Exemplo n.º 1
0
int
main(int argc, char **argv)
{
	pfmlib_options_t pfmlib_options;

	if (argc < 2)
		fatal_error("You must specify a command to execute\n");

	/*
	 * Initialize pfm library (required before we can use it)
	 */
	if (pfm_initialize() != PFMLIB_SUCCESS) {
		fatal_error("Can't initialize library\n");
	}

	/*
	 * pass options to library (optional)
	 */
	memset(&pfmlib_options, 0, sizeof(pfmlib_options));
	pfmlib_options.pfm_debug   = 0; /* set to 1 for debug */
	pfmlib_options.pfm_verbose = 0; /* set to 1 for verbose */
	pfm_set_options(&pfmlib_options);

	return mainloop(argv+1);
}
Exemplo n.º 2
0
int
main(int argc, char **argv)
{
	pfmlib_options_t pfmlib_options;
	unsigned long delay;
	pid_t pid;
	int ret;

	if (argc < 2)
		fatal_error("usage: %s pid [timeout]\n", argv[0]);

	pid   = atoi(argv[1]);
	delay = argc > 2 ? strtoul(argv[2], NULL, 10) : 10;

	/*
	 * pass options to library (optional)
	 */
	memset(&pfmlib_options, 0, sizeof(pfmlib_options));
	pfmlib_options.pfm_debug = 0; /* set to 1 for debug */
	pfm_set_options(&pfmlib_options);

	/*
	 * Initialize pfm library (required before we can use it)
	 */
	ret = pfm_initialize();
	if (ret != PFMLIB_SUCCESS)
		fatal_error("Cannot initialize library: %s\n", pfm_strerror(ret));

	return parent(pid, delay);
}
Exemplo n.º 3
0
int
main(int argc, char **argv)
{
	char **p;
	int i, ret;
	pid_t pid = getpid();
	pfmlib_param_t evt;
	pfarg_reg_t pd[NUM_PMDS];
	pfarg_context_t ctx[1];
	pfmlib_options_t pfmlib_options;

	/*
	 * Initialize pfm library (required before we can use it)
	 */
	if (pfm_initialize() != PFMLIB_SUCCESS) {
		printf("Can't initialize library\n");
		exit(1);
	}
	
	/* 
	 * check that the user did not specify too many events
	 */
	if (argc-1 > pfm_get_num_counters()) {
		printf("Too many events specified\n");
		exit(1);
	}

	/*
	 * pass options to library (optional)
	 */
	memset(&pfmlib_options, 0, sizeof(pfmlib_options));
	pfmlib_options.pfm_debug = 0; /* set to 1 for debug */
	pfm_set_options(&pfmlib_options);

	memset(pd, 0, sizeof(pd));
	memset(ctx, 0, sizeof(ctx));

	/*
	 * prepare parameters to library. we don't use any Itanium
	 * specific features here. so the pfp_model is NULL.
	 */
	memset(&evt,0, sizeof(evt));

	/*
	 * be nice to user!
	 */
	p = argc > 1 ? argv+1 : event_list;
	for (i=0; *p ; i++, p++) {
		if (pfm_find_event(*p, &evt.pfp_events[i].event) != PFMLIB_SUCCESS) {
			fatal_error("Cannot find %s event\n", *p);
		}
	}

	/*
	 * set the default privilege mode for all counters:
	 * 	PFM_PLM3 : user level only
	 */
	evt.pfp_dfl_plm   = PFM_PLM3; 

	/*
	 * how many counters we use
	 */
	evt.pfp_event_count = i;

	/*
	 * let the library figure out the values for the PMCS
	 */
	if ((ret=pfm_dispatch_events(&evt)) != PFMLIB_SUCCESS) {
		fatal_error("cannot configure events: %s\n", pfm_strerror(ret));
	}
	/*
	 * for this example, we have decided not to get notified
	 * on counter overflows and the monitoring is not to be inherited
	 * in derived tasks.
	 */
	ctx[0].ctx_flags = PFM_FL_INHERIT_NONE;

	/*
	 * now create the context for self monitoring/per-task
	 */
	if (perfmonctl(pid, PFM_CREATE_CONTEXT, ctx, 1) == -1 ) {
		if (errno == ENOSYS) {
			fatal_error("Your kernel does not have performance monitoring support!\n");
		}
		fatal_error("Can't create PFM context %s\n", strerror(errno));
	}
	/* 
	 * Must be done before any PMD/PMD calls (unfreeze PMU). Initialize
	 * PMC/PMD to safe values. psr.up is cleared.
	 */
	if (perfmonctl(pid, PFM_ENABLE, NULL, 0) == -1) {
		fatal_error("perfmonctl error PFM_ENABLE errno %d\n",errno);
	}

	/*
	 * Now prepare the argument to initialize the PMDs.
	 * the memset(pd) initialized the entire array to zero already, so
	 * we just have to fill in the register numbers from the pc[] array.
	 */
	for (i=0; i < evt.pfp_event_count; i++) {
		pd[i].reg_num = evt.pfp_pc[i].reg_num;
	}
	/*
	 * Now program the registers
	 *
	 * We don't use the save variable to indicate the number of elements passed to
	 * the kernel because, as we said earlier, pc may contain more elements than
	 * the number of events we specified, i.e., contains more thann coutning monitors.
	 */
	if (perfmonctl(pid, PFM_WRITE_PMCS, evt.pfp_pc, evt.pfp_pc_count) == -1) {
		fatal_error("perfmonctl error PFM_WRITE_PMCS errno %d\n",errno);
	}
	if (perfmonctl(pid, PFM_WRITE_PMDS, pd, evt.pfp_event_count) == -1) {
		{int i; for(i=0; i < evt.pfp_event_count; i++) printf("pmd%d: 0x%x\n", i, pd[i].reg_flags);}
		fatal_error("perfmonctl error PFM_WRITE_PMDS errno %d\n",errno);
	}

	/*
	 * Let's roll now
	 */
	pfm_start();

	noploop(10000000);

	pfm_stop();

	/* 
	 * now read the results
	 */
	if (perfmonctl(pid, PFM_READ_PMDS, pd, evt.pfp_event_count) == -1) {
		fatal_error( "perfmonctl error READ_PMDS errno %d\n",errno);
		return -1;
	}
	/* 
	 * print the results
	 *
	 * It is important to realize, that the first event we specified may not
	 * be in PMD4. Not all events can be measured by any monitor. That's why
	 * we need to use the pc[] array to figure out where event i was allocated.
	 *
	 */
	for (i=0; i < evt.pfp_event_count; i++) {
		char *name;
		pfm_get_event_name(evt.pfp_events[i].event, &name);
		printf("PMD%u %20lu %s\n", 
			pd[i].reg_num, 
			pd[i].reg_value, 
			name);
	}
	/* 
	 * let's stop this now
	 */
	if (perfmonctl(pid, PFM_DESTROY_CONTEXT, NULL, 0) == -1) {
		fatal_error( "child: perfmonctl error PFM_DESTROY errno %d\n",errno);
	}

	return 0;
}
Exemplo n.º 4
0
int
main(void)
{
	int ret;
	int type = 0;
	pid_t pid = getpid();
	pfmlib_ita2_param_t ita_param;
	pfarg_reg_t pd[NUM_PMDS];
	pfarg_context_t ctx[1];
	pfmlib_options_t pfmlib_options;
	struct sigaction act;

	/*
	 * Initialize pfm library (required before we can use it)
	 */
	if (pfm_initialize() != PFMLIB_SUCCESS) {
		fatal_error("Can't initialize library\n");
	}

	/*
	 * Let's make sure we run this on the right CPU
	 */
	pfm_get_pmu_type(&type);
	if (type != PFMLIB_ITANIUM2_PMU) {
		char *model; 
		pfm_get_pmu_name(&model);
		fatal_error("this program does not work with %s PMU\n", model);
	}

	/*
	 * Install the overflow handler (SIGPROF)
	 */
	memset(&act, 0, sizeof(act));
	act.sa_handler = (sig_t)overflow_handler;
	sigaction (SIGPROF, &act, 0);


	/*
	 * pass options to library (optional)
	 */
	memset(&pfmlib_options, 0, sizeof(pfmlib_options));
	pfmlib_options.pfm_debug = 0; /* set to 1 for debug */
	pfmlib_options.pfm_verbose = 0; /* set to 1 for debug */
	pfm_set_options(&pfmlib_options);



	memset(pd, 0, sizeof(pd));
	memset(ctx, 0, sizeof(ctx));

	/*
	 * prepare parameters to library. we don't use any Itanium
	 * specific features here. so the pfp_model is NULL.
	 */
	memset(&evt,0, sizeof(evt));
	memset(&ita_param,0, sizeof(ita_param));


	/*
	 * because we use a model specific feature, we must initialize the
	 * model specific pfmlib parameter structure and link it to the
	 * common structure.
	 * The magic number is a simple mechanism used by the library to check
	 * that the model specific data structure is decent. You must set it manually
	 * otherwise the model specific feature won't work.
	 */
	ita_param.pfp_magic = PFMLIB_ITA2_PARAM_MAGIC;
	evt.pfp_model       = &ita_param;

	/*
	 * Before calling pfm_find_dispatch(), we must specify what kind
	 * of branches we want to capture. We are interesteed in all the mispredicted branches, 
	 * therefore we program we set the various fields of the BTB config to:
	 */
	ita_param.pfp_ita2_btb.btb_used = 1;

	ita_param.pfp_ita2_btb.btb_ds  = 0;
	ita_param.pfp_ita2_btb.btb_tm  = 0x3;
	ita_param.pfp_ita2_btb.btb_ptm = 0x3;
	ita_param.pfp_ita2_btb.btb_ppm = 0x3;
	ita_param.pfp_ita2_btb.btb_brt = 0x0;
	ita_param.pfp_ita2_btb.btb_plm = PFM_PLM3;

	/*
	 * To count the number of occurence of this instruction, we must
	 * program a counting monitor with the IA64_TAGGED_INST_RETIRED_PMC8
	 * event.
	 */
	if (pfm_find_event_byname("BRANCH_EVENT", &evt.pfp_events[0].event) != PFMLIB_SUCCESS) {
		fatal_error("cannot find event BRANCH_EVENT\n");
	}

	/*
	 * set the (global) privilege mode:
	 * 	PFM_PLM3 : user level only
	 */
	evt.pfp_dfl_plm   = PFM_PLM3; 
	/*
	 * how many counters we use
	 */
	evt.pfp_event_count = 1;

	/*
	 * let the library figure out the values for the PMCS
	 */
	if ((ret=pfm_dispatch_events(&evt)) != PFMLIB_SUCCESS) {
		fatal_error("cannot configure events: %s\n", pfm_strerror(ret));
	}
	/*
	 * for this example, we will get notified ONLY when the sampling
	 * buffer is full. The monitoring is not to be inherited
	 * in derived tasks
	 */
	ctx[0].ctx_flags        = PFM_FL_INHERIT_NONE;
	ctx[0].ctx_notify_pid   = getpid();
	ctx[0].ctx_smpl_entries = SMPL_BUF_NENTRIES;
	ctx[0].ctx_smpl_regs[0] = smpl_regs = BTB_REGS_MASK;


	/*
	 * now create the context for self monitoring/per-task
	 */
	if (perfmonctl(pid, PFM_CREATE_CONTEXT, ctx, 1) == -1 ) {
		if (errno == ENOSYS) {
			fatal_error("Your kernel does not have performance monitoring support!\n");
		}
		fatal_error("Can't create PFM context %s\n", strerror(errno));
	}

	printf("Sampling buffer mapped at %p\n", ctx[0].ctx_smpl_vaddr);

	smpl_vaddr = ctx[0].ctx_smpl_vaddr;

	/* 
	 * Must be done before any PMD/PMD calls (unfreeze PMU). Initialize
	 * PMC/PMD to safe values. psr.up is cleared.
	 */
	if (perfmonctl(pid, PFM_ENABLE, NULL, 0) == -1) {
		fatal_error("perfmonctl error PFM_ENABLE errno %d\n",errno);
	}

	/*
	 * indicate we want notification when buffer is full
	 */
	evt.pfp_pc[0].reg_flags |= PFM_REGFL_OVFL_NOTIFY;

	/*
	 * Now prepare the argument to initialize the PMD and the sampling period
	 */
	pd[0].reg_num         = evt.pfp_pc[0].reg_num;
	pd[0].reg_value       = (~0UL) - SMPL_PERIOD +1;
	pd[0].reg_long_reset  = (~0UL) - SMPL_PERIOD +1;
	pd[0].reg_short_reset = (~0UL) - SMPL_PERIOD +1;

	/*
	 * When our counter overflows, we want to BTB index to be reset, so that we keep
	 * in sync. This is required to make it possible to interpret pmd16 on overflow
	 * to avoid repeating the same branch several times.
	 */
	evt.pfp_pc[0].reg_reset_pmds[0] = M_PMD(16);

	/*
	 * reset pmd16, short and long reset value are set to zero as well
	 */
	pd[1].reg_num         = 16;
	pd[1].reg_value       = 0UL;

	/*
	 * Now program the registers
	 *
	 * We don't use the save variable to indicate the number of elements passed to
	 * the kernel because, as we said earlier, pc may contain more elements than
	 * the number of events we specified, i.e., contains more thann coutning monitors.
	 */
	if (perfmonctl(pid, PFM_WRITE_PMCS, evt.pfp_pc, evt.pfp_pc_count) == -1) {
		fatal_error("perfmonctl error PFM_WRITE_PMCS errno %d\n",errno);
	}
	if (perfmonctl(pid, PFM_WRITE_PMDS, pd, 2) == -1) {
		fatal_error("perfmonctl error PFM_WRITE_PMDS errno %d\n",errno);
	}

	/*
	 * Let's roll now.
	 */

	do_test(100000);

	/*
	 * We must call the processing routine to cover the last entries recorded
	 * in the sampling buffer, i.e. which may not be full
	 */
	process_smpl_buffer();

	/* 
	 * let's stop this now
	 */
	if (perfmonctl(pid, PFM_DESTROY_CONTEXT, NULL, 0) == -1) {
		fatal_error("perfmonctl error PFM_DESTROY errno %d\n",errno);
	}
	return 0;
}
Exemplo n.º 5
0
int
main(void)
{
	pfmlib_input_param_t inp;
	pfmlib_output_param_t outp;
	pfmlib_ita2_input_param_t ita2_inp;
	pfarg_reg_t pd[NUM_PMDS];
	pfarg_reg_t pc[NUM_PMCS];
	pfarg_context_t ctx[1];
	pfarg_load_t load_args;
	pfmlib_options_t pfmlib_options;
	int ret;
	int type = 0;
	int id;
	unsigned int i;
	char name[MAX_EVT_NAME_LEN];

	/*
	 * Initialize pfm library (required before we can use it)
	 */
	if (pfm_initialize() != PFMLIB_SUCCESS) {
		fatal_error("Can't initialize library\n");
	}

	/*
	 * Let's make sure we run this on the right CPU
	 */
	pfm_get_pmu_type(&type);
	if (type != PFMLIB_ITANIUM2_PMU) {
		char model[MAX_PMU_NAME_LEN];
		pfm_get_pmu_name(model, MAX_PMU_NAME_LEN);
		fatal_error("this program does not work with the %s PMU\n", model);
	}

	/*
	 * pass options to library (optional)
	 */
	memset(&pfmlib_options, 0, sizeof(pfmlib_options));
	pfmlib_options.pfm_debug   = 0; /* set to 1 for debug */
	pfmlib_options.pfm_verbose = 0; /* set to 1 for verbose */
	pfm_set_options(&pfmlib_options);

	memset(pd, 0, sizeof(pd));
	memset(pc, 0, sizeof(pc));
	memset(ctx, 0, sizeof(ctx));
	memset(&load_args, 0, sizeof(load_args));

	memset(&inp,0, sizeof(inp));
	memset(&outp,0, sizeof(outp));
	memset(&ita2_inp,0, sizeof(ita2_inp));

	/*
	 * We indicate that we are using the PMC8 opcode matcher. This is required
	 * otherwise the library add PMC8 to the list of PMC to pogram during
	 * pfm_dispatch_events().
	 */
	ita2_inp.pfp_ita2_pmc8.opcm_used = 1;

	/*
	 * We want to match all the br.cloop in our test function.
	 * This branch is an IP-relative branch for which the major
	 * opcode (bits [40-37]=4) and the btype field is 5 (which represents
	 * bits[6-8]) so it is included in the match/mask fields of PMC8.
	 * It is necessarily in a B slot.
	 *
	 * We don't care which operands are used with br.cloop therefore
	 * the mask field of pmc8 is set such that only the 4 bits of the
	 * opcode and 3 bits of btype must match exactly. This is accomplished by
	 * clearing the top 4 bits and bits [6-8] of the mask field and setting the
	 * remaining bits.  Similarly, the match field only has the opcode value  and btype
	 * set according to the encoding of br.cloop, the
	 * remaining bits are zero. Bit 60 of PMC8 is set to indicate
	 * that we look only in B slots  (this is the only possibility for
	 * this instruction anyway).
	 *
	 * So the binary representation of the value for PMC8 is as follows:
	 *
	 * 6666555555555544444444443333333333222222222211111111110000000000
	 * 3210987654321098765432109876543210987654321098765432109876543210
	 * ----------------------------------------------------------------
	 * 0001010000000000000000101000000000000011111111111111000111111000
	 *
	 * which yields a value of 0x1400028003fff1f8.
	 *
	 * Depending on the level of optimization to compile this code, it may
	 * be that the count reported could be zero, if the compiler uses a br.cond
	 * instead of br.cloop.
	 *
	 *
	 * The 0x1 sets the ig_ad field to make sure we ignore any range restriction.
	 * Also bit 2 must always be set
	 */
	ita2_inp.pfp_ita2_pmc8.pmc_val = 0x1400028003fff1fa;

	/*
	 * To count the number of occurence of this instruction, we must
	 * program a counting monitor with the IA64_TAGGED_INST_RETIRED_PMC8
	 * event.
	 */
	if (pfm_find_full_event("IA64_TAGGED_INST_RETIRED_IBRP0_PMC8", &inp.pfp_events[0]) != PFMLIB_SUCCESS) {
		fatal_error("cannot find event IA64_TAGGED_INST_RETIRED_IBRP0_PMC8\n");
	}

	/*
	 * set the privilege mode:
	 * 	PFM_PLM3 : user level only
	 */
	inp.pfp_dfl_plm   = PFM_PLM3;
	/*
	 * how many counters we use
	 */
	inp.pfp_event_count = 1;

	/*
	 * let the library figure out the values for the PMCS
	 */
	if ((ret=pfm_dispatch_events(&inp, &ita2_inp, &outp, NULL)) != PFMLIB_SUCCESS) {
		fatal_error("cannot configure events: %s\n", pfm_strerror(ret));
	}

	/*
	 * now create the context for self monitoring/per-task
	 */
	if (perfmonctl(0, PFM_CREATE_CONTEXT, ctx, 1) == -1 ) {
		if (errno == ENOSYS) {
			fatal_error("Your kernel does not have performance monitoring support!\n");
		}
		fatal_error("Can't create PFM context %s\n", strerror(errno));
	}
	/*
	 * extract the unique identifier for our context, a regular file descriptor
	 */
	id = ctx[0].ctx_fd;

	/*
	 * Now prepare the argument to initialize the PMDs and PMCS.
	 * We must pfp_pmc_count to determine the number of PMC to intialize.
	 * We must use pfp_event_count to determine the number of PMD to initialize.
	 * Some events causes extra PMCs to be used, so  pfp_pmc_count may be >= pfp_event_count.
	 *
	 * This step is new compared to libpfm-2.x. It is necessary because the library no
	 * longer knows about the kernel data structures.
	 */

	for (i=0; i < outp.pfp_pmc_count; i++) {
		pc[i].reg_num   = outp.pfp_pmcs[i].reg_num;
		pc[i].reg_value = outp.pfp_pmcs[i].reg_value;
	}

	/*
	 * the PMC controlling the event ALWAYS come first, that's why this loop
	 * is safe even when extra PMC are needed to support a particular event.
	 */
	for (i=0; i < inp.pfp_event_count; i++) {
		pd[i].reg_num   = pc[i].reg_num;
	}
	printf("event_count=%d id=%d\n",  inp.pfp_event_count, id);

	/*
	 * Now program the registers
	 *
	 * We don't use the save variable to indicate the number of elements passed to
	 * the kernel because, as we said earlier, pc may contain more elements than
	 * the number of events we specified, i.e., contains more thann coutning monitors.
	 */
	if (perfmonctl(id, PFM_WRITE_PMCS, pc, outp.pfp_pmc_count) == -1) {
		fatal_error("perfmonctl error PFM_WRITE_PMCS errno %d\n",errno);
	}
	if (perfmonctl(id, PFM_WRITE_PMDS, pd, inp.pfp_event_count) == -1) {
		fatal_error("perfmonctl error PFM_WRITE_PMDS errno %d\n",errno);
	}
	/*
	 * now we load (i.e., attach) the context to ourself
	 */
	load_args.load_pid = getpid();

	if (perfmonctl(id, PFM_LOAD_CONTEXT, &load_args, 1) == -1) {
		fatal_error("perfmonctl error PFM_LOAD_CONTEXT errno %d\n",errno);
	}

	/*
	 * Let's roll now.
	 */
	pfm_self_start(id);

	do_test(100UL);

	pfm_self_stop(id);

	/*
	 * now read the results
	 */
	if (perfmonctl(id, PFM_READ_PMDS, pd, inp.pfp_event_count) == -1) {
		fatal_error("perfmonctl error READ_PMDS errno %d\n",errno);
	}

	/*
	 * print the results
	 */
	pfm_get_full_event_name(&inp.pfp_events[0], name, MAX_EVT_NAME_LEN);
	printf("PMD%u %20lu %s\n",
			pd[0].reg_num,
			pd[0].reg_value,
			name);

	if (pd[0].reg_value != 0)
		printf("compiler used br.cloop\n");
	else
		printf("compiler did not use br.cloop\n");

	/*
	 * let's stop this now
	 */
	close(id);
	return 0;
}
int
main(void)
{
	int ret;
	int type = 0;
	char *name;
	pid_t pid = getpid();
	pfmlib_param_t evt;
	pfmlib_ita2_param_t ita2_param;
	pfarg_reg_t pd[NUM_PMDS];
	pfarg_context_t ctx[1];
	pfmlib_options_t pfmlib_options;

	/*
	 * Initialize pfm library (required before we can use it)
	 */
	if (pfm_initialize() != PFMLIB_SUCCESS) {
		fatal_error("Can't initialize library\n");
	}

	/*
	 * Let's make sure we run this on the right CPU
	 */
	pfm_get_pmu_type(&type);
	if (type != PFMLIB_ITANIUM2_PMU) {
		char *model; 
		pfm_get_pmu_name(&model);
		fatal_error("this program does not work with the %s PMU\n", model);
	}

	/*
	 * pass options to library (optional)
	 */
	memset(&pfmlib_options, 0, sizeof(pfmlib_options));
	pfmlib_options.pfm_debug = 0; /* set to 1 for debug */
	pfmlib_options.pfm_verbose = 0; /* set to 1 for verbose */
	pfm_set_options(&pfmlib_options);



	memset(pd, 0, sizeof(pd));
	memset(ctx, 0, sizeof(ctx));

	memset(&evt,0, sizeof(evt));
	memset(&ita2_param,0, sizeof(ita2_param));

	/*
	 * because we use a model specific feature, we must initialize the
	 * model specific pfmlib parameter structure and link it to the
	 * common structure.
	 * The magic number is a simple mechanism used by the library to check
	 * that the model specific data structure is decent. You must set it manually
	 * otherwise the model specific feature won't work.
	 */
	ita2_param.pfp_magic = PFMLIB_ITA2_PARAM_MAGIC;
	evt.pfp_model       = &ita2_param;

	/*
	 * We indicate that we are using the PMC8 opcode matcher. This is required
	 * otherwise the library add PMC8 to the list of PMC to pogram during
	 * pfm_dispatch_events().
	 */
	ita2_param.pfp_ita2_pmc8.opcm_used = 1;

	/*
	 * We want to match all the br.cloop in our test function.
	 * This branch is an IP-relative branch for which the major
	 * opcode (bits [40-37]=4) and the btype field is 5 (which represents
	 * bits[6-8]) so it is included in the match/mask fields of PMC8. 
	 * It is necessarily in a B slot.
	 *
	 * We don't care which operands are used with br.cloop therefore
	 * the mask field of pmc8 is set such that only the 4 bits of the
	 * opcode and 3 bits of btype must match exactly. This is accomplished by 
	 * clearing the top 4 bits and bits [6-8] of the mask field and setting the 
	 * remaining bits.  Similarly, the match field only has the opcode value  and btype
	 * set according to the encoding of br.cloop, the
	 * remaining bits are zero. Bit 60 of PMC8 is set to indicate
	 * that we look only in B slots  (this is the only possibility for
	 * this instruction anyway). 
	 *
	 * So the binary representation of the value for PMC8 is as follows:
	 *
	 * 6666555555555544444444443333333333222222222211111111110000000000
	 * 3210987654321098765432109876543210987654321098765432109876543210
	 * ----------------------------------------------------------------
	 * 0001010000000000000000101000000000000011111111111111000111111000
	 * 
	 * which yields a value of 0x1400028003fff1f8.
	 *
	 * Depending on the level of optimization to compile this code, it may 
	 * be that the count reported could be zero, if the compiler uses a br.cond 
	 * instead of br.cloop.
	 *
	 *
	 * The 0x1 sets the ig_ad field to make sure we ignore any range restriction.
	 * Also bit 2 must always be set
	 */
	ita2_param.pfp_ita2_pmc8.pmc_val = 0x1400028003fff1fa;

	/*
	 * To count the number of occurence of this instruction, we must
	 * program a counting monitor with the IA64_TAGGED_INST_RETIRED_PMC8
	 * event.
	 */
	if (pfm_find_event_byname("IA64_TAGGED_INST_RETIRED_IBRP0_PMC8", &evt.pfp_events[0].event) != PFMLIB_SUCCESS) {
		fatal_error("cannot find event IA64_TAGGED_INST_RETIRED_IBRP0_PMC8\n");
	}

	/*
	 * set the privilege mode:
	 * 	PFM_PLM3 : user level only
	 */
	evt.pfp_dfl_plm   = PFM_PLM3; 
	/*
	 * how many counters we use
	 */
	evt.pfp_event_count = 1;

	/*
	 * let the library figure out the values for the PMCS
	 */
	if ((ret=pfm_dispatch_events(&evt)) != PFMLIB_SUCCESS) {
		fatal_error("cannot configure events: %s\n", pfm_strerror(ret));
	}
	/*
	 * for this example, we have decided not to get notified
	 * on counter overflows and the monitoring is not to be inherited
	 * in derived tasks
	 */
	ctx[0].ctx_flags = PFM_FL_INHERIT_NONE;

	/*
	 * now create the context for self monitoring/per-task
	 */
	if (perfmonctl(pid, PFM_CREATE_CONTEXT, ctx, 1) == -1 ) {
		if (errno == ENOSYS) {
			fatal_error("Your kernel does not have performance monitoring support!\n");
		}
		fatal_error("Can't create PFM context %s\n", strerror(errno));
	}
	/* 
	 * Must be done before any PMD/PMD calls (unfreeze PMU). Initialize
	 * PMC/PMD to safe values. psr.up is cleared.
	 */
	if (perfmonctl(pid, PFM_ENABLE, NULL, 0) == -1) {
		fatal_error("perfmonctl error PFM_ENABLE errno %d\n",errno);
	}

	/*
	 * Now prepare the argument to initialize the PMD.
	 */
	pd[0].reg_num = evt.pfp_pc[0].reg_num;

	/*
	 * Now program the registers
	 *
	 * We don't use the save variable to indicate the number of elements passed to
	 * the kernel because, as we said earlier, pc may contain more elements than
	 * the number of events we specified, i.e., contains more thann coutning monitors.
	 */
	if (perfmonctl(pid, PFM_WRITE_PMCS, evt.pfp_pc, evt.pfp_pc_count) == -1) {
		fatal_error("perfmonctl error PFM_WRITE_PMCS errno %d\n",errno);
	}
	if (perfmonctl(pid, PFM_WRITE_PMDS, pd, evt.pfp_event_count) == -1) {
		fatal_error("perfmonctl error PFM_WRITE_PMDS errno %d\n",errno);
	}

	/*
	 * Let's roll now.
	 */
	pfm_start();

	do_test(100UL);

	pfm_stop();

	/* 
	 * now read the results
	 */
	if (perfmonctl(pid, PFM_READ_PMDS, pd, evt.pfp_event_count) == -1) {
		fatal_error("perfmonctl error READ_PMDS errno %d\n",errno);
	}

	/* 
	 * print the results
	 */
	pfm_get_event_name(evt.pfp_events[0].event, &name);
	printf("PMD%u %20lu %s\n", 
			pd[0].reg_num, 
			pd[0].reg_value, 
			name);

	if (pd[0].reg_value != 0) 
		printf("compiler used br.cloop\n");
	else
		printf("compiler did not use br.cloop\n");

	/* 
	 * let's stop this now
	 */
	if (perfmonctl(pid, PFM_DESTROY_CONTEXT, NULL, 0) == -1) {
		fatal_error("perfmonctl error PFM_DESTROY errno %d\n",errno);
	}
	return 0;
}
Exemplo n.º 7
0
int
main(int argc, char **argv)
{
	pfarg_context_t ctx[1];
	pfmlib_input_param_t inp;
	pfmlib_output_param_t outp;
	pfarg_reg_t pc[NUM_PMCS];
	pfarg_load_t load_args;
	pfmlib_options_t pfmlib_options;
	struct sigaction act;
	size_t len;
	unsigned int i, num_counters;
	int ret;

	/*
	 * Initialize pfm library (required before we can use it)
	 */
	if (pfm_initialize() != PFMLIB_SUCCESS) {
		printf("Can't initialize library\n");
		exit(1);
	}

	/*
	 * Install the signal handler (SIGIO)
	 */
	memset(&act, 0, sizeof(act));
	act.sa_handler = (sig_t)sigio_handler;
	sigaction (SIGIO, &act, 0);

	/*
	 * pass options to library (optional)
	 */
	memset(&pfmlib_options, 0, sizeof(pfmlib_options));
	pfmlib_options.pfm_debug = 0; /* set to 1 for debug */
	pfm_set_options(&pfmlib_options);

	memset(pc, 0, sizeof(pc));
	memset(ctx, 0, sizeof(ctx));
	memset(&load_args, 0, sizeof(load_args));
	memset(&inp,0, sizeof(inp));
	memset(&outp,0, sizeof(outp));

	pfm_get_num_counters(&num_counters);

	if (pfm_get_cycle_event(&inp.pfp_events[0]) != PFMLIB_SUCCESS)
		fatal_error("cannot find cycle event\n");

	if (pfm_get_inst_retired_event(&inp.pfp_events[1]) != PFMLIB_SUCCESS)
		fatal_error("cannot find inst retired event\n");

	i = 2;

	if (i > num_counters) {
		i = num_counters;
		printf("too many events provided (max=%d events), using first %d event(s)\n", num_counters, i);
	}

	/*
	 * set the default privilege mode for all counters:
	 * 	PFM_PLM3 : user level only
	 */
	inp.pfp_dfl_plm = PFM_PLM3;

	/*
	 * how many counters we use
	 */
	inp.pfp_event_count = i;

	/*
	 * how many counters we use
	 */
	if (i > 1) {
		inp.pfp_event_count = i;

		pfm_get_max_event_name_len(&len);

		event1_name = malloc(len+1);
		if (event1_name == NULL)
			fatal_error("cannot allocate event name\n");

		pfm_get_full_event_name(&inp.pfp_events[1], event1_name, len+1);
	}

	/*
	 * let the library figure out the values for the PMCS
	 */
	if ((ret=pfm_dispatch_events(&inp, NULL, &outp, NULL)) != PFMLIB_SUCCESS) {
		fatal_error("Cannot configure events: %s\n", pfm_strerror(ret));
	}
	/*
	 * when we know we are self-monitoring and we have only one context, then
	 * when we get an overflow we know where it is coming from. Therefore we can
	 * save the call to the kernel to extract the notification message. By default,
	 * a message is generated. The queue of messages has a limited size, therefore
	 * it is important to clear the queue by reading the message on overflow. Failure
	 * to do so may result in a queue full and you will lose notification messages.
	 *
	 * With the PFM_FL_OVFL_NO_MSG, no message will be queue, but you will still get
	 * the signal. Similarly, the PFM_MSG_END will be generated.
	 */
	ctx[0].ctx_flags = PFM_FL_OVFL_NO_MSG;

	/*
	 * now create the context for self monitoring/per-task
	 */
	if (perfmonctl(0, PFM_CREATE_CONTEXT, ctx, 1) == -1 ) {
		if (errno == ENOSYS) {
			fatal_error("Your kernel does not have performance monitoring support!\n");
		}
		fatal_error("Can't create PFM context %s\n", strerror(errno));
	}
	ctx_fd = ctx->ctx_fd;

	/*
	 * Now prepare the argument to initialize the PMDs and PMCS.
	 * We use pfp_pmc_count to determine the number of registers to
	 * setup. Note that this field can be >= pfp_event_count.
	 */

	for (i=0; i < outp.pfp_pmc_count; i++) {
		pc[i].reg_num   = outp.pfp_pmcs[i].reg_num;
		pc[i].reg_value = outp.pfp_pmcs[i].reg_value;
	}

	for (i=0; i < inp.pfp_event_count; i++) {
		pd[i].reg_num   = pc[i].reg_num;
	}
	/*
	 * We want to get notified when the counter used for our first
	 * event overflows
	 */
	pc[0].reg_flags 	|= PFM_REGFL_OVFL_NOTIFY;
	pc[0].reg_reset_pmds[0] |= 1UL << outp.pfp_pmcs[1].reg_num;

	/*
	 * we arm the first counter, such that it will overflow
	 * after SMPL_PERIOD events have been observed
	 */
	pd[0].reg_value       = (~0UL) - SMPL_PERIOD + 1;
	pd[0].reg_long_reset  = (~0UL) - SMPL_PERIOD + 1;
	pd[0].reg_short_reset = (~0UL) - SMPL_PERIOD + 1;

	/*
	 * Now program the registers
	 *
	 * We don't use the save variable to indicate the number of elements passed to
	 * the kernel because, as we said earlier, pc may contain more elements than
	 * the number of events we specified, i.e., contains more than counting monitors.
	 */
	if (perfmonctl(ctx_fd, PFM_WRITE_PMCS, pc, outp.pfp_pmc_count) == -1) {
		fatal_error("perfmonctl error PFM_WRITE_PMCS errno %d\n",errno);
	}

	if (perfmonctl(ctx_fd, PFM_WRITE_PMDS, pd, inp.pfp_event_count) == -1) {
		fatal_error("perfmonctl error PFM_WRITE_PMDS errno %d\n",errno);
	}

	/*
	 * we want to monitor ourself
	 */
	load_args.load_pid = getpid();

	if (perfmonctl(ctx_fd, PFM_LOAD_CONTEXT, &load_args, 1) == -1) {
		fatal_error("perfmonctl error PFM_WRITE_PMDS errno %d\n",errno);
	}

	/*
	 * setup asynchronous notification on the file descriptor
	 */
	ret = fcntl(ctx_fd, F_SETFL, fcntl(ctx_fd, F_GETFL, 0) | O_ASYNC);
	if (ret == -1) {
		fatal_error("cannot set ASYNC: %s\n", strerror(errno));
	}

	/*
	 * get ownership of the descriptor
	 */
	ret = fcntl(ctx_fd, F_SETOWN, getpid());
	if (ret == -1) {
		fatal_error("cannot setown: %s\n", strerror(errno));
	}

	/*
	 * Let's roll now
	 */
	pfm_self_start(ctx_fd);

	busyloop();

	pfm_self_stop(ctx_fd);

	/*
	 * free our context
	 */
	close(ctx_fd);

	return 0;
}
Exemplo n.º 8
0
int
main(int argc, char **argv)
{
	pfmlib_input_param_t inp;
	pfmlib_output_param_t outp;
	pfmlib_core_input_param_t mod_inp;
	pfmlib_options_t pfmlib_options;
	pfarg_pmr_t pc[NUM_PMCS];
	pfarg_pmd_attr_t pd[NUM_PMDS];
	pfarg_sinfo_t sif;
	struct pollfd fds;
	smpl_arg_t buf_arg;
	pfarg_msg_t msg;
	smpl_hdr_t *hdr;
	void *buf_addr;
	uint64_t pebs_size;
	pid_t pid;
	int ret, fd, type;
	unsigned int i;
	uint32_t ctx_flags;

	if (argc < 2)
		fatal_error("you need to pass a program to sample\n");

	if (pfm_initialize() != PFMLIB_SUCCESS)
		fatal_error("libpfm intialization failed\n");

	/*
	 * check we are on an Intel Core PMU
	 */
	pfm_get_pmu_type(&type);
	if (type != PFMLIB_INTEL_CORE_PMU && type != PFMLIB_INTEL_ATOM_PMU)
		fatal_error("This program only works with an Intel Core processor\n");

	/*
	 * pass options to library (optional)
	 */
	memset(&pfmlib_options, 0, sizeof(pfmlib_options));
	pfmlib_options.pfm_debug   = 0; /* set to 1 for debug */
	pfmlib_options.pfm_verbose = 1; /* set to 1 for verbose */
	pfm_set_options(&pfmlib_options);

	memset(pd, 0, sizeof(pd));
	memset(pc, 0, sizeof(pc));
	memset(&inp, 0, sizeof(inp));
	memset(&outp, 0, sizeof(outp));
	memset(&mod_inp, 0, sizeof(mod_inp));
	memset(&sif, 0, sizeof(sif));

	memset(&buf_arg, 0, sizeof(buf_arg));

	memset(&fds, 0, sizeof(fds));

	/*
	 * search for our sampling event
	 */
	if (pfm_find_full_event(SMPL_EVENT, &inp.pfp_events[0]) != PFMLIB_SUCCESS)
		fatal_error("cannot find sampling event %s\n", SMPL_EVENT);

	inp.pfp_event_count = 1;
	inp.pfp_dfl_plm = PFM_PLM3;

	/*
	 * important: inform libpfm we do use PEBS
	 */
	mod_inp.pfp_core_pebs.pebs_used = 1;

	/*
	 * sampling buffer parameters
	 */
	pebs_size = 3 * getpagesize();
	buf_arg.buf_size = pebs_size;

	/*
	 * sampling period cannot use more bits than HW counter can supoprt
	 */
	buf_arg.cnt_reset = -SMPL_PERIOD;

	/*
	 * We want a system-wide context for sampling
	 */
	ctx_flags = PFM_FL_SYSTEM_WIDE | PFM_FL_SMPL_FMT;

	/*
	 * trigger notification (interrupt) when reaching the very end of
	 * the buffer
	 */
	buf_arg.intr_thres = (pebs_size/sizeof(smpl_entry_t))*90/100;

	/*
 	 * we want to measure CPU0, thus we pin ourself to the CPU before invoking
 	 * perfmon. This ensures that the sampling buffer will be allocated on the
 	 * same NUMA node.
 	 */
	ret = pin_cpu(getpid(), 0);
	if (ret)
		fatal_error("cannot pin on CPU0");

	/*
	 * create session and sampling buffer
	 */
	fd = pfm_create(ctx_flags, &sif, FMT_NAME, &buf_arg, sizeof(buf_arg));
	if (fd == -1) {
		if (errno == ENOSYS) {
			fatal_error("Your kernel does not have performance monitoring support!\n");
		}
		fatal_error("cannot create session %s, maybe you do not have the PEBS sampling format in the kernel.\nCheck /sys/kernel/perfmon/formats\n", strerror(errno));
	}

	/*
	 * map buffer into our address space
	 */
	buf_addr = mmap(NULL, (size_t)buf_arg.buf_size, PROT_READ, MAP_PRIVATE, fd, 0);
	printf("session [%d] buffer mapped @%p\n", fd, buf_addr);
	if (buf_addr == MAP_FAILED)
		fatal_error("cannot mmap sampling buffer errno %d\n", errno);

	hdr = (smpl_hdr_t *)buf_addr;

	printf("pebs_base=0x%llx pebs_end=0x%llx index=0x%llx\n"
	       "intr=0x%llx version=%u.%u\n"
	       "entry_size=%zu ds_size=%zu\n",
			(unsigned long long)hdr->ds.pebs_buf_base,
			(unsigned long long)hdr->ds.pebs_abs_max,
			(unsigned long long)hdr->ds.pebs_index,
			(unsigned long long)hdr->ds.pebs_intr_thres,
			PFM_VERSION_MAJOR(hdr->version),
			PFM_VERSION_MINOR(hdr->version),
			sizeof(smpl_entry_t),
			sizeof(hdr->ds));

	if (PFM_VERSION_MAJOR(hdr->version) < 1)
		fatal_error("invalid buffer format version\n");

	/*
	 * get which PMC registers are available
	 */
	detect_unavail_pmu_regs(&sif, &inp.pfp_unavail_pmcs, NULL);

	/*
	 * let libpfm figure out how to assign event onto PMU registers
	 */
	if (pfm_dispatch_events(&inp, &mod_inp, &outp, NULL) != PFMLIB_SUCCESS)
		fatal_error("cannot assign event %s\n", SMPL_EVENT);


	/*
	 * propagate PMC setup from libpfm to perfmon
	 */
	for (i=0; i < outp.pfp_pmc_count; i++) {
		pc[i].reg_num   = outp.pfp_pmcs[i].reg_num;
		pc[i].reg_value = outp.pfp_pmcs[i].reg_value;

		/*
		 * must disable 64-bit emulation on the PMC0 counter.
		 * PMC0 is the only counter useable with PEBS. We must disable
		 * 64-bit emulation to avoid getting interrupts for each
		 * sampling period, PEBS takes care of this part.
		 */
		if (pc[i].reg_num == 0)
			pc[i].reg_flags = PFM_REGFL_NO_EMUL64;
	}

	/*
	 * propagate PMD set from libpfm to perfmon
	 */
	for (i=0; i < outp.pfp_pmd_count; i++)
		pd[i].reg_num = outp.pfp_pmds[i].reg_num;

	/*
	 * setup sampling period for first counter
	 * we want notification on overflow, i.e., when buffer is full
	 */
	pd[0].reg_flags = PFM_REGFL_OVFL_NOTIFY;
	pd[0].reg_value = -SMPL_PERIOD;

	pd[0].reg_long_reset = -SMPL_PERIOD;
	pd[0].reg_short_reset = -SMPL_PERIOD;
	
	/*
	 * Now program the registers
	 */
	if (pfm_write(fd, 0, PFM_RW_PMC, pc, outp.pfp_pmc_count * sizeof(*pc)) == -1)
		fatal_error("pfm_write error errno %d\n",errno);

	if (pfm_write(fd, 0, PFM_RW_PMD_ATTR, pd, outp.pfp_pmd_count * sizeof(*pd)) == -1)
		fatal_error("pfm_write(PMD) error errno %d\n",errno);

	/*
	 *  attach the session to CPU0
	 */
	if (pfm_attach(fd, 0, 0) == -1)
		fatal_error("pfm_attach error errno %d\n",errno);

	/*
	 * Create the child task
	 */
	signal(SIGCHLD, handler);

	if ((pid=fork()) == -1)
		fatal_error("Cannot fork process\n");

	if (pid == 0) {
		/* child does not inherit context file descriptor */
		close(fd);

		/* if child is too short-lived we may not measure it */
		child(argv+1);
	}

	/*
	 * start monitoring
	 */
	if (pfm_set_state(fd, 0, PFM_ST_START) == -1)
		fatal_error("pfm_set_state(start) error errno %d\n",errno);

	fds.fd = fd;
	fds.events = POLLIN;
	/*
	 * core loop
	 */
	for(;done == 0;) {
		/*
		 * Must use a timeout to avoid a race condition
		 * with the SIGCHLD signal
		 */
		ret = poll(&fds, 1, 500);

		/*
		 * if timeout expired, then check done
		 */
		if (ret == 0)
			continue;

		if (ret == -1) {
			if(ret == -1 && errno == EINTR) {
				warning("read interrupted, retrying\n");
				continue;
			}
			fatal_error("poll failed: %s\n", strerror(errno));
		}

		ret = read(fd, &msg, sizeof(msg));
		if (ret == -1)
			fatal_error("cannot read perfmon msg: %s\n", strerror(errno));

		switch(msg.type) {
			case PFM_MSG_OVFL: /* the sampling buffer is full */
				process_smpl_buf(hdr);
				/*
				 * reactivate monitoring once we are done with the samples
				 * in syste-wide, interface guarantees monitoring is active
				 * upon return from the pfm_restart() syscall
				 */
				if (pfm_set_state(fd, 0, PFM_ST_RESTART) == -1)
					fatal_error("pfm_set_state(restart) error errno %d\n",errno);
				break;
			default: fatal_error("unknown message type %d\n", msg.type);
		}
	}
	/*
	 * cleanup child
	 */
	waitpid(pid, NULL, 0);

	/*
	 * stop monitoring, this is required in order to guarantee that the PEBS buffer
	 * header is updated with the latest position, such that we see see the final
	 * samples
	 */
	if (pfm_set_state(fd, 0, PFM_ST_STOP) == -1)
		fatal_error("pfm_set_state(stop) error errno %d\n",errno);

	/*
	 * check for any leftover samples. Must have monitoring stopped
	 * for this operation to have guarantee it is up to date
	 */
	process_smpl_buf(hdr);

	/*
	 * close session
	 */
	close(fd);

	/*
	 * unmap sampling buffer and actually free the perfmon session
	 */
	munmap(buf_addr, (size_t)buf_arg.buf_size);

	return 0;
}