Exemplo n.º 1
0
int
gdb_do_one_event (void)
{
  static int event_source_head = 0;
  const int number_of_sources = 3;
  int current = 0;

  /* First let's see if there are any asynchronous signal handlers
     that are ready.  These would be the result of invoking any of the
     signal handlers.  */
  if (invoke_async_signal_handlers ())
    return 1;

  /* To level the fairness across event sources, we poll them in a
     round-robin fashion.  */
  for (current = 0; current < number_of_sources; current++)
    {
      int res;

      switch (event_source_head)
	{
	case 0:
	  /* Are any timers that are ready?  */
	  res = poll_timers ();
	  break;
	case 1:
	  /* Are there events already waiting to be collected on the
	     monitored file descriptors?  */
	  res = gdb_wait_for_event (0);
	  break;
	case 2:
	  /* Are there any asynchronous event handlers ready?  */
	  res = check_async_event_handlers ();
	  break;
	default:
	  internal_error (__FILE__, __LINE__,
			  "unexpected event_source_head %d",
			  event_source_head);
	}

      event_source_head++;
      if (event_source_head == number_of_sources)
	event_source_head = 0;

      if (res > 0)
	return 1;
    }

  /* Block waiting for a new event.  If gdb_wait_for_event returns -1,
     we should get out because this means that there are no event
     sources left.  This will make the event loop stop, and the
     application exit.  */

  if (gdb_wait_for_event (1) < 0)
    return -1;

  /* If gdb_wait_for_event has returned 1, it means that one event has
     been handled.  We break out of the loop.  */
  return 1;
}
Exemplo n.º 2
0
static int
gdb_do_one_event (void *data)
{
  /* Any events already waiting in the queue? */
  if (process_event ())
    {
      return 1;
    }

  /* Are any timers that are ready? If so, put an event on the queue. */
  poll_timers ();

  /* Wait for a new event.  If gdb_wait_for_event returns -1
     we should get out because this means that there are no
     event sources left. This will make the event loop stop,
     and the application exit. */

  if (gdb_wait_for_event () < 0)
    {
      return -1;
    }

  /* Handle any new events occurred while waiting. */
  if (process_event ())
    {
      return 1;
    }

  /* If gdb_wait_for_event has returned 1, it means that one
     event has been handled. We break out of the loop. */
  return 1;
}
Exemplo n.º 3
0
int
gdb_do_one_event (void *data)
{
  static int event_source_head = 0;
  const int number_of_sources = 3;
  int current = 0;

  /* Any events already waiting in the queue?  */
  if (process_event ())
    return 1;

  /* To level the fairness across event sources, we poll them in a
     round-robin fashion.  */
  for (current = 0; current < number_of_sources; current++)
    {
      switch (event_source_head)
	{
	case 0:
	  /* Are any timers that are ready? If so, put an event on the
	     queue. */
	  poll_timers ();
	  break;
	case 1:
	  /* Are there events already waiting to be collected on the
	     monitored file descriptors?  */
	  gdb_wait_for_event (0);
	  break;
	case 2:
	  /* Are there any asynchronous event handlers ready?  */
	  check_async_event_handlers ();
	  break;
	}

      event_source_head++;
      if (event_source_head == number_of_sources)
	event_source_head = 0;
    }

  /* Handle any new events collected.  */
  if (process_event ())
    return 1;

  /* Block waiting for a new event.  If gdb_wait_for_event returns -1,
     we should get out because this means that there are no event
     sources left.  This will make the event loop stop, and the
     application exit.  */

  if (gdb_wait_for_event (1) < 0)
    return -1;

  /* Handle any new events occurred while waiting.  */
  if (process_event ())
    return 1;

  /* If gdb_wait_for_event has returned 1, it means that one event has
     been handled.  We break out of the loop.  */
  return 1;
}