCommandQueue); // flush command queue
            shrDeltaT(0); // start timer
        }
#endif
        // execute kernel
        ciErrNum = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL,
                                          szGlobalWorkSize, szLocalWorkSize, 
                                          0, NULL, NULL);
        shrCheckError(ciErrNum, CL_SUCCESS);
#ifdef GPU_PROFILING
    }
    clFinish(cqCommandQueue);
    double dAvgTime = shrDeltaT(0) / (double)numIterations;
    shrLog(LOGBOTH | MASTER, 0, "oclDXTCompression, Throughput = %.4f, Time = %.5f, Size = %u, NumDevsUsed = %i\n", 
        (1.0e-6 * (double)(width * height)/ dAvgTime), dAvgTime, (width * height), 1); 

#endif

    // blocking read output
    ciErrNum = clEnqueueReadBuffer(cqCommandQueue, cmMemObjs[2], CL_TRUE, 0,
                                   compressedSize, h_result, 0, NULL, NULL);
    shrCheckError(ciErrNum, CL_SUCCESS);

    // Write DDS file.
    FILE* fp = NULL;
    char output_filename[1024];
    #ifdef WIN32
        strcpy_s(output_filename, 1024, image_path);
        strcpy_s(output_filename + strlen(image_path) - 3, 1024 - strlen(image_path) + 3, "dds");
        fopen_s(&fp, output_filename, "wb");
    #else
        strcpy(output_filename, image_path);
        strcpy(output_filename + strlen(image_path) - 3, "dds");
        fp = fopen(output_filename, "wb");
    #endif
    shrCheckError(fp != NULL, shrTRUE);

    DDSHeader header;
    header.fourcc = FOURCC_DDS;
    header.size = 124;
    header.flags  = (DDSD_WIDTH|DDSD_HEIGHT|DDSD_CAPS|DDSD_PIXELFORMAT|DDSD_LINEARSIZE);
    header.height = height;
    header.width = width;
    header.pitch = compressedSize;
    header.depth = 0;
    header.mipmapcount = 0;
    memset(header.reserved, 0, sizeof(header.reserved));
    header.pf.size = 32;
    header.pf.flags = DDPF_FOURCC;
    header.pf.fourcc = FOURCC_DXT1;
    header.pf.bitcount = 0;
    header.pf.rmask = 0;
    header.pf.gmask = 0;
    header.pf.bmask = 0;
    header.pf.amask = 0;
    header.caps.caps1 = DDSCAPS_TEXTURE;
    header.caps.caps2 = 0;
    header.caps.caps3 = 0;
    header.caps.caps4 = 0;
    header.notused = 0;

    fwrite(&header, sizeof(DDSHeader), 1, fp);
    fwrite(h_result, compressedSize, 1, fp);

    fclose(fp);

    // Make sure the generated image matches the reference image (regression check)
    shrLog(LOGBOTH, 0, "\nComparing against Host/C++ computation...\n");     
    const char* reference_image_path = shrFindFilePath(refimage_filename, argv[0]);
    shrCheckError(reference_image_path != NULL, shrTRUE);

    // read in the reference image from file
    #ifdef WIN32
        fopen_s(&fp, reference_image_path, "rb");
    #else
        fp = fopen(reference_image_path, "rb");
    #endif
    shrCheckError(fp != NULL, shrTRUE);
    fseek(fp, sizeof(DDSHeader), SEEK_SET);
    uint referenceSize = (width / 4) * (height / 4) * 8;
    uint * reference = (uint *)malloc(referenceSize);
    fread(reference, referenceSize, 1, fp);
    fclose(fp);

    // compare the reference image data to the sample/generated image
    float rms = 0;
    for (uint y = 0; y < height; y += 4)
    {
        for (uint x = 0; x < width; x += 4)
        {
            // binary comparison of data
            uint referenceBlockIdx = ((y/4) * (width/4) + (x/4));
            uint resultBlockIdx = ((y/4) * (width/4) + (x/4));
            int cmp = compareBlock(((BlockDXT1 *)h_result) + resultBlockIdx, ((BlockDXT1 *)reference) + referenceBlockIdx);

            // log deviations, if any
            if (cmp != 0.0f) 
            {
                compareBlock(((BlockDXT1 *)h_result) + resultBlockIdx, ((BlockDXT1 *)reference) + referenceBlockIdx);
                shrLog(LOGBOTH, 0, "Deviation at (%d, %d):\t%f rms\n", x/4, y/4, float(cmp)/16/3);
            }
            rms += cmp;
        }
    }
    rms /= width * height * 3;
    shrLog(LOGBOTH, 0, "RMS(reference, result) = %f\n\n", rms);
    shrLog(LOGBOTH, 0, "TEST %s\n\n", (rms <= ERROR_THRESHOLD) ? "PASSED" : "FAILED !!!");

    // Free OpenCL resources
    oclDeleteMemObjs(cmMemObjs, 3);
    clReleaseKernel(ckKernel);
    clReleaseProgram(cpProgram);
    clReleaseCommandQueue(cqCommandQueue);
    clReleaseContext(cxGPUContext);

    // Free host memory
    free(source);
    free(h_img);

    // finish
    shrEXIT(argc, argv);
}
    // Function to read in kernel from uncompiled source, create the OCL program and build the OCL program 
    // **************************************************************************************************
    int CreateProgramAndKernel(cl_context cxGPUContext, cl_device_id* cdDevices, const char *kernel_name, cl_kernel *kernel, bool bDouble)
    {
        cl_program cpProgram;
        size_t szSourceLen;
        cl_int ciErrNum = CL_SUCCESS; 

        // Read the kernel in from file
        shrLog("\nLoading Uncompiled kernel from .cl file, using %s\n", clSourcefile);
        char* cPathAndFile = shrFindFilePath(clSourcefile, cExecutablePath);
        oclCheckError(cPathAndFile != NULL, shrTRUE);
        char* pcSource = oclLoadProgSource(cPathAndFile, "", &szSourceLen);
        oclCheckError(pcSource != NULL, shrTRUE);

	// Check OpenCL version -> vec3 types are supported only from version 1.1 and above
	char cOCLVersion[32];
	clGetDeviceInfo(cdDevices[0], CL_DEVICE_VERSION, sizeof(cOCLVersion), &cOCLVersion, 0);

	int iVec3Length = 3;
	if( strncmp("OpenCL 1.0", cOCLVersion, 10) == 0 ) {
		iVec3Length = 4;
	}


		//for double precision
		char *pcSourceForDouble;
		std::stringstream header;
		if (bDouble)
		{
			header << "#define REAL double";
			header << std::endl;
			header << "#define REAL4 double4";
			header << std::endl;
			header << "#define REAL3 double" << iVec3Length;
			header << std::endl;
			header << "#define ZERO3 {0.0, 0.0, 0.0" << ((iVec3Length == 4) ? ", 0.0}" : "}");
			header << std::endl;
		}
		else
		{
			header << "#define REAL float";
			header << std::endl;
			header << "#define REAL4 float4";
			header << std::endl;
			header << "#define REAL3 float" << iVec3Length;
			header << std::endl;
			header << "#define ZERO3 {0.0f, 0.0f, 0.0f" << ((iVec3Length == 4) ? ", 0.0f}" : "}");
			header << std::endl;
		}
		
		header << pcSource;
		pcSourceForDouble = (char *)malloc(header.str().size() + 1);
		szSourceLen = header.str().size();
#ifdef WIN32
        strcpy_s(pcSourceForDouble, szSourceLen + 1, header.str().c_str());
#else
        strcpy(pcSourceForDouble, header.str().c_str());
#endif

        // create the program 
        cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&pcSourceForDouble, &szSourceLen, &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS);
        shrLog("clCreateProgramWithSource\n"); 

        // Build the program with 'mad' Optimization option
#ifdef MAC
	char *flags = "-cl-fast-relaxed-math -DMAC";
#else
	char *flags = "-cl-fast-relaxed-math";
#endif
        ciErrNum = clBuildProgram(cpProgram, 0, NULL, flags, NULL, NULL);
        if (ciErrNum != CL_SUCCESS)
        {
            // write out standard error, Build Log and PTX, then cleanup and exit
            shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
            oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
            oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclNbody.ptx");
            oclCheckError(ciErrNum, CL_SUCCESS); 
        }
        shrLog("clBuildProgram\n"); 

        // create the kernel
        *kernel = clCreateKernel(cpProgram, kernel_name, &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS); 
        shrLog("clCreateKernel\n"); 

		size_t wgSize;
		ciErrNum = clGetKernelWorkGroupInfo(*kernel, cdDevices[0], CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &wgSize, NULL);
		if (wgSize == 64) {
		  shrLog(
			 "ERROR: Minimum work-group size 256 required by this application is not supported on this device.\n");
		  exit(0);
		}
	
		free(pcSourceForDouble);

        return 0;
    }
Exemplo n.º 16
0
////////////////////////////////////////////////////////////////////////////////
//! Run a simple test for 
////////////////////////////////////////////////////////////////////////////////
int runTest(int argc, const char** argv)
{
    cl_platform_id cpPlatform = NULL;
    cl_uint ciDeviceCount = 0;
    cl_device_id *cdDevices = NULL;
    cl_int ciErrNum = CL_SUCCESS;

    //Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failed to create OpenCL context!\n");
        return ciErrNum;
    }

    //Get the devices
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &ciDeviceCount);
    cdDevices = (cl_device_id *)malloc(ciDeviceCount * sizeof(cl_device_id) );
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, ciDeviceCount, cdDevices, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failed to create OpenCL context!\n");
        return ciErrNum;
    }

    //Create the context
    cxGPUContext = clCreateContext(0, ciDeviceCount, cdDevices, NULL, NULL, &ciErrNum);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failed to create OpenCL context!\n");
        return ciErrNum;
    }

    if(shrCheckCmdLineFlag(argc, (const char**)argv, "device"))
    {
        // User specified GPUs
        char* deviceList;
        char* deviceStr;
        char* next_token;
        shrGetCmdLineArgumentstr(argc, (const char**)argv, "device", &deviceList);

        #ifdef WIN32
            deviceStr = strtok_s (deviceList," ,.-", &next_token);
        #else
            deviceStr = strtok (deviceList," ,.-");
        #endif   
        ciDeviceCount = 0;
        while(deviceStr != NULL) 
        {
            // get and print the device for this queue
            cl_device_id device = oclGetDev(cxGPUContext, atoi(deviceStr));
			if( device == (cl_device_id) -1  ) {
				shrLog(" Device %s does not exist!\n", deviceStr);
				return -1;
			}
			
			shrLog("Device %s: ", deviceStr);
            oclPrintDevName(LOGBOTH, device);            
            shrLog("\n");
           
            // create command queue
            commandQueue[ciDeviceCount] = clCreateCommandQueue(cxGPUContext, device, CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
            if (ciErrNum != CL_SUCCESS)
            {
                shrLog(" Error %i in clCreateCommandQueue call !!!\n\n", ciErrNum);
                return ciErrNum;
            }
                
            ++ciDeviceCount;

            #ifdef WIN32
                deviceStr = strtok_s (NULL," ,.-", &next_token);
            #else            
                deviceStr = strtok (NULL," ,.-");
            #endif
        }

        free(deviceList);
    } 
    else 
    {
        // Find out how many GPU's to compute on all available GPUs
	    size_t nDeviceBytes;
	    ciErrNum |= clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &nDeviceBytes);
	    ciDeviceCount = (cl_uint)nDeviceBytes/sizeof(cl_device_id);

        if (ciErrNum != CL_SUCCESS)
        {
            shrLog(" Error %i in clGetDeviceIDs call !!!\n\n", ciErrNum);
            return ciErrNum;
        }
        else if (ciDeviceCount == 0)
        {
            shrLog(" There are no devices supporting OpenCL (return code %i)\n\n", ciErrNum);
            return -1;
        } 

        // create command-queues
        for(unsigned int i = 0; i < ciDeviceCount; ++i) 
        {
            // get and print the device for this queue
            cl_device_id device = oclGetDev(cxGPUContext, i);
            shrLog("Device %d: ", i);
            oclPrintDevName(LOGBOTH, device);            
            shrLog("\n");

            // create command queue
            commandQueue[i] = clCreateCommandQueue(cxGPUContext, device, CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
            if (ciErrNum != CL_SUCCESS)
            {
                shrLog(" Error %i in clCreateCommandQueue call !!!\n\n", ciErrNum);
                return ciErrNum;
            }
        }
    }

    // Optional Command-line multiplier for matrix sizes
    shrGetCmdLineArgumenti(argc, (const char**)argv, "sizemult", &iSizeMultiple); 
    iSizeMultiple = CLAMP(iSizeMultiple, 1, 10);
    uiWA = WA * iSizeMultiple;
    uiHA = HA * iSizeMultiple;
    uiWB = WB * iSizeMultiple;
    uiHB = HB * iSizeMultiple;
    uiWC = WC * iSizeMultiple;
    uiHC = HC * iSizeMultiple;
    shrLog("\nUsing Matrix Sizes: A(%u x %u), B(%u x %u), C(%u x %u)\n", 
            uiWA, uiHA, uiWB, uiHB, uiWC, uiHC);

    // allocate host memory for matrices A and B
    unsigned int size_A = uiWA * uiHA;
    unsigned int mem_size_A = sizeof(float) * size_A;
    float* h_A_data = (float*)malloc(mem_size_A);
    unsigned int size_B = uiWB * uiHB;
    unsigned int mem_size_B = sizeof(float) * size_B;
    float* h_B_data = (float*)malloc(mem_size_B);

    // initialize host memory
    srand(2006);
    shrFillArray(h_A_data, size_A);
    shrFillArray(h_B_data, size_B);

    // allocate host memory for result
    unsigned int size_C = uiWC * uiHC;
    unsigned int mem_size_C = sizeof(float) * size_C;
    float* h_C = (float*) malloc(mem_size_C);

    // create OpenCL buffer pointing to the host memory
    cl_mem h_A = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
				    mem_size_A, h_A_data, &ciErrNum);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: clCreateBuffer\n");
        return ciErrNum;
    }

    // Program Setup
    size_t program_length;
    const char* header_path = shrFindFilePath("matrixMul.h", argv[0]);
    oclCheckError(header_path != NULL, shrTRUE);
    char* header = oclLoadProgSource(header_path, "", &program_length);
    if(!header)
    {
        shrLog("Error: Failed to load the header %s!\n", header_path);
        return -1000;
    }
    const char* source_path = shrFindFilePath("matrixMul.cl", argv[0]);
    oclCheckError(source_path != NULL, shrTRUE);
    char *source = oclLoadProgSource(source_path, header, &program_length);
    if(!source)
    {
        shrLog("Error: Failed to load compute program %s!\n", source_path);
        return -2000;
    }

    // create the program
    cl_program cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&source, 
                                                    &program_length, &ciErrNum);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failed to create program\n");
        return ciErrNum;
    }
    free(header);
    free(source);
    
    // build the program
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-fast-relaxed-math", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then return error
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclMatrixMul.ptx");
        return ciErrNum;
    }

    // write out PTX if requested on the command line
    if(shrCheckCmdLineFlag(argc, argv, "dump-ptx") )
    {
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclMatrixMul.ptx");
    }

    // Create Kernel
    for(unsigned int i = 0; i < ciDeviceCount; ++i) {
        multiplicationKernel[i] = clCreateKernel(cpProgram, "matrixMul", &ciErrNum);
        if (ciErrNum != CL_SUCCESS)
        {
            shrLog("Error: Failed to create kernel\n");
            return ciErrNum;
        }
    }
        
    // Run multiplication on 1..deviceCount GPUs to compare improvement
    shrLog("\nRunning Computations on 1 - %d GPU's...\n\n", ciDeviceCount);
    for(unsigned int k = 1; k <= ciDeviceCount; ++k) 
    {
        matrixMulGPU(k, h_A, h_B_data, mem_size_B, h_C);
    }

    // compute reference solution
    shrLog("Comparing results with CPU computation... \n\n");
    float* reference = (float*) malloc(mem_size_C);
    computeGold(reference, h_A_data, h_B_data, uiHA, uiWA, uiWB);

    // check result
    shrBOOL res = shrCompareL2fe(reference, h_C, size_C, 1.0e-6f);
    if (res != shrTRUE) 
    {
        printDiff(reference, h_C, uiWC, uiHC, 100, 1.0e-5f);
    }

    // clean up OCL resources
    ciErrNum = clReleaseMemObject(h_A);
    for(unsigned int k = 0; k < ciDeviceCount; ++k) 
    {
        ciErrNum |= clReleaseKernel( multiplicationKernel[k] );
        ciErrNum |= clReleaseCommandQueue( commandQueue[k] );
    }
    ciErrNum |= clReleaseProgram(cpProgram);
    ciErrNum |= clReleaseContext(cxGPUContext);
    if(ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failure releasing OpenCL resources: %d\n", ciErrNum);
        return ciErrNum;
    }

    // clean up memory
    free(h_A_data);
    free(h_B_data);
    free(h_C);
    free(reference);
    
    return ((shrTRUE == res) ? CL_SUCCESS : -3000);
}
// Helper function to create and build program and kernel
// *********************************************************************
cl_kernel getReductionKernel(ReduceType datatype, int whichKernel, int blockSize, int isPowOf2)
{
    // compile cl program
    size_t program_length;
    char *source; 

    std::ostringstream preamble;   

    // create the program
    // with type specification depending on datatype argument
    switch (datatype)
    {
    default:
    case REDUCE_INT:
        preamble << "#define T int" << std::endl;
        break;
    case REDUCE_FLOAT:
        preamble << "#define T float" << std::endl;
        break;
    }
    
    // set blockSize at compile time
    preamble << "#define blockSize " << blockSize << std::endl;
    
    // set isPow2 at compile time
    preamble << "#define nIsPow2 " << isPowOf2 << std::endl;
    
    // Load the source code and prepend the preamble
    source = oclLoadProgSource(source_path, preamble.str().c_str(), &program_length);
    oclCheckError(source != NULL, shrTRUE);
    
    cl_program cpProgram = clCreateProgramWithSource(cxGPUContext, 1,(const char **) &source, 
                                                     &program_length, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    free(source);

    // build the program
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-fast-relaxed-math", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclReduction.ptx");
        oclCheckError(ciErrNum, CL_SUCCESS); 
    }
    
    // create Kernel    
    std::ostringstream kernelName;
    kernelName << "reduce" << whichKernel;    
    cl_kernel ckKernel = clCreateKernel(cpProgram, kernelName.str().c_str(), &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);

    size_t wgSize;
    ciErrNum = clGetKernelWorkGroupInfo(ckKernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &wgSize, NULL);
    if (wgSize == 64) 
      smallBlock = true;
    else smallBlock = false;

    // NOTE: the program will get deleted when the kernel is also released
    clReleaseProgram(cpProgram);
    
    return ckKernel;
}