Exemplo n.º 1
0
int main(int argc, char **argv)
{
    ubit_t exp[114], out[114];
    int n, i;

	for (n=0; n<3; n++) {
		/* "Randomize" */
		for (i=0; i<114; i++)
			out[i] = i & 1;

		/* DL */
		osmo_pbit2ubit(exp, &dl[15*n], 114);

		osmo_a5(n, key, fn, out, NULL);

		printf("A5/%d - DL: %s", n, osmo_ubit_dump(out, 114));

		if (!memcmp(exp, out, 114))
			printf(" => OK\n");
		else {
			printf(" => BAD\n");
			printf(" Expected: %s", osmo_ubit_dump(out, 114));
			fprintf(stderr, "[!] A5/%d DL failed", n);
			exit(1);
		}

		/* UL */
		osmo_pbit2ubit(exp, &ul[15*n], 114);

		osmo_a5(n, key, fn, NULL, out);

		printf("A5/%d - UL: %s", n, osmo_ubit_dump(out, 114));

		if (!memcmp(exp, out, 114))
			printf(" => OK\n");
		else {
			printf(" => BAD\n");
			printf(" Expected: %s", osmo_ubit_dump(out, 114));
			fprintf(stderr, "[!] A5/%d UL failed", n);
			exit(1);
		}
	}

// test vectors from 3GPP TS 55.217 and TS 55.218
	test_a5(3, "2BD6459F82C5BC00", 0x24F20F, "889EEAAF9ED1BA1ABBD8436232E440", "5CA3406AA244CF69CF047AADA2DF40");
	test_a5(3, "952C49104881FF48", 0x061272, "FB4D5FBCEE13A33389285686E9A5C0", "25090378E0540457C57E367662E440");
	test_a5(3, "EFA8B2229E720C2A", 0x33FD3F, "0E4015755A336469C3DD8680E30340", "6F10669E2B4E18B042431A28E47F80");
	test_a5(3, "952C49104881FF48", 0x061527, "AB7DB38A573A325DAA76E4CB800A40", "4C4B594FEA9D00FE8978B7B7BC1080");
	test_a5(3, "3451F23A43BD2C87", 0x0E418C, "75F7C4C51560905DFBA05E46FB54C0", "192C95353CDF979E054186DF15BF00");
	test_a5(3, "CAA2639BE82435CF", 0x2FF229, "301437E4D4D6565D4904C631606EC0", "F0A3B8795E264D3E1A82F684353DC0");
	test_a5(3, "7AE67E87400B9FA6", 0x2F24E5, "F794290FEF643D2EA348A7796A2100", "CB6FA6C6B8A705AF9FEFE975818500");
	test_a5(3, "58AF69935540698B", 0x05446B, "749CA4E6B691E5A598C461D5FE4740", "31C9E444CD04677ADAA8A082ADBC40");
	test_a5(3, "017F81E5F236FE62", 0x156B26, "2A6976761E60CC4E8F9F52160276C0", "A544D8475F2C78C35614128F1179C0");
	test_a5(3, "1ACA8B448B767B39", 0x0BC3B5, "A4F70DC5A2C9707F5FA1C60EB10640", "7780B597B328C1400B5C74823E8500");
	test_a5(4, "3D43C388C9581E337FF1F97EB5C1F85E", 0x35D2CF, "A2FE3034B6B22CC4E33C7090BEC340", "170D7497432FF897B91BE8AECBA880");
	test_a5(4, "A4496A64DF4F399F3B4506814A3E07A1", 0x212777, "89CDEE360DF9110281BCF57755A040", "33822C0C779598C9CBFC49183AF7C0");

	return 0;
}
Exemplo n.º 2
0
/* Receive TL-SDU (LLC SDU == MLE PDU) */
static int rx_tl_sdu(struct tetra_mac_state *tms, struct msgb *msg, unsigned int len)
{
	uint8_t *bits = msg->l3h;
	uint8_t mle_pdisc = bits_to_uint(bits, 3);

	printf("TL-SDU(%s): %s", tetra_get_mle_pdisc_name(mle_pdisc),
		osmo_ubit_dump(bits, len));
	switch (mle_pdisc) {
	case TMLE_PDISC_MM:
		printf(" %s", tetra_get_mm_pdut_name(bits_to_uint(bits+3, 4), 0));
		break;
	case TMLE_PDISC_CMCE:
		printf(" %s", tetra_get_cmce_pdut_name(bits_to_uint(bits+3, 5), 0));
		break;
	case TMLE_PDISC_SNDCP:
		printf(" %s", tetra_get_sndcp_pdut_name(bits_to_uint(bits+3, 4), 0));
		printf(" NSAPI=%u PCOMP=%u, DCOMP=%u",
			bits_to_uint(bits+3+4, 4),
			bits_to_uint(bits+3+4+4, 4),
			bits_to_uint(bits+3+4+4+4, 4));
		printf(" V%u, IHL=%u",
			bits_to_uint(bits+3+4+4+4+4, 4),
			4*bits_to_uint(bits+3+4+4+4+4+4, 4));
		printf(" Proto=%u",
			bits_to_uint(bits+3+4+4+4+4+4+4+64, 8));
		break;
	case TMLE_PDISC_MLE:
		printf(" %s", tetra_get_mle_pdut_name(bits_to_uint(bits+3, 3), 0));
		break;
	default:
		break;
	}
	return len;
}
Exemplo n.º 3
0
inline bool print_a5(int n, int k, char * dir, ubit_t * out, char * block) {
    uint8_t len = 114 / 8 + 1, buf[len], res[len];
    printf("A5/%d - %s: %s => ", n, dir, osmo_ubit_dump(out, 114));
    osmo_hexparse(block, res, len);
    osmo_ubit2pbit(buf, out, 114);
    if (0 != memcmp(buf, res, len)) {
	printf("FAIL");
	printf("\nGOT: [%d] %s", k, osmo_hexdump_nospc(buf, len));
	printf("\nEXP: [%d] %s\n", k, osmo_hexdump_nospc(res, len));
	return false;
    }
    printf("OK\n");
    return true;
}
Exemplo n.º 4
0
/* input a raw bitstream into the tetra burst synchronizaer */
int tetra_burst_sync_in(struct tetra_rx_state *trs, uint8_t *bits, unsigned int len)
{
	int rc;
	unsigned int train_seq_offs;

	DEBUGP("burst_sync_in: %u bits, state %u\n", len, trs->state);

	/* First: append the data to the bitbuf */
	make_bitbuf_space(trs, len);
	memcpy(trs->bitbuf + trs->bits_in_buf, bits, len);
	trs->bits_in_buf += len;

	switch (trs->state) {
	case RX_S_UNLOCKED:
		if (trs->bits_in_buf < TETRA_BITS_PER_TS*2) {
			/* wait for more bits to arrive */
			DEBUGP("-> waiting for more bits to arrive\n");
			return len;
		}
		DEBUGP("-> trying to find training sequence between bit %u and %u\n",
			trs->bitbuf_start_bitnum, trs->bits_in_buf);
		rc = tetra_find_train_seq(trs->bitbuf, trs->bits_in_buf,
					  (1 << TETRA_TRAIN_SYNC), &train_seq_offs);
		if (rc < 0)
			return rc;
		printf("found SYNC training sequence in bit #%u\n", train_seq_offs);
		trs->state = RX_S_KNOW_FSTART;
		trs->next_frame_start_bitnum = trs->bitbuf_start_bitnum + train_seq_offs + 296;
#if 0
		if (train_seq_offs < 214) {
			/* not enough leading bits for start of burst */
			/* we just drop everything that we received so far */
			trs->bitbuf_start_bitnum += trs->bits_in_buf;
			trs->bits_in_buf = 0;
		}
#endif
		break;
	case RX_S_KNOW_FSTART:
		/* we are locked, i.e. already know when the next frame should start */
		if (trs->bitbuf_start_bitnum + trs->bits_in_buf < trs->next_frame_start_bitnum)
			return 0;
		else {
			/* shift start of frame to start of bitbuf */
			int offset = trs->next_frame_start_bitnum - trs->bitbuf_start_bitnum;
			int bits_remaining = trs->bits_in_buf - offset;

			memmove(trs->bitbuf, trs->bitbuf+offset, bits_remaining);
			trs->bits_in_buf = bits_remaining;
			trs->bitbuf_start_bitnum += offset;

			trs->next_frame_start_bitnum += TETRA_BITS_PER_TS;
			trs->state = RX_S_LOCKED;
		}
	case RX_S_LOCKED:
		if (trs->bits_in_buf < TETRA_BITS_PER_TS) {
			/* not sufficient data for the full frame yet */
			return len;
		} else {
			/* we have successfully received (at least) one frame */
			tetra_tdma_time_add_tn(&t_phy_state.time, 1);
			printf("\nBURST");
			DEBUGP(": %s", osmo_ubit_dump(trs->bitbuf, TETRA_BITS_PER_TS));
			printf("\n");
			rc = tetra_find_train_seq(trs->bitbuf, trs->bits_in_buf,
						  (1 << TETRA_TRAIN_NORM_1)|
						  (1 << TETRA_TRAIN_NORM_2)|
						  (1 << TETRA_TRAIN_SYNC), &train_seq_offs);
			switch (rc) {
			case TETRA_TRAIN_SYNC:
				if (train_seq_offs == 214)
					tetra_burst_rx_cb(trs->bitbuf, TETRA_BITS_PER_TS, rc, trs->burst_cb_priv);
				else {
					fprintf(stderr, "#### SYNC burst at offset %u?!?\n", train_seq_offs);
					trs->state = RX_S_UNLOCKED;
				}
				break;
			case TETRA_TRAIN_NORM_1:
			case TETRA_TRAIN_NORM_2:
			case TETRA_TRAIN_NORM_3:
				if (train_seq_offs == 244)
					tetra_burst_rx_cb(trs->bitbuf, TETRA_BITS_PER_TS, rc, trs->burst_cb_priv);
				else
					fprintf(stderr, "#### SYNC burst at offset %u?!?\n", train_seq_offs);
				break;
			default:
				fprintf(stderr, "#### could not find successive burst training sequence\n");
				trs->state = RX_S_UNLOCKED;
				break;
			}

			/* move remainder to start of buffer */
			trs->bits_in_buf -= TETRA_BITS_PER_TS;
			memmove(trs->bitbuf, trs->bitbuf+TETRA_BITS_PER_TS, trs->bits_in_buf);
			trs->bitbuf_start_bitnum += TETRA_BITS_PER_TS;
			trs->next_frame_start_bitnum += TETRA_BITS_PER_TS;
		}
		break;

	}
	return len;
}