Exemplo n.º 1
0
	bool Problem::FindSuccessors(const ai::Search::State * const state_in, std::vector<ai::Search::ActionStatePair> &results_out) const
	{
		#if VERBOSE
			std::cout << "Problem::FindSuccessors()" << std::endl;
		#endif

		const State * pwstate_in = dynamic_cast<const State *>(state_in);

		for(ai::Scavenger::Location::Direction direction = ai::Scavenger::Location::NORTH; direction <= ai::Scavenger::Location::WEST; direction++)
		{
			Interface interface = model->getCell(pwstate_in->location).interface[direction];
			#if DEBUG
				std::cout << "From: " << pwstate_in <<" passable: " << interface << std::endl;
			#endif
			if(passable(interface))
			{
				State * next = pwstate_in->move(direction);
				next->charge = next->charge - pathCost(model, pwstate_in, direction);
				if(next->charge > 0)
				{
					results_out.push_back(
						ai::Search::ActionStatePair(
							next,
							new Action(getActionFromDirection(direction))
						)
					);
				}
			}
		}

		#if VERBOSE
			std::cout << "results_out.size() = " << results_out.size() << std::endl;
		#endif
		return true;
	}
Exemplo n.º 2
0
	double Problem::StepCost(const ai::Search::State * const state1_in, const ai::Search::Action * const action_in, const ai::Search::State * const state2_in) const
	{
		const Action * pwaction_in = dynamic_cast<const Action *>(action_in);
		const State * pwstate1_in = dynamic_cast<const State *>(state1_in);
		const State * pwstate2_in = dynamic_cast<const State *>(state2_in);

		#if DEBUG
			std::cout <<"stepcost() action: state1: " << pwstate1_in << " , action: " <<  pwaction_in << " , state2: " << pwstate2_in << std::endl;
		#endif
		
		return pathCost(model, pwstate1_in, getDirectionFromAction(pwaction_in->action));
	}
Exemplo n.º 3
0
// Compute shortest path to goal position via A* algorithm
// If 'goalArea' is NULL, path will get as close as it can.
bool CCSBot::ComputePath(CNavArea *goalArea, const Vector *goal, RouteType route)
{
	// Throttle re-pathing
	if (!m_repathTimer.IsElapsed())
		return false;

	// randomize to distribute CPU load
	m_repathTimer.Start(RANDOM_FLOAT(0.4f, 0.6f));

	DestroyPath();

	CNavArea *startArea = m_lastKnownArea;
	if (!startArea)
		return false;

	// note final specific position
	Vector pathEndPosition;

	if (!goal && !goalArea)
		return false;

	if (!goal)
		pathEndPosition = *goalArea->GetCenter();
	else
		pathEndPosition = *goal;

	// make sure path end position is on the ground
	if (goalArea)
		pathEndPosition.z = goalArea->GetZ(&pathEndPosition);
	else
		GetGroundHeight(&pathEndPosition, &pathEndPosition.z);

	// if we are already in the goal area, build trivial path
	if (startArea == goalArea)
	{
		BuildTrivialPath(&pathEndPosition);
		return true;
	}

	// Compute shortest path to goal
	CNavArea *closestArea = nullptr;
	PathCost pathCost(this, route);
	bool pathToGoalExists = NavAreaBuildPath(startArea, goalArea, goal, pathCost, &closestArea);

	CNavArea *effectiveGoalArea = (pathToGoalExists) ? goalArea : closestArea;

	// Build path by following parent links
	// get count
	int count = 0;
	CNavArea *area;
	for (area = effectiveGoalArea; area; area = area->GetParent())
	{
		count++;
	}

	// save room for endpoint
	if (count > MAX_PATH_LENGTH - 1)
		count = MAX_PATH_LENGTH - 1;

	if (count == 0)
		return false;

	if (count == 1)
	{
		BuildTrivialPath(&pathEndPosition);
		return true;
	}

	// build path
	m_pathLength = count;
	for (area = effectiveGoalArea; count && area; area = area->GetParent())
	{
		count--;
		m_path[count].area = area;
		m_path[count].how = area->GetParentHow();
	}

	// compute path positions
	if (ComputePathPositions() == false)
	{
		PrintIfWatched("Error building path\n");
		DestroyPath();
		return false;
	}

	if (!goal)
	{
		switch (m_path[m_pathLength - 1].how)
		{
		case GO_NORTH:
		case GO_SOUTH:
			pathEndPosition.x = m_path[m_pathLength - 1].pos.x;
			pathEndPosition.y = effectiveGoalArea->GetCenter()->y;
			break;

		case GO_EAST:
		case GO_WEST:
			pathEndPosition.x = effectiveGoalArea->GetCenter()->x;
			pathEndPosition.y = m_path[m_pathLength - 1].pos.y;
			break;
		}

		GetGroundHeight(&pathEndPosition, &pathEndPosition.z);
	}

	// append path end position
	m_path[m_pathLength].area = effectiveGoalArea;
	m_path[m_pathLength].pos = pathEndPosition;
	m_path[m_pathLength].ladder = nullptr;
	m_path[m_pathLength].how = NUM_TRAVERSE_TYPES;
	m_pathLength++;

	// do movement setup
	m_pathIndex = 1;
	m_areaEnteredTimestamp = gpGlobals->time;
	m_spotEncounter = nullptr;
	m_goalPosition = m_path[1].pos;

	if (m_path[1].ladder)
		SetupLadderMovement();
	else
		m_pathLadder = nullptr;

	return true;
}