// host stub function
void ops_par_loop_update_halo_kernel1_t1(char const *name, ops_block block,
                                         int dim, int *range, ops_arg arg0,
                                         ops_arg arg1, ops_arg arg2,
                                         ops_arg arg3, ops_arg arg4,
                                         ops_arg arg5, ops_arg arg6,
                                         ops_arg arg7) {

  // Timing
  double t1, t2, c1, c2;

  char *p_a[8];
  int offs[8][3];
  ops_arg args[8] = {arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7};

#ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args, 8, range, 14))
    return;
#endif

  if (OPS_diags > 1) {
    ops_timing_realloc(14, "update_halo_kernel1_t1");
    OPS_kernels[14].count++;
    ops_timers_core(&c2, &t2);
  }

  // compute locally allocated range for the sub-block
  int start[3];
  int end[3];

#ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
#endif
#ifdef OPS_DEBUG
  ops_register_args(args, "update_halo_kernel1_t1");
#endif

  int arg_idx[3];
  int arg_idx_base[3];
#ifdef OPS_MPI
  if (compute_ranges(args, 8, block, range, start, end, arg_idx) < 0)
    return;
#else  // OPS_MPI
  for (int n = 0; n < 3; n++) {
    start[n] = range[2 * n];
    end[n] = range[2 * n + 1];
    arg_idx[n] = start[n];
  }
#endif // OPS_MPI
  for (int n = 0; n < 3; n++) {
    arg_idx_base[n] = arg_idx[n];
  }
  offs[0][0] = args[0].stencil->stride[0] * 1; // unit step in x dimension
  offs[0][1] =
      off3D(1, &start[0], &end[0], args[0].dat->size, args[0].stencil->stride) -
      offs[0][0];
  offs[0][2] =
      off3D(2, &start[0], &end[0], args[0].dat->size, args[0].stencil->stride) -
      offs[0][1] - offs[0][0];

  offs[1][0] = args[1].stencil->stride[0] * 1; // unit step in x dimension
  offs[1][1] =
      off3D(1, &start[0], &end[0], args[1].dat->size, args[1].stencil->stride) -
      offs[1][0];
  offs[1][2] =
      off3D(2, &start[0], &end[0], args[1].dat->size, args[1].stencil->stride) -
      offs[1][1] - offs[1][0];

  offs[2][0] = args[2].stencil->stride[0] * 1; // unit step in x dimension
  offs[2][1] =
      off3D(1, &start[0], &end[0], args[2].dat->size, args[2].stencil->stride) -
      offs[2][0];
  offs[2][2] =
      off3D(2, &start[0], &end[0], args[2].dat->size, args[2].stencil->stride) -
      offs[2][1] - offs[2][0];

  offs[3][0] = args[3].stencil->stride[0] * 1; // unit step in x dimension
  offs[3][1] =
      off3D(1, &start[0], &end[0], args[3].dat->size, args[3].stencil->stride) -
      offs[3][0];
  offs[3][2] =
      off3D(2, &start[0], &end[0], args[3].dat->size, args[3].stencil->stride) -
      offs[3][1] - offs[3][0];

  offs[4][0] = args[4].stencil->stride[0] * 1; // unit step in x dimension
  offs[4][1] =
      off3D(1, &start[0], &end[0], args[4].dat->size, args[4].stencil->stride) -
      offs[4][0];
  offs[4][2] =
      off3D(2, &start[0], &end[0], args[4].dat->size, args[4].stencil->stride) -
      offs[4][1] - offs[4][0];

  offs[5][0] = args[5].stencil->stride[0] * 1; // unit step in x dimension
  offs[5][1] =
      off3D(1, &start[0], &end[0], args[5].dat->size, args[5].stencil->stride) -
      offs[5][0];
  offs[5][2] =
      off3D(2, &start[0], &end[0], args[5].dat->size, args[5].stencil->stride) -
      offs[5][1] - offs[5][0];

  offs[6][0] = args[6].stencil->stride[0] * 1; // unit step in x dimension
  offs[6][1] =
      off3D(1, &start[0], &end[0], args[6].dat->size, args[6].stencil->stride) -
      offs[6][0];
  offs[6][2] =
      off3D(2, &start[0], &end[0], args[6].dat->size, args[6].stencil->stride) -
      offs[6][1] - offs[6][0];

  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int off0_2 = offs[0][2];
  int dat0 = (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size);
  int off1_0 = offs[1][0];
  int off1_1 = offs[1][1];
  int off1_2 = offs[1][2];
  int dat1 = (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size);
  int off2_0 = offs[2][0];
  int off2_1 = offs[2][1];
  int off2_2 = offs[2][2];
  int dat2 = (OPS_soa ? args[2].dat->type_size : args[2].dat->elem_size);
  int off3_0 = offs[3][0];
  int off3_1 = offs[3][1];
  int off3_2 = offs[3][2];
  int dat3 = (OPS_soa ? args[3].dat->type_size : args[3].dat->elem_size);
  int off4_0 = offs[4][0];
  int off4_1 = offs[4][1];
  int off4_2 = offs[4][2];
  int dat4 = (OPS_soa ? args[4].dat->type_size : args[4].dat->elem_size);
  int off5_0 = offs[5][0];
  int off5_1 = offs[5][1];
  int off5_2 = offs[5][2];
  int dat5 = (OPS_soa ? args[5].dat->type_size : args[5].dat->elem_size);
  int off6_0 = offs[6][0];
  int off6_1 = offs[6][1];
  int off6_2 = offs[6][2];
  int dat6 = (OPS_soa ? args[6].dat->type_size : args[6].dat->elem_size);

  // set up initial pointers and exchange halos if necessary
  int base0 = args[0].dat->base_offset +
              (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size) *
                  start[0] * args[0].stencil->stride[0];
  base0 = base0 +
          (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size) *
              args[0].dat->size[0] * start[1] * args[0].stencil->stride[1];
  base0 = base0 +
          (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size) *
              args[0].dat->size[0] * args[0].dat->size[1] * start[2] *
              args[0].stencil->stride[2];
  p_a[0] = (char *)args[0].data + base0;

  int base1 = args[1].dat->base_offset +
              (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size) *
                  start[0] * args[1].stencil->stride[0];
  base1 = base1 +
          (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size) *
              args[1].dat->size[0] * start[1] * args[1].stencil->stride[1];
  base1 = base1 +
          (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size) *
              args[1].dat->size[0] * args[1].dat->size[1] * start[2] *
              args[1].stencil->stride[2];
  p_a[1] = (char *)args[1].data + base1;

  int base2 = args[2].dat->base_offset +
              (OPS_soa ? args[2].dat->type_size : args[2].dat->elem_size) *
                  start[0] * args[2].stencil->stride[0];
  base2 = base2 +
          (OPS_soa ? args[2].dat->type_size : args[2].dat->elem_size) *
              args[2].dat->size[0] * start[1] * args[2].stencil->stride[1];
  base2 = base2 +
          (OPS_soa ? args[2].dat->type_size : args[2].dat->elem_size) *
              args[2].dat->size[0] * args[2].dat->size[1] * start[2] *
              args[2].stencil->stride[2];
  p_a[2] = (char *)args[2].data + base2;

  int base3 = args[3].dat->base_offset +
              (OPS_soa ? args[3].dat->type_size : args[3].dat->elem_size) *
                  start[0] * args[3].stencil->stride[0];
  base3 = base3 +
          (OPS_soa ? args[3].dat->type_size : args[3].dat->elem_size) *
              args[3].dat->size[0] * start[1] * args[3].stencil->stride[1];
  base3 = base3 +
          (OPS_soa ? args[3].dat->type_size : args[3].dat->elem_size) *
              args[3].dat->size[0] * args[3].dat->size[1] * start[2] *
              args[3].stencil->stride[2];
  p_a[3] = (char *)args[3].data + base3;

  int base4 = args[4].dat->base_offset +
              (OPS_soa ? args[4].dat->type_size : args[4].dat->elem_size) *
                  start[0] * args[4].stencil->stride[0];
  base4 = base4 +
          (OPS_soa ? args[4].dat->type_size : args[4].dat->elem_size) *
              args[4].dat->size[0] * start[1] * args[4].stencil->stride[1];
  base4 = base4 +
          (OPS_soa ? args[4].dat->type_size : args[4].dat->elem_size) *
              args[4].dat->size[0] * args[4].dat->size[1] * start[2] *
              args[4].stencil->stride[2];
  p_a[4] = (char *)args[4].data + base4;

  int base5 = args[5].dat->base_offset +
              (OPS_soa ? args[5].dat->type_size : args[5].dat->elem_size) *
                  start[0] * args[5].stencil->stride[0];
  base5 = base5 +
          (OPS_soa ? args[5].dat->type_size : args[5].dat->elem_size) *
              args[5].dat->size[0] * start[1] * args[5].stencil->stride[1];
  base5 = base5 +
          (OPS_soa ? args[5].dat->type_size : args[5].dat->elem_size) *
              args[5].dat->size[0] * args[5].dat->size[1] * start[2] *
              args[5].stencil->stride[2];
  p_a[5] = (char *)args[5].data + base5;

  int base6 = args[6].dat->base_offset +
              (OPS_soa ? args[6].dat->type_size : args[6].dat->elem_size) *
                  start[0] * args[6].stencil->stride[0];
  base6 = base6 +
          (OPS_soa ? args[6].dat->type_size : args[6].dat->elem_size) *
              args[6].dat->size[0] * start[1] * args[6].stencil->stride[1];
  base6 = base6 +
          (OPS_soa ? args[6].dat->type_size : args[6].dat->elem_size) *
              args[6].dat->size[0] * args[6].dat->size[1] * start[2] *
              args[6].stencil->stride[2];
  p_a[6] = (char *)args[6].data + base6;

  p_a[7] = args[7].data;

  // initialize global variable with the dimension of dats
  xdim0 = args[0].dat->size[0];
  ydim0 = args[0].dat->size[1];
  xdim1 = args[1].dat->size[0];
  ydim1 = args[1].dat->size[1];
  xdim2 = args[2].dat->size[0];
  ydim2 = args[2].dat->size[1];
  xdim3 = args[3].dat->size[0];
  ydim3 = args[3].dat->size[1];
  xdim4 = args[4].dat->size[0];
  ydim4 = args[4].dat->size[1];
  xdim5 = args[5].dat->size[0];
  ydim5 = args[5].dat->size[1];
  xdim6 = args[6].dat->size[0];
  ydim6 = args[6].dat->size[1];

  // Halo Exchanges
  ops_H_D_exchanges_host(args, 8);
  ops_halo_exchanges(args, 8, range);
  ops_H_D_exchanges_host(args, 8);

  if (OPS_diags > 1) {
    ops_timers_core(&c1, &t1);
    OPS_kernels[14].mpi_time += t1 - t2;
  }

  int n_x;
  for (int n_z = start[2]; n_z < end[2]; n_z++) {
    for (int n_y = start[1]; n_y < end[1]; n_y++) {
#pragma novector
      for (n_x = start[0];
           n_x < start[0] + ((end[0] - start[0]) / SIMD_VEC) * SIMD_VEC;
           n_x += SIMD_VEC) {
// call kernel function, passing in pointers to data -vectorised
#pragma simd
        for (int i = 0; i < SIMD_VEC; i++) {
          update_halo_kernel1_t1(
              (double *)p_a[0] + i * 1 * 1, (double *)p_a[1] + i * 1 * 1,
              (double *)p_a[2] + i * 1 * 1, (double *)p_a[3] + i * 1 * 1,
              (double *)p_a[4] + i * 1 * 1, (double *)p_a[5] + i * 1 * 1,
              (double *)p_a[6] + i * 1 * 1, (int *)p_a[7]);
        }

        // shift pointers to data x direction
        p_a[0] = p_a[0] + (dat0 * off0_0) * SIMD_VEC;
        p_a[1] = p_a[1] + (dat1 * off1_0) * SIMD_VEC;
        p_a[2] = p_a[2] + (dat2 * off2_0) * SIMD_VEC;
        p_a[3] = p_a[3] + (dat3 * off3_0) * SIMD_VEC;
        p_a[4] = p_a[4] + (dat4 * off4_0) * SIMD_VEC;
        p_a[5] = p_a[5] + (dat5 * off5_0) * SIMD_VEC;
        p_a[6] = p_a[6] + (dat6 * off6_0) * SIMD_VEC;
      }

      for (int n_x = start[0] + ((end[0] - start[0]) / SIMD_VEC) * SIMD_VEC;
           n_x < end[0]; n_x++) {
        // call kernel function, passing in pointers to data - remainder
        update_halo_kernel1_t1((double *)p_a[0], (double *)p_a[1],
                               (double *)p_a[2], (double *)p_a[3],
                               (double *)p_a[4], (double *)p_a[5],
                               (double *)p_a[6], (int *)p_a[7]);

        // shift pointers to data x direction
        p_a[0] = p_a[0] + (dat0 * off0_0);
        p_a[1] = p_a[1] + (dat1 * off1_0);
        p_a[2] = p_a[2] + (dat2 * off2_0);
        p_a[3] = p_a[3] + (dat3 * off3_0);
        p_a[4] = p_a[4] + (dat4 * off4_0);
        p_a[5] = p_a[5] + (dat5 * off5_0);
        p_a[6] = p_a[6] + (dat6 * off6_0);
      }

      // shift pointers to data y direction
      p_a[0] = p_a[0] + (dat0 * off0_1);
      p_a[1] = p_a[1] + (dat1 * off1_1);
      p_a[2] = p_a[2] + (dat2 * off2_1);
      p_a[3] = p_a[3] + (dat3 * off3_1);
      p_a[4] = p_a[4] + (dat4 * off4_1);
      p_a[5] = p_a[5] + (dat5 * off5_1);
      p_a[6] = p_a[6] + (dat6 * off6_1);
    }
    // shift pointers to data z direction
    p_a[0] = p_a[0] + (dat0 * off0_2);
    p_a[1] = p_a[1] + (dat1 * off1_2);
    p_a[2] = p_a[2] + (dat2 * off2_2);
    p_a[3] = p_a[3] + (dat3 * off3_2);
    p_a[4] = p_a[4] + (dat4 * off4_2);
    p_a[5] = p_a[5] + (dat5 * off5_2);
    p_a[6] = p_a[6] + (dat6 * off6_2);
  }
  if (OPS_diags > 1) {
    ops_timers_core(&c2, &t2);
    OPS_kernels[14].time += t2 - t1;
  }
  ops_set_dirtybit_host(args, 8);
  ops_set_halo_dirtybit3(&args[0], range);
  ops_set_halo_dirtybit3(&args[1], range);
  ops_set_halo_dirtybit3(&args[2], range);
  ops_set_halo_dirtybit3(&args[3], range);
  ops_set_halo_dirtybit3(&args[4], range);
  ops_set_halo_dirtybit3(&args[5], range);
  ops_set_halo_dirtybit3(&args[6], range);

  if (OPS_diags > 1) {
    // Update kernel record
    ops_timers_core(&c1, &t1);
    OPS_kernels[14].mpi_time += t1 - t2;
    OPS_kernels[14].transfer += ops_compute_transfer(dim, start, end, &arg0);
    OPS_kernels[14].transfer += ops_compute_transfer(dim, start, end, &arg1);
    OPS_kernels[14].transfer += ops_compute_transfer(dim, start, end, &arg2);
    OPS_kernels[14].transfer += ops_compute_transfer(dim, start, end, &arg3);
    OPS_kernels[14].transfer += ops_compute_transfer(dim, start, end, &arg4);
    OPS_kernels[14].transfer += ops_compute_transfer(dim, start, end, &arg5);
    OPS_kernels[14].transfer += ops_compute_transfer(dim, start, end, &arg6);
  }
}
// host stub function
void ops_par_loop_update_halo_kernel1_ba2(char const *name, ops_block block,
                                          int dim, int *range, ops_arg arg0,
                                          ops_arg arg1, ops_arg arg2,
                                          ops_arg arg3, ops_arg arg4,
                                          ops_arg arg5, ops_arg arg6,
                                          ops_arg arg7) {

  // Timing
  double t1, t2, c1, c2;

  int offs[8][3];
  ops_arg args[8] = {arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7};

#ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args, 8, range, 20))
    return;
#endif

  if (OPS_diags > 1) {
    ops_timing_realloc(20, "update_halo_kernel1_ba2");
    OPS_kernels[20].count++;
    ops_timers_core(&c1, &t1);
  }

#ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
#endif

  // compute locally allocated range for the sub-block

  int start[3];
  int end[3];
  int arg_idx[3];

#ifdef OPS_MPI
  if (!sb->owned)
    return;
  for (int n = 0; n < 3; n++) {
    start[n] = sb->decomp_disp[n];
    end[n] = sb->decomp_disp[n] + sb->decomp_size[n];
    if (start[n] >= range[2 * n]) {
      start[n] = 0;
    } else {
      start[n] = range[2 * n] - start[n];
    }
    if (sb->id_m[n] == MPI_PROC_NULL && range[2 * n] < 0)
      start[n] = range[2 * n];
    if (end[n] >= range[2 * n + 1]) {
      end[n] = range[2 * n + 1] - sb->decomp_disp[n];
    } else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n] == MPI_PROC_NULL &&
        (range[2 * n + 1] > sb->decomp_disp[n] + sb->decomp_size[n]))
      end[n] += (range[2 * n + 1] - sb->decomp_disp[n] - sb->decomp_size[n]);
    if (end[n] < start[n])
      end[n] = start[n];
  }
#else
  for (int n = 0; n < 3; n++) {
    start[n] = range[2 * n];
    end[n] = range[2 * n + 1];
  }
#endif
#ifdef OPS_DEBUG
  ops_register_args(args, "update_halo_kernel1_ba2");
#endif

  offs[0][0] = args[0].stencil->stride[0] * 1; // unit step in x dimension
  offs[0][1] =
      off3D(1, &start[0], &end[0], args[0].dat->size, args[0].stencil->stride) -
      offs[0][0];
  offs[0][2] =
      off3D(2, &start[0], &end[0], args[0].dat->size, args[0].stencil->stride) -
      offs[0][1] - offs[0][0];

  offs[1][0] = args[1].stencil->stride[0] * 1; // unit step in x dimension
  offs[1][1] =
      off3D(1, &start[0], &end[0], args[1].dat->size, args[1].stencil->stride) -
      offs[1][0];
  offs[1][2] =
      off3D(2, &start[0], &end[0], args[1].dat->size, args[1].stencil->stride) -
      offs[1][1] - offs[1][0];

  offs[2][0] = args[2].stencil->stride[0] * 1; // unit step in x dimension
  offs[2][1] =
      off3D(1, &start[0], &end[0], args[2].dat->size, args[2].stencil->stride) -
      offs[2][0];
  offs[2][2] =
      off3D(2, &start[0], &end[0], args[2].dat->size, args[2].stencil->stride) -
      offs[2][1] - offs[2][0];

  offs[3][0] = args[3].stencil->stride[0] * 1; // unit step in x dimension
  offs[3][1] =
      off3D(1, &start[0], &end[0], args[3].dat->size, args[3].stencil->stride) -
      offs[3][0];
  offs[3][2] =
      off3D(2, &start[0], &end[0], args[3].dat->size, args[3].stencil->stride) -
      offs[3][1] - offs[3][0];

  offs[4][0] = args[4].stencil->stride[0] * 1; // unit step in x dimension
  offs[4][1] =
      off3D(1, &start[0], &end[0], args[4].dat->size, args[4].stencil->stride) -
      offs[4][0];
  offs[4][2] =
      off3D(2, &start[0], &end[0], args[4].dat->size, args[4].stencil->stride) -
      offs[4][1] - offs[4][0];

  offs[5][0] = args[5].stencil->stride[0] * 1; // unit step in x dimension
  offs[5][1] =
      off3D(1, &start[0], &end[0], args[5].dat->size, args[5].stencil->stride) -
      offs[5][0];
  offs[5][2] =
      off3D(2, &start[0], &end[0], args[5].dat->size, args[5].stencil->stride) -
      offs[5][1] - offs[5][0];

  offs[6][0] = args[6].stencil->stride[0] * 1; // unit step in x dimension
  offs[6][1] =
      off3D(1, &start[0], &end[0], args[6].dat->size, args[6].stencil->stride) -
      offs[6][0];
  offs[6][2] =
      off3D(2, &start[0], &end[0], args[6].dat->size, args[6].stencil->stride) -
      offs[6][1] - offs[6][0];

  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int off0_2 = offs[0][2];
  int dat0 = (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size);
  int off1_0 = offs[1][0];
  int off1_1 = offs[1][1];
  int off1_2 = offs[1][2];
  int dat1 = (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size);
  int off2_0 = offs[2][0];
  int off2_1 = offs[2][1];
  int off2_2 = offs[2][2];
  int dat2 = (OPS_soa ? args[2].dat->type_size : args[2].dat->elem_size);
  int off3_0 = offs[3][0];
  int off3_1 = offs[3][1];
  int off3_2 = offs[3][2];
  int dat3 = (OPS_soa ? args[3].dat->type_size : args[3].dat->elem_size);
  int off4_0 = offs[4][0];
  int off4_1 = offs[4][1];
  int off4_2 = offs[4][2];
  int dat4 = (OPS_soa ? args[4].dat->type_size : args[4].dat->elem_size);
  int off5_0 = offs[5][0];
  int off5_1 = offs[5][1];
  int off5_2 = offs[5][2];
  int dat5 = (OPS_soa ? args[5].dat->type_size : args[5].dat->elem_size);
  int off6_0 = offs[6][0];
  int off6_1 = offs[6][1];
  int off6_2 = offs[6][2];
  int dat6 = (OPS_soa ? args[6].dat->type_size : args[6].dat->elem_size);

  // Halo Exchanges
  ops_H_D_exchanges_host(args, 8);
  ops_halo_exchanges(args, 8, range);
  ops_H_D_exchanges_host(args, 8);

#ifdef _OPENMP
  int nthreads = omp_get_max_threads();
#else
  int nthreads = 1;
#endif
  xdim0 = args[0].dat->size[0];
  ydim0 = args[0].dat->size[1];
  xdim1 = args[1].dat->size[0];
  ydim1 = args[1].dat->size[1];
  xdim2 = args[2].dat->size[0];
  ydim2 = args[2].dat->size[1];
  xdim3 = args[3].dat->size[0];
  ydim3 = args[3].dat->size[1];
  xdim4 = args[4].dat->size[0];
  ydim4 = args[4].dat->size[1];
  xdim5 = args[5].dat->size[0];
  ydim5 = args[5].dat->size[1];
  xdim6 = args[6].dat->size[0];
  ydim6 = args[6].dat->size[1];

  if (OPS_diags > 1) {
    ops_timers_core(&c2, &t2);
    OPS_kernels[20].mpi_time += t2 - t1;
  }

#pragma omp parallel for
  for (int thr = 0; thr < nthreads; thr++) {

    int z_size = end[2] - start[2];
    char *p_a[8];

    int start_i = start[2] + ((z_size - 1) / nthreads + 1) * thr;
    int finish_i =
        start[2] + MIN(((z_size - 1) / nthreads + 1) * (thr + 1), z_size);

    // get address per thread
    int start0 = start[0];
    int start1 = start[1];
    int start2 = start_i;

    // set up initial pointers
    int d_m[OPS_MAX_DIM];
#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[0].dat->d_m[d];
#endif
    int base0 = dat0 * 1 * (start0 * args[0].stencil->stride[0] -
                            args[0].dat->base[0] - d_m[0]);
    base0 = base0 +
            dat0 * args[0].dat->size[0] * (start1 * args[0].stencil->stride[1] -
                                           args[0].dat->base[1] - d_m[1]);
    base0 = base0 +
            dat0 * args[0].dat->size[0] * args[0].dat->size[1] *
                (start2 * args[0].stencil->stride[2] - args[0].dat->base[2] -
                 d_m[2]);
    p_a[0] = (char *)args[0].data + base0;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[1].dat->d_m[d] + OPS_sub_dat_list[args[1].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[1].dat->d_m[d];
#endif
    int base1 = dat1 * 1 * (start0 * args[1].stencil->stride[0] -
                            args[1].dat->base[0] - d_m[0]);
    base1 = base1 +
            dat1 * args[1].dat->size[0] * (start1 * args[1].stencil->stride[1] -
                                           args[1].dat->base[1] - d_m[1]);
    base1 = base1 +
            dat1 * args[1].dat->size[0] * args[1].dat->size[1] *
                (start2 * args[1].stencil->stride[2] - args[1].dat->base[2] -
                 d_m[2]);
    p_a[1] = (char *)args[1].data + base1;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[2].dat->d_m[d] + OPS_sub_dat_list[args[2].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[2].dat->d_m[d];
#endif
    int base2 = dat2 * 1 * (start0 * args[2].stencil->stride[0] -
                            args[2].dat->base[0] - d_m[0]);
    base2 = base2 +
            dat2 * args[2].dat->size[0] * (start1 * args[2].stencil->stride[1] -
                                           args[2].dat->base[1] - d_m[1]);
    base2 = base2 +
            dat2 * args[2].dat->size[0] * args[2].dat->size[1] *
                (start2 * args[2].stencil->stride[2] - args[2].dat->base[2] -
                 d_m[2]);
    p_a[2] = (char *)args[2].data + base2;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[3].dat->d_m[d] + OPS_sub_dat_list[args[3].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[3].dat->d_m[d];
#endif
    int base3 = dat3 * 1 * (start0 * args[3].stencil->stride[0] -
                            args[3].dat->base[0] - d_m[0]);
    base3 = base3 +
            dat3 * args[3].dat->size[0] * (start1 * args[3].stencil->stride[1] -
                                           args[3].dat->base[1] - d_m[1]);
    base3 = base3 +
            dat3 * args[3].dat->size[0] * args[3].dat->size[1] *
                (start2 * args[3].stencil->stride[2] - args[3].dat->base[2] -
                 d_m[2]);
    p_a[3] = (char *)args[3].data + base3;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[4].dat->d_m[d] + OPS_sub_dat_list[args[4].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[4].dat->d_m[d];
#endif
    int base4 = dat4 * 1 * (start0 * args[4].stencil->stride[0] -
                            args[4].dat->base[0] - d_m[0]);
    base4 = base4 +
            dat4 * args[4].dat->size[0] * (start1 * args[4].stencil->stride[1] -
                                           args[4].dat->base[1] - d_m[1]);
    base4 = base4 +
            dat4 * args[4].dat->size[0] * args[4].dat->size[1] *
                (start2 * args[4].stencil->stride[2] - args[4].dat->base[2] -
                 d_m[2]);
    p_a[4] = (char *)args[4].data + base4;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[5].dat->d_m[d] + OPS_sub_dat_list[args[5].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[5].dat->d_m[d];
#endif
    int base5 = dat5 * 1 * (start0 * args[5].stencil->stride[0] -
                            args[5].dat->base[0] - d_m[0]);
    base5 = base5 +
            dat5 * args[5].dat->size[0] * (start1 * args[5].stencil->stride[1] -
                                           args[5].dat->base[1] - d_m[1]);
    base5 = base5 +
            dat5 * args[5].dat->size[0] * args[5].dat->size[1] *
                (start2 * args[5].stencil->stride[2] - args[5].dat->base[2] -
                 d_m[2]);
    p_a[5] = (char *)args[5].data + base5;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[6].dat->d_m[d] + OPS_sub_dat_list[args[6].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[6].dat->d_m[d];
#endif
    int base6 = dat6 * 1 * (start0 * args[6].stencil->stride[0] -
                            args[6].dat->base[0] - d_m[0]);
    base6 = base6 +
            dat6 * args[6].dat->size[0] * (start1 * args[6].stencil->stride[1] -
                                           args[6].dat->base[1] - d_m[1]);
    base6 = base6 +
            dat6 * args[6].dat->size[0] * args[6].dat->size[1] *
                (start2 * args[6].stencil->stride[2] - args[6].dat->base[2] -
                 d_m[2]);
    p_a[6] = (char *)args[6].data + base6;

    p_a[7] = (char *)args[7].data;

    for (int n_z = start_i; n_z < finish_i; n_z++) {
      for (int n_y = start[1]; n_y < end[1]; n_y++) {
        for (int n_x = start[0];
             n_x < start[0] + (end[0] - start[0]) / SIMD_VEC; n_x++) {
// call kernel function, passing in pointers to data -vectorised
#pragma simd
          for (int i = 0; i < SIMD_VEC; i++) {
            update_halo_kernel1_ba2(
                (double *)p_a[0] + i * 1 * 1, (double *)p_a[1] + i * 1 * 1,
                (double *)p_a[2] + i * 1 * 1, (double *)p_a[3] + i * 1 * 1,
                (double *)p_a[4] + i * 1 * 1, (double *)p_a[5] + i * 1 * 1,
                (double *)p_a[6] + i * 1 * 1, (int *)p_a[7]);
          }

          // shift pointers to data x direction
          p_a[0] = p_a[0] + (dat0 * off0_0) * SIMD_VEC;
          p_a[1] = p_a[1] + (dat1 * off1_0) * SIMD_VEC;
          p_a[2] = p_a[2] + (dat2 * off2_0) * SIMD_VEC;
          p_a[3] = p_a[3] + (dat3 * off3_0) * SIMD_VEC;
          p_a[4] = p_a[4] + (dat4 * off4_0) * SIMD_VEC;
          p_a[5] = p_a[5] + (dat5 * off5_0) * SIMD_VEC;
          p_a[6] = p_a[6] + (dat6 * off6_0) * SIMD_VEC;
        }

        for (int n_x = start[0] + ((end[0] - start[0]) / SIMD_VEC) * SIMD_VEC;
             n_x < end[0]; n_x++) {
          // call kernel function, passing in pointers to data - remainder
          update_halo_kernel1_ba2((double *)p_a[0], (double *)p_a[1],
                                  (double *)p_a[2], (double *)p_a[3],
                                  (double *)p_a[4], (double *)p_a[5],
                                  (double *)p_a[6], (int *)p_a[7]);

          // shift pointers to data x direction
          p_a[0] = p_a[0] + (dat0 * off0_0);
          p_a[1] = p_a[1] + (dat1 * off1_0);
          p_a[2] = p_a[2] + (dat2 * off2_0);
          p_a[3] = p_a[3] + (dat3 * off3_0);
          p_a[4] = p_a[4] + (dat4 * off4_0);
          p_a[5] = p_a[5] + (dat5 * off5_0);
          p_a[6] = p_a[6] + (dat6 * off6_0);
        }

        // shift pointers to data y direction
        p_a[0] = p_a[0] + (dat0 * off0_1);
        p_a[1] = p_a[1] + (dat1 * off1_1);
        p_a[2] = p_a[2] + (dat2 * off2_1);
        p_a[3] = p_a[3] + (dat3 * off3_1);
        p_a[4] = p_a[4] + (dat4 * off4_1);
        p_a[5] = p_a[5] + (dat5 * off5_1);
        p_a[6] = p_a[6] + (dat6 * off6_1);
      }
      // shift pointers to data z direction
      p_a[0] = p_a[0] + (dat0 * off0_2);
      p_a[1] = p_a[1] + (dat1 * off1_2);
      p_a[2] = p_a[2] + (dat2 * off2_2);
      p_a[3] = p_a[3] + (dat3 * off3_2);
      p_a[4] = p_a[4] + (dat4 * off4_2);
      p_a[5] = p_a[5] + (dat5 * off5_2);
      p_a[6] = p_a[6] + (dat6 * off6_2);
    }
  }

  if (OPS_diags > 1) {
    ops_timers_core(&c1, &t1);
    OPS_kernels[20].time += t1 - t2;
  }

  ops_set_dirtybit_host(args, 8);

  ops_set_halo_dirtybit3(&args[0], range);
  ops_set_halo_dirtybit3(&args[1], range);
  ops_set_halo_dirtybit3(&args[2], range);
  ops_set_halo_dirtybit3(&args[3], range);
  ops_set_halo_dirtybit3(&args[4], range);
  ops_set_halo_dirtybit3(&args[5], range);
  ops_set_halo_dirtybit3(&args[6], range);

  if (OPS_diags > 1) {
    // Update kernel record
    ops_timers_core(&c2, &t2);
    OPS_kernels[20].mpi_time += t2 - t1;
    OPS_kernels[20].transfer += ops_compute_transfer(dim, start, end, &arg0);
    OPS_kernels[20].transfer += ops_compute_transfer(dim, start, end, &arg1);
    OPS_kernels[20].transfer += ops_compute_transfer(dim, start, end, &arg2);
    OPS_kernels[20].transfer += ops_compute_transfer(dim, start, end, &arg3);
    OPS_kernels[20].transfer += ops_compute_transfer(dim, start, end, &arg4);
    OPS_kernels[20].transfer += ops_compute_transfer(dim, start, end, &arg5);
    OPS_kernels[20].transfer += ops_compute_transfer(dim, start, end, &arg6);
  }
}
// host stub function
void ops_par_loop_update_halo_kernel5_plus_4_b(char const *name, ops_block block, int dim, int* range,
 ops_arg arg0, ops_arg arg1, ops_arg arg2) {

  //Timing
  double t1,t2,c1,c2;
  ops_timers_core(&c1,&t1);


  int  offs[3][3];
  ops_arg args[3] = { arg0, arg1, arg2};



  ops_timing_realloc(115,"update_halo_kernel5_plus_4_b");
  OPS_kernels[115].count++;

  //compute locally allocated range for the sub-block

  int start[3];
  int end[3];

  #ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
  if (!sb->owned) return;
  for ( int n=0; n<3; n++ ){
    start[n] = sb->decomp_disp[n];end[n] = sb->decomp_disp[n]+sb->decomp_size[n];
    if (start[n] >= range[2*n]) {
      start[n] = 0;
    }
    else {
      start[n] = range[2*n] - start[n];
    }
    if (sb->id_m[n]==MPI_PROC_NULL && range[2*n] < 0) start[n] = range[2*n];
    if (end[n] >= range[2*n+1]) {
      end[n] = range[2*n+1] - sb->decomp_disp[n];
    }
    else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n]==MPI_PROC_NULL && (range[2*n+1] > sb->decomp_disp[n]+sb->decomp_size[n]))
      end[n] += (range[2*n+1]-sb->decomp_disp[n]-sb->decomp_size[n]);
  }
  #else //OPS_MPI
  for ( int n=0; n<3; n++ ){
    start[n] = range[2*n];end[n] = range[2*n+1];
  }
  #endif //OPS_MPI
  #ifdef OPS_DEBUG
  ops_register_args(args, "update_halo_kernel5_plus_4_b");
  #endif

  offs[0][0] = args[0].stencil->stride[0]*1;  //unit step in x dimension
  offs[0][1] = off3D(1, &start[0],
      &end[0],args[0].dat->size, args[0].stencil->stride) - offs[0][0];
  offs[0][2] = off3D(2, &start[0],
      &end[0],args[0].dat->size, args[0].stencil->stride) - offs[0][1] - offs[0][0];

  offs[1][0] = args[1].stencil->stride[0]*1;  //unit step in x dimension
  offs[1][1] = off3D(1, &start[0],
      &end[0],args[1].dat->size, args[1].stencil->stride) - offs[1][0];
  offs[1][2] = off3D(2, &start[0],
      &end[0],args[1].dat->size, args[1].stencil->stride) - offs[1][1] - offs[1][0];



  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int off0_2 = offs[0][2];
  int dat0 = args[0].dat->elem_size;
  int off1_0 = offs[1][0];
  int off1_1 = offs[1][1];
  int off1_2 = offs[1][2];
  int dat1 = args[1].dat->elem_size;


  #ifdef _OPENMP
  int nthreads = omp_get_max_threads( );
  #else
  int nthreads = 1;
  #endif
  xdim0 = args[0].dat->size[0]*args[0].dat->dim;
  ydim0 = args[0].dat->size[1];
  xdim1 = args[1].dat->size[0]*args[1].dat->dim;
  ydim1 = args[1].dat->size[1];

  ops_H_D_exchanges_host(args, 3);

  //Halo Exchanges
  ops_halo_exchanges(args,3,range);


  ops_timers_core(&c2,&t2);
  OPS_kernels[115].mpi_time += t2-t1;


  #pragma omp parallel for
  for ( int thr=0; thr<nthreads; thr++ ){

    int z_size = end[2]-start[2];
    char *p_a[3];

    int start_i = start[2] + ((z_size-1)/nthreads+1)*thr;
    int finish_i = start[2] + MIN(((z_size-1)/nthreads+1)*(thr+1),z_size);

    //get address per thread
    int start0 = start[0];
    int start1 = start[1];
    int start2 = start_i;

    //set up initial pointers 
    int d_m[OPS_MAX_DIM];
    #ifdef OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
    #else //OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d];
    #endif //OPS_MPI
    int base0 = dat0 * 1 * 
    (start0 * args[0].stencil->stride[0] - args[0].dat->base[0] - d_m[0]);
    base0 = base0+ dat0 *
      args[0].dat->size[0] *
      (start1 * args[0].stencil->stride[1] - args[0].dat->base[1] - d_m[1]);
    base0 = base0+ dat0 *
      args[0].dat->size[0] *
      args[0].dat->size[1] *
      (start2 * args[0].stencil->stride[2] - args[0].dat->base[2] - d_m[2]);
    p_a[0] = (char *)args[0].data + base0;

    #ifdef OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d] + OPS_sub_dat_list[args[1].dat->index]->d_im[d];
    #else //OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d];
    #endif //OPS_MPI
    int base1 = dat1 * 1 * 
    (start0 * args[1].stencil->stride[0] - args[1].dat->base[0] - d_m[0]);
    base1 = base1+ dat1 *
      args[1].dat->size[0] *
      (start1 * args[1].stencil->stride[1] - args[1].dat->base[1] - d_m[1]);
    base1 = base1+ dat1 *
      args[1].dat->size[0] *
      args[1].dat->size[1] *
      (start2 * args[1].stencil->stride[2] - args[1].dat->base[2] - d_m[2]);
    p_a[1] = (char *)args[1].data + base1;

    p_a[2] = (char *)args[2].data;


    for ( int n_z=start_i; n_z<finish_i; n_z++ ){
      for ( int n_y=start[1]; n_y<end[1]; n_y++ ){
        for ( int n_x=start[0]; n_x<start[0]+(end[0]-start[0])/SIMD_VEC; n_x++ ){
          //call kernel function, passing in pointers to data -vectorised
          #pragma simd
          for ( int i=0; i<SIMD_VEC; i++ ){
            update_halo_kernel5_plus_4_b(  (double * )p_a[0]+ i*1, (double * )p_a[1]+ i*1, (int * )p_a[2] );

          }

          //shift pointers to data x direction
          p_a[0]= p_a[0] + (dat0 * off0_0)*SIMD_VEC;
          p_a[1]= p_a[1] + (dat1 * off1_0)*SIMD_VEC;
        }

        for ( int n_x=start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x<end[0]; n_x++ ){
          //call kernel function, passing in pointers to data - remainder
          update_halo_kernel5_plus_4_b(  (double * )p_a[0], (double * )p_a[1], (int * )p_a[2] );


          //shift pointers to data x direction
          p_a[0]= p_a[0] + (dat0 * off0_0);
          p_a[1]= p_a[1] + (dat1 * off1_0);
        }

        //shift pointers to data y direction
        p_a[0]= p_a[0] + (dat0 * off0_1);
        p_a[1]= p_a[1] + (dat1 * off1_1);
      }
      //shift pointers to data z direction
      p_a[0]= p_a[0] + (dat0 * off0_2);
      p_a[1]= p_a[1] + (dat1 * off1_2);
    }
  }

  ops_timers_core(&c1,&t1);
  OPS_kernels[115].time += t1-t2;

  ops_set_dirtybit_host(args, 3);

  ops_set_halo_dirtybit3(&args[0],range);
  ops_set_halo_dirtybit3(&args[1],range);

  //Update kernel record
  ops_timers_core(&c2,&t2);
  OPS_kernels[115].mpi_time += t2-t1;
  OPS_kernels[115].transfer += ops_compute_transfer(dim, range, &arg0);
  OPS_kernels[115].transfer += ops_compute_transfer(dim, range, &arg1);
}
// host stub function
void ops_par_loop_advec_cell_kernel3_ydir(char const *name, ops_block block, int dim, int* range,
 ops_arg arg0, ops_arg arg1, ops_arg arg2, ops_arg arg3,
 ops_arg arg4, ops_arg arg5, ops_arg arg6, ops_arg arg7) {

  char *p_a[8];
  int  offs[8][3];
  ops_arg args[8] = { arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7};



  ops_timing_realloc(35,"advec_cell_kernel3_ydir");
  OPS_kernels[35].count++;

  //compute locally allocated range for the sub-block
  int start[3];
  int end[3];

  #ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
  if (!sb->owned) return;
  for ( int n=0; n<3; n++ ){
    start[n] = sb->decomp_disp[n];end[n] = sb->decomp_disp[n]+sb->decomp_size[n];
    if (start[n] >= range[2*n]) {
      start[n] = 0;
    }
    else {
      start[n] = range[2*n] - start[n];
    }
    if (sb->id_m[n]==MPI_PROC_NULL && range[2*n] < 0) start[n] = range[2*n];
    if (end[n] >= range[2*n+1]) {
      end[n] = range[2*n+1] - sb->decomp_disp[n];
    }
    else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n]==MPI_PROC_NULL && (range[2*n+1] > sb->decomp_disp[n]+sb->decomp_size[n]))
      end[n] += (range[2*n+1]-sb->decomp_disp[n]-sb->decomp_size[n]);
  }
  #else //OPS_MPI
  for ( int n=0; n<3; n++ ){
    start[n] = range[2*n];end[n] = range[2*n+1];
  }
  #endif //OPS_MPI
  #ifdef OPS_DEBUG
  ops_register_args(args, "advec_cell_kernel3_ydir");
  #endif

  offs[0][0] = args[0].stencil->stride[0]*1;  //unit step in x dimension
  offs[0][1] = off3D(1, &start[0],
      &end[0],args[0].dat->size, args[0].stencil->stride) - offs[0][0];
  offs[0][2] = off3D(2, &start[0],
      &end[0],args[0].dat->size, args[0].stencil->stride) - offs[0][1] - offs[0][0];

  offs[1][0] = args[1].stencil->stride[0]*1;  //unit step in x dimension
  offs[1][1] = off3D(1, &start[0],
      &end[0],args[1].dat->size, args[1].stencil->stride) - offs[1][0];
  offs[1][2] = off3D(2, &start[0],
      &end[0],args[1].dat->size, args[1].stencil->stride) - offs[1][1] - offs[1][0];

  offs[2][0] = args[2].stencil->stride[0]*1;  //unit step in x dimension
  offs[2][1] = off3D(1, &start[0],
      &end[0],args[2].dat->size, args[2].stencil->stride) - offs[2][0];
  offs[2][2] = off3D(2, &start[0],
      &end[0],args[2].dat->size, args[2].stencil->stride) - offs[2][1] - offs[2][0];

  offs[3][0] = args[3].stencil->stride[0]*1;  //unit step in x dimension
  offs[3][1] = off3D(1, &start[0],
      &end[0],args[3].dat->size, args[3].stencil->stride) - offs[3][0];
  offs[3][2] = off3D(2, &start[0],
      &end[0],args[3].dat->size, args[3].stencil->stride) - offs[3][1] - offs[3][0];

  offs[4][0] = args[4].stencil->stride[0]*1;  //unit step in x dimension
  offs[4][1] = off3D(1, &start[0],
      &end[0],args[4].dat->size, args[4].stencil->stride) - offs[4][0];
  offs[4][2] = off3D(2, &start[0],
      &end[0],args[4].dat->size, args[4].stencil->stride) - offs[4][1] - offs[4][0];

  offs[5][0] = args[5].stencil->stride[0]*1;  //unit step in x dimension
  offs[5][1] = off3D(1, &start[0],
      &end[0],args[5].dat->size, args[5].stencil->stride) - offs[5][0];
  offs[5][2] = off3D(2, &start[0],
      &end[0],args[5].dat->size, args[5].stencil->stride) - offs[5][1] - offs[5][0];

  offs[6][0] = args[6].stencil->stride[0]*1;  //unit step in x dimension
  offs[6][1] = off3D(1, &start[0],
      &end[0],args[6].dat->size, args[6].stencil->stride) - offs[6][0];
  offs[6][2] = off3D(2, &start[0],
      &end[0],args[6].dat->size, args[6].stencil->stride) - offs[6][1] - offs[6][0];

  offs[7][0] = args[7].stencil->stride[0]*1;  //unit step in x dimension
  offs[7][1] = off3D(1, &start[0],
      &end[0],args[7].dat->size, args[7].stencil->stride) - offs[7][0];
  offs[7][2] = off3D(2, &start[0],
      &end[0],args[7].dat->size, args[7].stencil->stride) - offs[7][1] - offs[7][0];



  //Timing
  double t1,t2,c1,c2;
  ops_timers_core(&c2,&t2);

  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int off0_2 = offs[0][2];
  int dat0 = args[0].dat->elem_size;
  int off1_0 = offs[1][0];
  int off1_1 = offs[1][1];
  int off1_2 = offs[1][2];
  int dat1 = args[1].dat->elem_size;
  int off2_0 = offs[2][0];
  int off2_1 = offs[2][1];
  int off2_2 = offs[2][2];
  int dat2 = args[2].dat->elem_size;
  int off3_0 = offs[3][0];
  int off3_1 = offs[3][1];
  int off3_2 = offs[3][2];
  int dat3 = args[3].dat->elem_size;
  int off4_0 = offs[4][0];
  int off4_1 = offs[4][1];
  int off4_2 = offs[4][2];
  int dat4 = args[4].dat->elem_size;
  int off5_0 = offs[5][0];
  int off5_1 = offs[5][1];
  int off5_2 = offs[5][2];
  int dat5 = args[5].dat->elem_size;
  int off6_0 = offs[6][0];
  int off6_1 = offs[6][1];
  int off6_2 = offs[6][2];
  int dat6 = args[6].dat->elem_size;
  int off7_0 = offs[7][0];
  int off7_1 = offs[7][1];
  int off7_2 = offs[7][2];
  int dat7 = args[7].dat->elem_size;

  //set up initial pointers and exchange halos if necessary
  int d_m[OPS_MAX_DIM];
  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d];
  #endif //OPS_MPI
  int base0 = dat0 * 1 * 
    (start[0] * args[0].stencil->stride[0] - args[0].dat->base[0] - d_m[0]);
  base0 = base0+ dat0 *
    args[0].dat->size[0] *
    (start[1] * args[0].stencil->stride[1] - args[0].dat->base[1] - d_m[1]);
  base0 = base0+ dat0 *
    args[0].dat->size[0] *
    args[0].dat->size[1] *
    (start[2] * args[0].stencil->stride[2] - args[0].dat->base[2] - d_m[2]);
  p_a[0] = (char *)args[0].data + base0;

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d] + OPS_sub_dat_list[args[1].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d];
  #endif //OPS_MPI
  int base1 = dat1 * 1 * 
    (start[0] * args[1].stencil->stride[0] - args[1].dat->base[0] - d_m[0]);
  base1 = base1+ dat1 *
    args[1].dat->size[0] *
    (start[1] * args[1].stencil->stride[1] - args[1].dat->base[1] - d_m[1]);
  base1 = base1+ dat1 *
    args[1].dat->size[0] *
    args[1].dat->size[1] *
    (start[2] * args[1].stencil->stride[2] - args[1].dat->base[2] - d_m[2]);
  p_a[1] = (char *)args[1].data + base1;

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[2].dat->d_m[d] + OPS_sub_dat_list[args[2].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[2].dat->d_m[d];
  #endif //OPS_MPI
  int base2 = dat2 * 1 * 
    (start[0] * args[2].stencil->stride[0] - args[2].dat->base[0] - d_m[0]);
  base2 = base2+ dat2 *
    args[2].dat->size[0] *
    (start[1] * args[2].stencil->stride[1] - args[2].dat->base[1] - d_m[1]);
  base2 = base2+ dat2 *
    args[2].dat->size[0] *
    args[2].dat->size[1] *
    (start[2] * args[2].stencil->stride[2] - args[2].dat->base[2] - d_m[2]);
  p_a[2] = (char *)args[2].data + base2;

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[3].dat->d_m[d] + OPS_sub_dat_list[args[3].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[3].dat->d_m[d];
  #endif //OPS_MPI
  int base3 = dat3 * 1 * 
    (start[0] * args[3].stencil->stride[0] - args[3].dat->base[0] - d_m[0]);
  base3 = base3+ dat3 *
    args[3].dat->size[0] *
    (start[1] * args[3].stencil->stride[1] - args[3].dat->base[1] - d_m[1]);
  base3 = base3+ dat3 *
    args[3].dat->size[0] *
    args[3].dat->size[1] *
    (start[2] * args[3].stencil->stride[2] - args[3].dat->base[2] - d_m[2]);
  p_a[3] = (char *)args[3].data + base3;

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[4].dat->d_m[d] + OPS_sub_dat_list[args[4].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[4].dat->d_m[d];
  #endif //OPS_MPI
  int base4 = dat4 * 1 * 
    (start[0] * args[4].stencil->stride[0] - args[4].dat->base[0] - d_m[0]);
  base4 = base4+ dat4 *
    args[4].dat->size[0] *
    (start[1] * args[4].stencil->stride[1] - args[4].dat->base[1] - d_m[1]);
  base4 = base4+ dat4 *
    args[4].dat->size[0] *
    args[4].dat->size[1] *
    (start[2] * args[4].stencil->stride[2] - args[4].dat->base[2] - d_m[2]);
  p_a[4] = (char *)args[4].data + base4;

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[5].dat->d_m[d] + OPS_sub_dat_list[args[5].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[5].dat->d_m[d];
  #endif //OPS_MPI
  int base5 = dat5 * 1 * 
    (start[0] * args[5].stencil->stride[0] - args[5].dat->base[0] - d_m[0]);
  base5 = base5+ dat5 *
    args[5].dat->size[0] *
    (start[1] * args[5].stencil->stride[1] - args[5].dat->base[1] - d_m[1]);
  base5 = base5+ dat5 *
    args[5].dat->size[0] *
    args[5].dat->size[1] *
    (start[2] * args[5].stencil->stride[2] - args[5].dat->base[2] - d_m[2]);
  p_a[5] = (char *)args[5].data + base5;

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[6].dat->d_m[d] + OPS_sub_dat_list[args[6].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[6].dat->d_m[d];
  #endif //OPS_MPI
  int base6 = dat6 * 1 * 
    (start[0] * args[6].stencil->stride[0] - args[6].dat->base[0] - d_m[0]);
  base6 = base6+ dat6 *
    args[6].dat->size[0] *
    (start[1] * args[6].stencil->stride[1] - args[6].dat->base[1] - d_m[1]);
  base6 = base6+ dat6 *
    args[6].dat->size[0] *
    args[6].dat->size[1] *
    (start[2] * args[6].stencil->stride[2] - args[6].dat->base[2] - d_m[2]);
  p_a[6] = (char *)args[6].data + base6;

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[7].dat->d_m[d] + OPS_sub_dat_list[args[7].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[7].dat->d_m[d];
  #endif //OPS_MPI
  int base7 = dat7 * 1 * 
    (start[0] * args[7].stencil->stride[0] - args[7].dat->base[0] - d_m[0]);
  base7 = base7+ dat7 *
    args[7].dat->size[0] *
    (start[1] * args[7].stencil->stride[1] - args[7].dat->base[1] - d_m[1]);
  base7 = base7+ dat7 *
    args[7].dat->size[0] *
    args[7].dat->size[1] *
    (start[2] * args[7].stencil->stride[2] - args[7].dat->base[2] - d_m[2]);
  p_a[7] = (char *)args[7].data + base7;


  ops_H_D_exchanges_host(args, 8);
  ops_halo_exchanges(args,8,range);
  ops_H_D_exchanges_host(args, 8);

  ops_timers_core(&c1,&t1);
  OPS_kernels[35].mpi_time += t1-t2;

  xdim0 = args[0].dat->size[0]*args[0].dat->dim;
  ydim0 = args[0].dat->size[1];
  xdim1 = args[1].dat->size[0]*args[1].dat->dim;
  ydim1 = args[1].dat->size[1];
  xdim2 = args[2].dat->size[0]*args[2].dat->dim;
  ydim2 = args[2].dat->size[1];
  xdim3 = args[3].dat->size[0]*args[3].dat->dim;
  ydim3 = args[3].dat->size[1];
  xdim4 = args[4].dat->size[0]*args[4].dat->dim;
  ydim4 = args[4].dat->size[1];
  xdim5 = args[5].dat->size[0]*args[5].dat->dim;
  ydim5 = args[5].dat->size[1];
  xdim6 = args[6].dat->size[0]*args[6].dat->dim;
  ydim6 = args[6].dat->size[1];
  xdim7 = args[7].dat->size[0]*args[7].dat->dim;
  ydim7 = args[7].dat->size[1];

  int n_x;
  for ( int n_z=start[2]; n_z<end[2]; n_z++ ){
    for ( int n_y=start[1]; n_y<end[1]; n_y++ ){
      #pragma novector
      for( n_x=start[0]; n_x<start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x+=SIMD_VEC ) {
        //call kernel function, passing in pointers to data -vectorised
        #pragma simd
        for ( int i=0; i<SIMD_VEC; i++ ){
          advec_cell_kernel3_ydir(  (double *)p_a[0]+ i*1, (double *)p_a[1]+ i*1, (int *)p_a[2]+ i*0,
           (double *)p_a[3]+ i*0, (double *)p_a[4]+ i*1, (double *)p_a[5]+ i*1, (double *)p_a[6]+ i*1,
           (double *)p_a[7]+ i*1 );

        }

        //shift pointers to data x direction
        p_a[0]= p_a[0] + (dat0 * off0_0)*SIMD_VEC;
        p_a[1]= p_a[1] + (dat1 * off1_0)*SIMD_VEC;
        p_a[2]= p_a[2] + (dat2 * off2_0)*SIMD_VEC;
        p_a[3]= p_a[3] + (dat3 * off3_0)*SIMD_VEC;
        p_a[4]= p_a[4] + (dat4 * off4_0)*SIMD_VEC;
        p_a[5]= p_a[5] + (dat5 * off5_0)*SIMD_VEC;
        p_a[6]= p_a[6] + (dat6 * off6_0)*SIMD_VEC;
        p_a[7]= p_a[7] + (dat7 * off7_0)*SIMD_VEC;
      }

      for ( int n_x=start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x<end[0]; n_x++ ){
        //call kernel function, passing in pointers to data - remainder
        advec_cell_kernel3_ydir(  (double *)p_a[0], (double *)p_a[1], (int *)p_a[2],
           (double *)p_a[3], (double *)p_a[4], (double *)p_a[5], (double *)p_a[6],
           (double *)p_a[7] );


        //shift pointers to data x direction
        p_a[0]= p_a[0] + (dat0 * off0_0);
        p_a[1]= p_a[1] + (dat1 * off1_0);
        p_a[2]= p_a[2] + (dat2 * off2_0);
        p_a[3]= p_a[3] + (dat3 * off3_0);
        p_a[4]= p_a[4] + (dat4 * off4_0);
        p_a[5]= p_a[5] + (dat5 * off5_0);
        p_a[6]= p_a[6] + (dat6 * off6_0);
        p_a[7]= p_a[7] + (dat7 * off7_0);
      }

      //shift pointers to data y direction
      p_a[0]= p_a[0] + (dat0 * off0_1);
      p_a[1]= p_a[1] + (dat1 * off1_1);
      p_a[2]= p_a[2] + (dat2 * off2_1);
      p_a[3]= p_a[3] + (dat3 * off3_1);
      p_a[4]= p_a[4] + (dat4 * off4_1);
      p_a[5]= p_a[5] + (dat5 * off5_1);
      p_a[6]= p_a[6] + (dat6 * off6_1);
      p_a[7]= p_a[7] + (dat7 * off7_1);
    }
    //shift pointers to data z direction
    p_a[0]= p_a[0] + (dat0 * off0_2);
    p_a[1]= p_a[1] + (dat1 * off1_2);
    p_a[2]= p_a[2] + (dat2 * off2_2);
    p_a[3]= p_a[3] + (dat3 * off3_2);
    p_a[4]= p_a[4] + (dat4 * off4_2);
    p_a[5]= p_a[5] + (dat5 * off5_2);
    p_a[6]= p_a[6] + (dat6 * off6_2);
    p_a[7]= p_a[7] + (dat7 * off7_2);
  }
  ops_timers_core(&c2,&t2);
  OPS_kernels[35].time += t2-t1;
  ops_set_dirtybit_host(args, 8);
  ops_set_halo_dirtybit3(&args[6],range);
  ops_set_halo_dirtybit3(&args[7],range);

  //Update kernel record
  OPS_kernels[35].transfer += ops_compute_transfer(dim, range, &arg0);
  OPS_kernels[35].transfer += ops_compute_transfer(dim, range, &arg1);
  OPS_kernels[35].transfer += ops_compute_transfer(dim, range, &arg2);
  OPS_kernels[35].transfer += ops_compute_transfer(dim, range, &arg3);
  OPS_kernels[35].transfer += ops_compute_transfer(dim, range, &arg4);
  OPS_kernels[35].transfer += ops_compute_transfer(dim, range, &arg5);
  OPS_kernels[35].transfer += ops_compute_transfer(dim, range, &arg6);
  OPS_kernels[35].transfer += ops_compute_transfer(dim, range, &arg7);
}
// host stub function
void ops_par_loop_update_halo_kernel2_zvel_minus_2_front(char const *name, ops_block block, int dim, int* range,
 ops_arg arg0, ops_arg arg1, ops_arg arg2) {

  char *p_a[3];
  int  offs[3][3];
  ops_arg args[3] = { arg0, arg1, arg2};



  ops_timing_realloc(88,"update_halo_kernel2_zvel_minus_2_front");
  OPS_kernels[88].count++;

  //compute locally allocated range for the sub-block
  int start[3];
  int end[3];

  #ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
  if (!sb->owned) return;
  for ( int n=0; n<3; n++ ){
    start[n] = sb->decomp_disp[n];end[n] = sb->decomp_disp[n]+sb->decomp_size[n];
    if (start[n] >= range[2*n]) {
      start[n] = 0;
    }
    else {
      start[n] = range[2*n] - start[n];
    }
    if (sb->id_m[n]==MPI_PROC_NULL && range[2*n] < 0) start[n] = range[2*n];
    if (end[n] >= range[2*n+1]) {
      end[n] = range[2*n+1] - sb->decomp_disp[n];
    }
    else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n]==MPI_PROC_NULL && (range[2*n+1] > sb->decomp_disp[n]+sb->decomp_size[n]))
      end[n] += (range[2*n+1]-sb->decomp_disp[n]-sb->decomp_size[n]);
  }
  #else //OPS_MPI
  for ( int n=0; n<3; n++ ){
    start[n] = range[2*n];end[n] = range[2*n+1];
  }
  #endif //OPS_MPI
  #ifdef OPS_DEBUG
  ops_register_args(args, "update_halo_kernel2_zvel_minus_2_front");
  #endif

  offs[0][0] = args[0].stencil->stride[0]*1;  //unit step in x dimension
  offs[0][1] = off3D(1, &start[0],
      &end[0],args[0].dat->size, args[0].stencil->stride) - offs[0][0];
  offs[0][2] = off3D(2, &start[0],
      &end[0],args[0].dat->size, args[0].stencil->stride) - offs[0][1] - offs[0][0];

  offs[1][0] = args[1].stencil->stride[0]*1;  //unit step in x dimension
  offs[1][1] = off3D(1, &start[0],
      &end[0],args[1].dat->size, args[1].stencil->stride) - offs[1][0];
  offs[1][2] = off3D(2, &start[0],
      &end[0],args[1].dat->size, args[1].stencil->stride) - offs[1][1] - offs[1][0];



  //Timing
  double t1,t2,c1,c2;
  ops_timers_core(&c2,&t2);

  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int off0_2 = offs[0][2];
  int dat0 = args[0].dat->elem_size;
  int off1_0 = offs[1][0];
  int off1_1 = offs[1][1];
  int off1_2 = offs[1][2];
  int dat1 = args[1].dat->elem_size;

  //set up initial pointers and exchange halos if necessary
  int d_m[OPS_MAX_DIM];
  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d];
  #endif //OPS_MPI
  int base0 = dat0 * 1 * 
    (start[0] * args[0].stencil->stride[0] - args[0].dat->base[0] - d_m[0]);
  base0 = base0+ dat0 *
    args[0].dat->size[0] *
    (start[1] * args[0].stencil->stride[1] - args[0].dat->base[1] - d_m[1]);
  base0 = base0+ dat0 *
    args[0].dat->size[0] *
    args[0].dat->size[1] *
    (start[2] * args[0].stencil->stride[2] - args[0].dat->base[2] - d_m[2]);
  p_a[0] = (char *)args[0].data + base0;

  #ifdef OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d] + OPS_sub_dat_list[args[1].dat->index]->d_im[d];
  #else //OPS_MPI
  for (int d = 0; d < dim; d++) d_m[d] = args[1].dat->d_m[d];
  #endif //OPS_MPI
  int base1 = dat1 * 1 * 
    (start[0] * args[1].stencil->stride[0] - args[1].dat->base[0] - d_m[0]);
  base1 = base1+ dat1 *
    args[1].dat->size[0] *
    (start[1] * args[1].stencil->stride[1] - args[1].dat->base[1] - d_m[1]);
  base1 = base1+ dat1 *
    args[1].dat->size[0] *
    args[1].dat->size[1] *
    (start[2] * args[1].stencil->stride[2] - args[1].dat->base[2] - d_m[2]);
  p_a[1] = (char *)args[1].data + base1;

  p_a[2] = args[2].data;



  ops_H_D_exchanges_host(args, 3);
  ops_halo_exchanges(args,3,range);
  ops_H_D_exchanges_host(args, 3);

  ops_timers_core(&c1,&t1);
  OPS_kernels[88].mpi_time += t1-t2;

  xdim0 = args[0].dat->size[0]*args[0].dat->dim;
  ydim0 = args[0].dat->size[1];
  xdim1 = args[1].dat->size[0]*args[1].dat->dim;
  ydim1 = args[1].dat->size[1];

  int n_x;
  for ( int n_z=start[2]; n_z<end[2]; n_z++ ){
    for ( int n_y=start[1]; n_y<end[1]; n_y++ ){
      #pragma novector
      for( n_x=start[0]; n_x<start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x+=SIMD_VEC ) {
        //call kernel function, passing in pointers to data -vectorised
        #pragma simd
        for ( int i=0; i<SIMD_VEC; i++ ){
          update_halo_kernel2_zvel_minus_2_front(  (double *)p_a[0]+ i*1, (double *)p_a[1]+ i*1, (int *)p_a[2] );

        }

        //shift pointers to data x direction
        p_a[0]= p_a[0] + (dat0 * off0_0)*SIMD_VEC;
        p_a[1]= p_a[1] + (dat1 * off1_0)*SIMD_VEC;
      }

      for ( int n_x=start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x<end[0]; n_x++ ){
        //call kernel function, passing in pointers to data - remainder
        update_halo_kernel2_zvel_minus_2_front(  (double *)p_a[0], (double *)p_a[1], (int *)p_a[2] );


        //shift pointers to data x direction
        p_a[0]= p_a[0] + (dat0 * off0_0);
        p_a[1]= p_a[1] + (dat1 * off1_0);
      }

      //shift pointers to data y direction
      p_a[0]= p_a[0] + (dat0 * off0_1);
      p_a[1]= p_a[1] + (dat1 * off1_1);
    }
    //shift pointers to data z direction
    p_a[0]= p_a[0] + (dat0 * off0_2);
    p_a[1]= p_a[1] + (dat1 * off1_2);
  }
  ops_timers_core(&c2,&t2);
  OPS_kernels[88].time += t2-t1;
  ops_set_dirtybit_host(args, 3);
  ops_set_halo_dirtybit3(&args[0],range);
  ops_set_halo_dirtybit3(&args[1],range);

  //Update kernel record
  OPS_kernels[88].transfer += ops_compute_transfer(dim, range, &arg0);
  OPS_kernels[88].transfer += ops_compute_transfer(dim, range, &arg1);
}
// host stub function
void ops_par_loop_advec_mom_kernel_mass_flux_y(char const *name,
                                               ops_block block, int dim,
                                               int *range, ops_arg arg0,
                                               ops_arg arg1) {

  // Timing
  double t1, t2, c1, c2;

  char *p_a[2];
  int offs[2][3];
  ops_arg args[2] = {arg0, arg1};

#ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args, 2, range, 130))
    return;
#endif

  if (OPS_diags > 1) {
    ops_timing_realloc(130, "advec_mom_kernel_mass_flux_y");
    OPS_kernels[130].count++;
    ops_timers_core(&c2, &t2);
  }

  // compute locally allocated range for the sub-block
  int start[3];
  int end[3];

#ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
#endif
#ifdef OPS_DEBUG
  ops_register_args(args, "advec_mom_kernel_mass_flux_y");
#endif

  int arg_idx[3];
  int arg_idx_base[3];
#ifdef OPS_MPI
  if (compute_ranges(args, 2, block, range, start, end, arg_idx) < 0)
    return;
#else  // OPS_MPI
  for (int n = 0; n < 3; n++) {
    start[n] = range[2 * n];
    end[n] = range[2 * n + 1];
    arg_idx[n] = start[n];
  }
#endif // OPS_MPI
  for (int n = 0; n < 3; n++) {
    arg_idx_base[n] = arg_idx[n];
  }
  offs[0][0] = args[0].stencil->stride[0] * 1; // unit step in x dimension
  offs[0][1] =
      off3D(1, &start[0], &end[0], args[0].dat->size, args[0].stencil->stride) -
      offs[0][0];
  offs[0][2] =
      off3D(2, &start[0], &end[0], args[0].dat->size, args[0].stencil->stride) -
      offs[0][1] - offs[0][0];

  offs[1][0] = args[1].stencil->stride[0] * 1; // unit step in x dimension
  offs[1][1] =
      off3D(1, &start[0], &end[0], args[1].dat->size, args[1].stencil->stride) -
      offs[1][0];
  offs[1][2] =
      off3D(2, &start[0], &end[0], args[1].dat->size, args[1].stencil->stride) -
      offs[1][1] - offs[1][0];

  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int off0_2 = offs[0][2];
  int dat0 = (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size);
  int off1_0 = offs[1][0];
  int off1_1 = offs[1][1];
  int off1_2 = offs[1][2];
  int dat1 = (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size);

  // set up initial pointers and exchange halos if necessary
  int base0 = args[0].dat->base_offset +
              (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size) *
                  start[0] * args[0].stencil->stride[0];
  base0 = base0 +
          (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size) *
              args[0].dat->size[0] * start[1] * args[0].stencil->stride[1];
  base0 = base0 +
          (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size) *
              args[0].dat->size[0] * args[0].dat->size[1] * start[2] *
              args[0].stencil->stride[2];
  p_a[0] = (char *)args[0].data + base0;

  int base1 = args[1].dat->base_offset +
              (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size) *
                  start[0] * args[1].stencil->stride[0];
  base1 = base1 +
          (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size) *
              args[1].dat->size[0] * start[1] * args[1].stencil->stride[1];
  base1 = base1 +
          (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size) *
              args[1].dat->size[0] * args[1].dat->size[1] * start[2] *
              args[1].stencil->stride[2];
  p_a[1] = (char *)args[1].data + base1;

  // initialize global variable with the dimension of dats
  xdim0 = args[0].dat->size[0];
  ydim0 = args[0].dat->size[1];
  xdim1 = args[1].dat->size[0];
  ydim1 = args[1].dat->size[1];

  // Halo Exchanges
  ops_H_D_exchanges_host(args, 2);
  ops_halo_exchanges(args, 2, range);
  ops_H_D_exchanges_host(args, 2);

  if (OPS_diags > 1) {
    ops_timers_core(&c1, &t1);
    OPS_kernels[130].mpi_time += t1 - t2;
  }

  int n_x;
  for (int n_z = start[2]; n_z < end[2]; n_z++) {
    for (int n_y = start[1]; n_y < end[1]; n_y++) {
#pragma novector
      for (n_x = start[0];
           n_x < start[0] + ((end[0] - start[0]) / SIMD_VEC) * SIMD_VEC;
           n_x += SIMD_VEC) {
// call kernel function, passing in pointers to data -vectorised
#pragma simd
        for (int i = 0; i < SIMD_VEC; i++) {
          advec_mom_kernel_mass_flux_y((double *)p_a[0] + i * 1 * 1,
                                       (double *)p_a[1] + i * 1 * 1);
        }

        // shift pointers to data x direction
        p_a[0] = p_a[0] + (dat0 * off0_0) * SIMD_VEC;
        p_a[1] = p_a[1] + (dat1 * off1_0) * SIMD_VEC;
      }

      for (int n_x = start[0] + ((end[0] - start[0]) / SIMD_VEC) * SIMD_VEC;
           n_x < end[0]; n_x++) {
        // call kernel function, passing in pointers to data - remainder
        advec_mom_kernel_mass_flux_y((double *)p_a[0], (double *)p_a[1]);

        // shift pointers to data x direction
        p_a[0] = p_a[0] + (dat0 * off0_0);
        p_a[1] = p_a[1] + (dat1 * off1_0);
      }

      // shift pointers to data y direction
      p_a[0] = p_a[0] + (dat0 * off0_1);
      p_a[1] = p_a[1] + (dat1 * off1_1);
    }
    // shift pointers to data z direction
    p_a[0] = p_a[0] + (dat0 * off0_2);
    p_a[1] = p_a[1] + (dat1 * off1_2);
  }
  if (OPS_diags > 1) {
    ops_timers_core(&c2, &t2);
    OPS_kernels[130].time += t2 - t1;
  }
  ops_set_dirtybit_host(args, 2);
  ops_set_halo_dirtybit3(&args[0], range);

  if (OPS_diags > 1) {
    // Update kernel record
    ops_timers_core(&c1, &t1);
    OPS_kernels[130].mpi_time += t1 - t2;
    OPS_kernels[130].transfer += ops_compute_transfer(dim, start, end, &arg0);
    OPS_kernels[130].transfer += ops_compute_transfer(dim, start, end, &arg1);
  }
}
// host stub function
void ops_par_loop_calc_dt_kernel_min(char const *name, ops_block block, int dim, int* range,
 ops_arg arg0, ops_arg arg1) {

  //Timing
  double t1,t2,c1,c2;
  ops_timers_core(&c1,&t1);


  int  offs[2][3];
  ops_arg args[2] = { arg0, arg1};



  ops_timing_realloc(127,"calc_dt_kernel_min");
  OPS_kernels[127].count++;

  //compute locally allocated range for the sub-block

  int start[3];
  int end[3];

  #ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
  if (!sb->owned) return;
  for ( int n=0; n<3; n++ ){
    start[n] = sb->decomp_disp[n];end[n] = sb->decomp_disp[n]+sb->decomp_size[n];
    if (start[n] >= range[2*n]) {
      start[n] = 0;
    }
    else {
      start[n] = range[2*n] - start[n];
    }
    if (sb->id_m[n]==MPI_PROC_NULL && range[2*n] < 0) start[n] = range[2*n];
    if (end[n] >= range[2*n+1]) {
      end[n] = range[2*n+1] - sb->decomp_disp[n];
    }
    else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n]==MPI_PROC_NULL && (range[2*n+1] > sb->decomp_disp[n]+sb->decomp_size[n]))
      end[n] += (range[2*n+1]-sb->decomp_disp[n]-sb->decomp_size[n]);
  }
  #else //OPS_MPI
  for ( int n=0; n<3; n++ ){
    start[n] = range[2*n];end[n] = range[2*n+1];
  }
  #endif //OPS_MPI
  #ifdef OPS_DEBUG
  ops_register_args(args, "calc_dt_kernel_min");
  #endif

  offs[0][0] = args[0].stencil->stride[0]*1;  //unit step in x dimension
  offs[0][1] = off3D(1, &start[0],
      &end[0],args[0].dat->size, args[0].stencil->stride) - offs[0][0];
  offs[0][2] = off3D(2, &start[0],
      &end[0],args[0].dat->size, args[0].stencil->stride) - offs[0][1] - offs[0][0];



  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int off0_2 = offs[0][2];
  int dat0 = args[0].dat->elem_size;

  #ifdef OPS_MPI
  double *arg1h = (double *)(((ops_reduction)args[1].data)->data + ((ops_reduction)args[1].data)->size * block->index);
  #else //OPS_MPI
  double *arg1h = (double *)(((ops_reduction)args[1].data)->data);
  #endif //OPS_MPI

  #ifdef _OPENMP
  int nthreads = omp_get_max_threads( );
  #else
  int nthreads = 1;
  #endif
  //allocate and initialise arrays for global reduction
  //assumes a max of MAX_REDUCT_THREADS threads with a cacche line size of 64 bytes
  double arg_gbl1[MAX(1 , 64) * MAX_REDUCT_THREADS];
  for ( int thr=0; thr<nthreads; thr++ ){
    for ( int d=0; d<1; d++ ){
      arg_gbl1[d+64*thr] = INFINITY_double;
    }
  }
  xdim0 = args[0].dat->size[0]*args[0].dat->dim;
  ydim0 = args[0].dat->size[1];

  ops_H_D_exchanges_host(args, 2);

  //Halo Exchanges
  ops_halo_exchanges(args,2,range);


  ops_timers_core(&c2,&t2);
  OPS_kernels[127].mpi_time += t2-t1;


  #pragma omp parallel for
  for ( int thr=0; thr<nthreads; thr++ ){

    int z_size = end[2]-start[2];
    char *p_a[2];

    int start_i = start[2] + ((z_size-1)/nthreads+1)*thr;
    int finish_i = start[2] + MIN(((z_size-1)/nthreads+1)*(thr+1),z_size);

    //get address per thread
    int start0 = start[0];
    int start1 = start[1];
    int start2 = start_i;

    //set up initial pointers 
    int d_m[OPS_MAX_DIM];
    #ifdef OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
    #else //OPS_MPI
    for (int d = 0; d < dim; d++) d_m[d] = args[0].dat->d_m[d];
    #endif //OPS_MPI
    int base0 = dat0 * 1 * 
    (start0 * args[0].stencil->stride[0] - args[0].dat->base[0] - d_m[0]);
    base0 = base0+ dat0 *
      args[0].dat->size[0] *
      (start1 * args[0].stencil->stride[1] - args[0].dat->base[1] - d_m[1]);
    base0 = base0+ dat0 *
      args[0].dat->size[0] *
      args[0].dat->size[1] *
      (start2 * args[0].stencil->stride[2] - args[0].dat->base[2] - d_m[2]);
    p_a[0] = (char *)args[0].data + base0;

    p_a[1] = (char *)arg1h;


    for ( int n_z=start_i; n_z<finish_i; n_z++ ){
      for ( int n_y=start[1]; n_y<end[1]; n_y++ ){
        for ( int n_x=start[0]; n_x<start[0]+(end[0]-start[0])/SIMD_VEC; n_x++ ){
          //call kernel function, passing in pointers to data -vectorised
          for ( int i=0; i<SIMD_VEC; i++ ){
            calc_dt_kernel_min(  (const double * )p_a[0]+ i*1, &arg_gbl1[64*thr] );

          }

          //shift pointers to data x direction
          p_a[0]= p_a[0] + (dat0 * off0_0)*SIMD_VEC;
        }

        for ( int n_x=start[0]+((end[0]-start[0])/SIMD_VEC)*SIMD_VEC; n_x<end[0]; n_x++ ){
          //call kernel function, passing in pointers to data - remainder
          calc_dt_kernel_min(  (const double * )p_a[0], &arg_gbl1[64*thr] );


          //shift pointers to data x direction
          p_a[0]= p_a[0] + (dat0 * off0_0);
        }

        //shift pointers to data y direction
        p_a[0]= p_a[0] + (dat0 * off0_1);
      }
      //shift pointers to data z direction
      p_a[0]= p_a[0] + (dat0 * off0_2);
    }
  }

  ops_timers_core(&c1,&t1);
  OPS_kernels[127].time += t1-t2;


  // combine reduction data
  for ( int thr=0; thr<nthreads; thr++ ){
    for ( int d=0; d<1; d++ ){
      arg1h[d] = MIN(arg1h[d], arg_gbl1[64*thr+d]);
    }
  }
  ops_set_dirtybit_host(args, 2);


  //Update kernel record
  ops_timers_core(&c2,&t2);
  OPS_kernels[127].mpi_time += t2-t1;
  OPS_kernels[127].transfer += ops_compute_transfer(dim, range, &arg0);
}
// host stub function
void ops_par_loop_calc_dt_kernel_get(char const *name, ops_block block, int dim,
                                     int *range, ops_arg arg0, ops_arg arg1,
                                     ops_arg arg2, ops_arg arg3, ops_arg arg4,
                                     ops_arg arg5) {

  // Timing
  double t1, t2, c1, c2;

  int offs[6][3];
  ops_arg args[6] = {arg0, arg1, arg2, arg3, arg4, arg5};

#ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args, 6, range, 100))
    return;
#endif

  if (OPS_diags > 1) {
    ops_timing_realloc(100, "calc_dt_kernel_get");
    OPS_kernels[100].count++;
    ops_timers_core(&c1, &t1);
  }

#ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
#endif

  // compute locally allocated range for the sub-block

  int start[3];
  int end[3];
  int arg_idx[3];

#ifdef OPS_MPI
  if (!sb->owned)
    return;
  for (int n = 0; n < 3; n++) {
    start[n] = sb->decomp_disp[n];
    end[n] = sb->decomp_disp[n] + sb->decomp_size[n];
    if (start[n] >= range[2 * n]) {
      start[n] = 0;
    } else {
      start[n] = range[2 * n] - start[n];
    }
    if (sb->id_m[n] == MPI_PROC_NULL && range[2 * n] < 0)
      start[n] = range[2 * n];
    if (end[n] >= range[2 * n + 1]) {
      end[n] = range[2 * n + 1] - sb->decomp_disp[n];
    } else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n] == MPI_PROC_NULL &&
        (range[2 * n + 1] > sb->decomp_disp[n] + sb->decomp_size[n]))
      end[n] += (range[2 * n + 1] - sb->decomp_disp[n] - sb->decomp_size[n]);
    if (end[n] < start[n])
      end[n] = start[n];
  }
#else
  for (int n = 0; n < 3; n++) {
    start[n] = range[2 * n];
    end[n] = range[2 * n + 1];
  }
#endif
#ifdef OPS_DEBUG
  ops_register_args(args, "calc_dt_kernel_get");
#endif

  offs[0][0] = args[0].stencil->stride[0] * 1; // unit step in x dimension
  offs[0][1] =
      off3D(1, &start[0], &end[0], args[0].dat->size, args[0].stencil->stride) -
      offs[0][0];
  offs[0][2] =
      off3D(2, &start[0], &end[0], args[0].dat->size, args[0].stencil->stride) -
      offs[0][1] - offs[0][0];

  offs[1][0] = args[1].stencil->stride[0] * 1; // unit step in x dimension
  offs[1][1] =
      off3D(1, &start[0], &end[0], args[1].dat->size, args[1].stencil->stride) -
      offs[1][0];
  offs[1][2] =
      off3D(2, &start[0], &end[0], args[1].dat->size, args[1].stencil->stride) -
      offs[1][1] - offs[1][0];

  offs[4][0] = args[4].stencil->stride[0] * 1; // unit step in x dimension
  offs[4][1] =
      off3D(1, &start[0], &end[0], args[4].dat->size, args[4].stencil->stride) -
      offs[4][0];
  offs[4][2] =
      off3D(2, &start[0], &end[0], args[4].dat->size, args[4].stencil->stride) -
      offs[4][1] - offs[4][0];

  int off0_0 = offs[0][0];
  int off0_1 = offs[0][1];
  int off0_2 = offs[0][2];
  int dat0 = (OPS_soa ? args[0].dat->type_size : args[0].dat->elem_size);
  int off1_0 = offs[1][0];
  int off1_1 = offs[1][1];
  int off1_2 = offs[1][2];
  int dat1 = (OPS_soa ? args[1].dat->type_size : args[1].dat->elem_size);
  int off4_0 = offs[4][0];
  int off4_1 = offs[4][1];
  int off4_2 = offs[4][2];
  int dat4 = (OPS_soa ? args[4].dat->type_size : args[4].dat->elem_size);

#ifdef OPS_MPI
  double *arg2h =
      (double *)(((ops_reduction)args[2].data)->data +
                 ((ops_reduction)args[2].data)->size * block->index);
#else
  double *arg2h = (double *)(((ops_reduction)args[2].data)->data);
#endif
#ifdef OPS_MPI
  double *arg3h =
      (double *)(((ops_reduction)args[3].data)->data +
                 ((ops_reduction)args[3].data)->size * block->index);
#else
  double *arg3h = (double *)(((ops_reduction)args[3].data)->data);
#endif
#ifdef OPS_MPI
  double *arg5h =
      (double *)(((ops_reduction)args[5].data)->data +
                 ((ops_reduction)args[5].data)->size * block->index);
#else
  double *arg5h = (double *)(((ops_reduction)args[5].data)->data);
#endif
  // Halo Exchanges
  ops_H_D_exchanges_host(args, 6);
  ops_halo_exchanges(args, 6, range);
  ops_H_D_exchanges_host(args, 6);

#ifdef _OPENMP
  int nthreads = omp_get_max_threads();
#else
  int nthreads = 1;
#endif
  // allocate and initialise arrays for global reduction
  // assumes a max of MAX_REDUCT_THREADS threads with a cacche line size of 64
  // bytes
  double arg_gbl2[MAX(1, 64) * MAX_REDUCT_THREADS];
  double arg_gbl3[MAX(1, 64) * MAX_REDUCT_THREADS];
  double arg_gbl5[MAX(1, 64) * MAX_REDUCT_THREADS];
  for (int thr = 0; thr < nthreads; thr++) {
    for (int d = 0; d < 1; d++) {
      arg_gbl2[d + 64 * thr] = ZERO_double;
    }
    for (int d = 0; d < 1; d++) {
      arg_gbl3[d + 64 * thr] = ZERO_double;
    }
    for (int d = 0; d < 1; d++) {
      arg_gbl5[d + 64 * thr] = ZERO_double;
    }
  }
  xdim0 = args[0].dat->size[0];
  ydim0 = args[0].dat->size[1];
  xdim1 = args[1].dat->size[0];
  ydim1 = args[1].dat->size[1];
  xdim4 = args[4].dat->size[0];
  ydim4 = args[4].dat->size[1];

  if (OPS_diags > 1) {
    ops_timers_core(&c2, &t2);
    OPS_kernels[100].mpi_time += t2 - t1;
  }

#pragma omp parallel for
  for (int thr = 0; thr < nthreads; thr++) {

    int z_size = end[2] - start[2];
    char *p_a[6];

    int start_i = start[2] + ((z_size - 1) / nthreads + 1) * thr;
    int finish_i =
        start[2] + MIN(((z_size - 1) / nthreads + 1) * (thr + 1), z_size);

    // get address per thread
    int start0 = start[0];
    int start1 = start[1];
    int start2 = start_i;

    // set up initial pointers
    int d_m[OPS_MAX_DIM];
#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[0].dat->d_m[d] + OPS_sub_dat_list[args[0].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[0].dat->d_m[d];
#endif
    int base0 = dat0 * 1 * (start0 * args[0].stencil->stride[0] -
                            args[0].dat->base[0] - d_m[0]);
    base0 = base0 +
            dat0 * args[0].dat->size[0] * (start1 * args[0].stencil->stride[1] -
                                           args[0].dat->base[1] - d_m[1]);
    base0 = base0 +
            dat0 * args[0].dat->size[0] * args[0].dat->size[1] *
                (start2 * args[0].stencil->stride[2] - args[0].dat->base[2] -
                 d_m[2]);
    p_a[0] = (char *)args[0].data + base0;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[1].dat->d_m[d] + OPS_sub_dat_list[args[1].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[1].dat->d_m[d];
#endif
    int base1 = dat1 * 1 * (start0 * args[1].stencil->stride[0] -
                            args[1].dat->base[0] - d_m[0]);
    base1 = base1 +
            dat1 * args[1].dat->size[0] * (start1 * args[1].stencil->stride[1] -
                                           args[1].dat->base[1] - d_m[1]);
    base1 = base1 +
            dat1 * args[1].dat->size[0] * args[1].dat->size[1] *
                (start2 * args[1].stencil->stride[2] - args[1].dat->base[2] -
                 d_m[2]);
    p_a[1] = (char *)args[1].data + base1;

    p_a[2] = (char *)arg2h;

    p_a[3] = (char *)arg3h;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[4].dat->d_m[d] + OPS_sub_dat_list[args[4].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[4].dat->d_m[d];
#endif
    int base4 = dat4 * 1 * (start0 * args[4].stencil->stride[0] -
                            args[4].dat->base[0] - d_m[0]);
    base4 = base4 +
            dat4 * args[4].dat->size[0] * (start1 * args[4].stencil->stride[1] -
                                           args[4].dat->base[1] - d_m[1]);
    base4 = base4 +
            dat4 * args[4].dat->size[0] * args[4].dat->size[1] *
                (start2 * args[4].stencil->stride[2] - args[4].dat->base[2] -
                 d_m[2]);
    p_a[4] = (char *)args[4].data + base4;

    p_a[5] = (char *)arg5h;

    for (int n_z = start_i; n_z < finish_i; n_z++) {
      for (int n_y = start[1]; n_y < end[1]; n_y++) {
        for (int n_x = start[0];
             n_x < start[0] + (end[0] - start[0]) / SIMD_VEC; n_x++) {
          // call kernel function, passing in pointers to data -vectorised
          for (int i = 0; i < SIMD_VEC; i++) {
            calc_dt_kernel_get((const double *)p_a[0] + i * 1 * 1,
                               (const double *)p_a[1] + i * 0 * 1,
                               &arg_gbl2[64 * thr], &arg_gbl3[64 * thr],
                               (const double *)p_a[4] + i * 0 * 1,
                               &arg_gbl5[64 * thr]);
          }

          // shift pointers to data x direction
          p_a[0] = p_a[0] + (dat0 * off0_0) * SIMD_VEC;
          p_a[1] = p_a[1] + (dat1 * off1_0) * SIMD_VEC;
          p_a[4] = p_a[4] + (dat4 * off4_0) * SIMD_VEC;
        }

        for (int n_x = start[0] + ((end[0] - start[0]) / SIMD_VEC) * SIMD_VEC;
             n_x < end[0]; n_x++) {
          // call kernel function, passing in pointers to data - remainder
          calc_dt_kernel_get((const double *)p_a[0], (const double *)p_a[1],
                             &arg_gbl2[64 * thr], &arg_gbl3[64 * thr],
                             (const double *)p_a[4], &arg_gbl5[64 * thr]);

          // shift pointers to data x direction
          p_a[0] = p_a[0] + (dat0 * off0_0);
          p_a[1] = p_a[1] + (dat1 * off1_0);
          p_a[4] = p_a[4] + (dat4 * off4_0);
        }

        // shift pointers to data y direction
        p_a[0] = p_a[0] + (dat0 * off0_1);
        p_a[1] = p_a[1] + (dat1 * off1_1);
        p_a[4] = p_a[4] + (dat4 * off4_1);
      }
      // shift pointers to data z direction
      p_a[0] = p_a[0] + (dat0 * off0_2);
      p_a[1] = p_a[1] + (dat1 * off1_2);
      p_a[4] = p_a[4] + (dat4 * off4_2);
    }
  }

  if (OPS_diags > 1) {
    ops_timers_core(&c1, &t1);
    OPS_kernels[100].time += t1 - t2;
  }

  // combine reduction data
  for (int thr = 0; thr < nthreads; thr++) {
    for (int d = 0; d < 1; d++) {
      arg2h[d] += arg_gbl2[64 * thr + d];
    }
    for (int d = 0; d < 1; d++) {
      arg3h[d] += arg_gbl3[64 * thr + d];
    }
    for (int d = 0; d < 1; d++) {
      arg5h[d] += arg_gbl5[64 * thr + d];
    }
  }
  ops_set_dirtybit_host(args, 6);

  if (OPS_diags > 1) {
    // Update kernel record
    ops_timers_core(&c2, &t2);
    OPS_kernels[100].mpi_time += t2 - t1;
    OPS_kernels[100].transfer += ops_compute_transfer(dim, start, end, &arg0);
    OPS_kernels[100].transfer += ops_compute_transfer(dim, start, end, &arg1);
    OPS_kernels[100].transfer += ops_compute_transfer(dim, start, end, &arg4);
  }
}