void poisson_kernel_populate_c_wrapper(
  int p_a0,
  int p_a1,
  int *p_a2,
  double *p_a3,
  double *p_a4,
  double *p_a5,
  int arg_idx0, int arg_idx1,
  int x_size, int y_size) {
  #ifdef OPS_GPU
  #pragma acc parallel deviceptr(p_a3,p_a4,p_a5)
  #pragma acc loop
  #endif
  for ( int n_y=0; n_y<y_size; n_y++ ){
    #ifdef OPS_GPU
    #pragma acc loop
    #endif
    for ( int n_x=0; n_x<x_size; n_x++ ){
      int arg_idx[] = {arg_idx0+n_x, arg_idx1+n_y};
      poisson_kernel_populate(  &p_a0,
           &p_a1,arg_idx,
           p_a3 + n_x*1 + n_y*xdim3_poisson_kernel_populate*1, p_a4 + n_x*1 + n_y*xdim4_poisson_kernel_populate*1,
           p_a5 + n_x*1 + n_y*xdim5_poisson_kernel_populate*1 );

    }
  }
}
// host stub function
void ops_par_loop_poisson_kernel_populate(char const *name, ops_block block,
                                          int dim, int *range, ops_arg arg0,
                                          ops_arg arg1, ops_arg arg2,
                                          ops_arg arg3, ops_arg arg4,
                                          ops_arg arg5) {

  // Timing
  double t1, t2, c1, c2;

  int offs[6][2];
  ops_arg args[6] = {arg0, arg1, arg2, arg3, arg4, arg5};

#ifdef CHECKPOINTING
  if (!ops_checkpointing_before(args, 6, range, 0))
    return;
#endif

  if (OPS_diags > 1) {
    ops_timing_realloc(0, "poisson_kernel_populate");
    OPS_kernels[0].count++;
    ops_timers_core(&c1, &t1);
  }

#ifdef OPS_MPI
  sub_block_list sb = OPS_sub_block_list[block->index];
#endif

  // compute locally allocated range for the sub-block

  int start[2];
  int end[2];
  int arg_idx[2];

#ifdef OPS_MPI
  if (!sb->owned)
    return;
  for (int n = 0; n < 2; n++) {
    start[n] = sb->decomp_disp[n];
    end[n] = sb->decomp_disp[n] + sb->decomp_size[n];
    if (start[n] >= range[2 * n]) {
      start[n] = 0;
    } else {
      start[n] = range[2 * n] - start[n];
    }
    if (sb->id_m[n] == MPI_PROC_NULL && range[2 * n] < 0)
      start[n] = range[2 * n];
    if (end[n] >= range[2 * n + 1]) {
      end[n] = range[2 * n + 1] - sb->decomp_disp[n];
    } else {
      end[n] = sb->decomp_size[n];
    }
    if (sb->id_p[n] == MPI_PROC_NULL &&
        (range[2 * n + 1] > sb->decomp_disp[n] + sb->decomp_size[n]))
      end[n] += (range[2 * n + 1] - sb->decomp_disp[n] - sb->decomp_size[n]);
    if (end[n] < start[n])
      end[n] = start[n];
  }
#else
  for (int n = 0; n < 2; n++) {
    start[n] = range[2 * n];
    end[n] = range[2 * n + 1];
  }
#endif
#ifdef OPS_DEBUG
  ops_register_args(args, "poisson_kernel_populate");
#endif

  offs[3][0] = args[3].stencil->stride[0] * 1; // unit step in x dimension
  offs[3][1] =
      off2D(1, &start[0], &end[0], args[3].dat->size, args[3].stencil->stride) -
      offs[3][0];

  offs[4][0] = args[4].stencil->stride[0] * 1; // unit step in x dimension
  offs[4][1] =
      off2D(1, &start[0], &end[0], args[4].dat->size, args[4].stencil->stride) -
      offs[4][0];

  offs[5][0] = args[5].stencil->stride[0] * 1; // unit step in x dimension
  offs[5][1] =
      off2D(1, &start[0], &end[0], args[5].dat->size, args[5].stencil->stride) -
      offs[5][0];

  int off3_0 = offs[3][0];
  int off3_1 = offs[3][1];
  int dat3 = (OPS_soa ? args[3].dat->type_size : args[3].dat->elem_size);
  int off4_0 = offs[4][0];
  int off4_1 = offs[4][1];
  int dat4 = (OPS_soa ? args[4].dat->type_size : args[4].dat->elem_size);
  int off5_0 = offs[5][0];
  int off5_1 = offs[5][1];
  int dat5 = (OPS_soa ? args[5].dat->type_size : args[5].dat->elem_size);

  // Halo Exchanges
  ops_H_D_exchanges_host(args, 6);
  ops_halo_exchanges(args, 6, range);
  ops_H_D_exchanges_host(args, 6);

#ifdef _OPENMP
  int nthreads = omp_get_max_threads();
#else
  int nthreads = 1;
#endif
  xdim3 = args[3].dat->size[0];
  xdim4 = args[4].dat->size[0];
  xdim5 = args[5].dat->size[0];

  if (OPS_diags > 1) {
    ops_timers_core(&c2, &t2);
    OPS_kernels[0].mpi_time += t2 - t1;
  }

#pragma omp parallel for
  for (int thr = 0; thr < nthreads; thr++) {

    int y_size = end[1] - start[1];
    char *p_a[6];

    int start_i = start[1] + ((y_size - 1) / nthreads + 1) * thr;
    int finish_i =
        start[1] + MIN(((y_size - 1) / nthreads + 1) * (thr + 1), y_size);

    // get address per thread
    int start0 = start[0];
    int start1 = start_i;

    int arg_idx[2];
#ifdef OPS_MPI
    arg_idx[0] = sb->decomp_disp[0] + start0;
    arg_idx[1] = sb->decomp_disp[1] + start1;
#else
    arg_idx[0] = start0;
    arg_idx[1] = start1;
#endif
    // set up initial pointers
    int d_m[OPS_MAX_DIM];
    p_a[0] = (char *)args[0].data;

    p_a[1] = (char *)args[1].data;

    p_a[2] = (char *)arg_idx;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[3].dat->d_m[d] + OPS_sub_dat_list[args[3].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[3].dat->d_m[d];
#endif
    int base3 = dat3 * 1 * (start0 * args[3].stencil->stride[0] -
                            args[3].dat->base[0] - d_m[0]);
    base3 = base3 +
            dat3 * args[3].dat->size[0] * (start1 * args[3].stencil->stride[1] -
                                           args[3].dat->base[1] - d_m[1]);
    p_a[3] = (char *)args[3].data + base3;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[4].dat->d_m[d] + OPS_sub_dat_list[args[4].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[4].dat->d_m[d];
#endif
    int base4 = dat4 * 1 * (start0 * args[4].stencil->stride[0] -
                            args[4].dat->base[0] - d_m[0]);
    base4 = base4 +
            dat4 * args[4].dat->size[0] * (start1 * args[4].stencil->stride[1] -
                                           args[4].dat->base[1] - d_m[1]);
    p_a[4] = (char *)args[4].data + base4;

#ifdef OPS_MPI
    for (int d = 0; d < dim; d++)
      d_m[d] =
          args[5].dat->d_m[d] + OPS_sub_dat_list[args[5].dat->index]->d_im[d];
#else
    for (int d = 0; d < dim; d++)
      d_m[d] = args[5].dat->d_m[d];
#endif
    int base5 = dat5 * 1 * (start0 * args[5].stencil->stride[0] -
                            args[5].dat->base[0] - d_m[0]);
    base5 = base5 +
            dat5 * args[5].dat->size[0] * (start1 * args[5].stencil->stride[1] -
                                           args[5].dat->base[1] - d_m[1]);
    p_a[5] = (char *)args[5].data + base5;

    for (int n_y = start_i; n_y < finish_i; n_y++) {
      for (int n_x = start[0]; n_x < start[0] + (end[0] - start[0]) / SIMD_VEC;
           n_x++) {
        // call kernel function, passing in pointers to data -vectorised
        for (int i = 0; i < SIMD_VEC; i++) {
          poisson_kernel_populate((int *)p_a[0], (int *)p_a[1], arg_idx,
                                  (double *)p_a[3] + i * 1 * 1,
                                  (double *)p_a[4] + i * 1 * 1,
                                  (double *)p_a[5] + i * 1 * 1);

          arg_idx[0]++;
        }

        // shift pointers to data x direction
        p_a[3] = p_a[3] + (dat3 * off3_0) * SIMD_VEC;
        p_a[4] = p_a[4] + (dat4 * off4_0) * SIMD_VEC;
        p_a[5] = p_a[5] + (dat5 * off5_0) * SIMD_VEC;
      }

      for (int n_x = start[0] + ((end[0] - start[0]) / SIMD_VEC) * SIMD_VEC;
           n_x < end[0]; n_x++) {
        // call kernel function, passing in pointers to data - remainder
        poisson_kernel_populate((int *)p_a[0], (int *)p_a[1], arg_idx,
                                (double *)p_a[3], (double *)p_a[4],
                                (double *)p_a[5]);

        // shift pointers to data x direction
        p_a[3] = p_a[3] + (dat3 * off3_0);
        p_a[4] = p_a[4] + (dat4 * off4_0);
        p_a[5] = p_a[5] + (dat5 * off5_0);
        arg_idx[0]++;
      }

      // shift pointers to data y direction
      p_a[3] = p_a[3] + (dat3 * off3_1);
      p_a[4] = p_a[4] + (dat4 * off4_1);
      p_a[5] = p_a[5] + (dat5 * off5_1);
#ifdef OPS_MPI
      arg_idx[0] = sb->decomp_disp[0] + start0;
#else
      arg_idx[0] = start0;
#endif
      arg_idx[1]++;
    }
  }

  if (OPS_diags > 1) {
    ops_timers_core(&c1, &t1);
    OPS_kernels[0].time += t1 - t2;
  }

  ops_set_dirtybit_host(args, 6);

  ops_set_halo_dirtybit3(&args[3], range);
  ops_set_halo_dirtybit3(&args[4], range);
  ops_set_halo_dirtybit3(&args[5], range);

  if (OPS_diags > 1) {
    // Update kernel record
    ops_timers_core(&c2, &t2);
    OPS_kernels[0].mpi_time += t2 - t1;
    OPS_kernels[0].transfer += ops_compute_transfer(dim, start, end, &arg3);
    OPS_kernels[0].transfer += ops_compute_transfer(dim, start, end, &arg4);
    OPS_kernels[0].transfer += ops_compute_transfer(dim, start, end, &arg5);
  }
}