Exemplo n.º 1
0
bool readParamsFile(char *paramsFile)
{
  FILE *pFile = fopen(paramsFile, "rt");
  if (pFile == NULL) {
    fprintf(stderr,
	    "Warning: could not open %s, will try to compute parameters "
	    "and write them to that file\n", paramsFile);
    return true;
  } else {
    fscanf(pFile, "%ld\n", &nRadii);
    fprintf(stderr, "Using the following R-NN DS parameters (from %s):\n", paramsFile);
    fprintf(stderr, "N radii = %ld, nPoints = %ld\n", nRadii, nPoints);
    FAILIF(NULL == (nnStructs = (PRNearNeighborStructT*)MALLOC(nRadii * sizeof(PRNearNeighborStructT))));
    FAILIF(NULL == (algParameters = (RNNParametersT*)MALLOC(nRadii * sizeof(RNNParametersT))));
    for(IntT i = 0; i < nRadii; i++){
      algParameters[i] = readRNNParameters(pFile);
      printRNNParameters(stderr, algParameters[i]);
      nnStructs[i] = initLSH_WithDataSet(algParameters[i], nPoints, dataSetPoints);
    }
    
    pointsDimension = algParameters[0].dimension;
    if (listOfRadii != NULL) FREE(listOfRadii);
    FAILIF(NULL == (listOfRadii = (RealT*)MALLOC(nRadii * sizeof(RealT))));
    for(IntT i = 0; i < nRadii; i++){
      listOfRadii[i] = algParameters[i].parameterR;
    }
    return false;
  }
}
Exemplo n.º 2
0
/*
  Creates a new R-near neighbor data structure (PRNearNeighborStructT)
  from the parameters <thresholdR> and <successProbability> for the
  data set <dataSet>. <nPoints> is the number of points in the data
  set and <dimension> is the dimension of the points.

  The set <sampleQueries> is a set with query sample points
  (R-NN DS's parameters are optimized for query points from the set
  <sampleQueries>). <sampleQueries> could be a sample of points from the
  actual query set or from the data set. When computing the estimated
  number of collisions of a sample query point <q> with the data set
  points, if there is a point in the data set with the same pointer
  with <q> (that is when <q> is a data set point), then the
  corresponding point (<q>) is not considered in the data set (for the
  purpose of computing the respective #collisions estimation).
*/
PRNearNeighborStructT initSelfTunedRNearNeighborWithDataSet(RealT thresholdR, 
							    RealT successProbability, 
							    Int32T nPoints, 
							    IntT dimension, 
							    PPointT *dataSet, 
							    IntT nSampleQueries, 
							    PPointT *sampleQueries, 
							    MemVarT memoryUpperBound){
  initializeLSHGlobal();

  PRNearNeighborStructT nnStruct = NULL;

  RNNParametersT optParameters = computeOptimalParameters(thresholdR, successProbability, nPoints, dimension, dataSet, nSampleQueries, sampleQueries, memoryUpperBound);

  if (!optParameters.useUfunctions) {
    DPRINTF("Used L=%d\n", optParameters.parameterL);
  }else{
    DPRINTF("Used m = %d\n", optParameters.parameterM);
    DPRINTF("Used L = %d\n", optParameters.parameterL);
  }

  TimeVarT timeInit = 0;
  TIMEV_START(timeInit);

  // Init the R-NN data structure.
  if (optParameters.typeHT != HT_HYBRID_CHAINS){
    nnStruct = initLSH(optParameters, nPoints);
  }else{
    printRNNParameters(DEBUG_OUTPUT, optParameters);
    nnStruct = initLSH_WithDataSet(optParameters, nPoints, dataSet);
  }

  TIMEV_END(timeInit);
  DPRINTF("Time for initializing: %0.6lf\n", timeInit);
  DPRINTF("Allocated memory: %lld\n", totalAllocatedMemory);

  TimeVarT timeAdding = 0;
  if (optParameters.typeHT != HT_HYBRID_CHAINS){
    // Add the points to the LSH buckets.
    TIMEV_START(timeAdding);
    for(IntT i = 0; i < nPoints; i++){
      addNewPointToPRNearNeighborStruct(nnStruct, dataSet[i]);
    }
    TIMEV_END(timeAdding);
    printf("Time for adding points: %0.6lf\n", timeAdding);
    DPRINTF("Allocated memory: %lld\n", totalAllocatedMemory);
  }

  DPRINTF("Time for creating buckets: %0.6lf\n", timeBucketCreation);
  DPRINTF("Time for putting buckets into UH: %0.6lf\n", timeBucketIntoUH);
  DPRINTF("Time for computing GLSH: %0.6lf\n", timeComputeULSH);
  DPRINTF("NGBuckets: %d\n", nGBuckets);

  return nnStruct;
}
Exemplo n.º 3
0
/*
  The main entry to LSH package. Depending on the command line
  parameters, the function computes the R-NN data structure optimal
  parameters and/or construct the R-NN data structure and runs the
  queries on the data structure.
 */
int main(int argc, char *argv[]){

  FAILIF(0 != regcomp(&preg[ENUM_PPROP_FILE], "FILE:([^,]+)", REG_EXTENDED));
  FAILIF(0 != regcomp(&preg[ENUM_PPROP_LINE], "LINE:([0-9]+)", REG_EXTENDED));
  FAILIF(0 != regcomp(&preg[ENUM_PPROP_OFFSET], "OFFSET:([0-9]+)", REG_EXTENDED));
  FAILIF(0 != regcomp(&preg[ENUM_PPROP_NODE_KIND], "NODE_KIND:([0-9]+)", REG_EXTENDED));
  FAILIF(0 != regcomp(&preg[ENUM_PPROP_NUM_NODE], "NUM_NODE:([0-9]+)", REG_EXTENDED));
  FAILIF(0 != regcomp(&preg[ENUM_PPROP_NUM_DECL], "NUM_DECL:([0-9]+)", REG_EXTENDED));
  FAILIF(0 != regcomp(&preg[ENUM_PPROP_NUM_STMT], "NUM_STMT:([0-9]+)", REG_EXTENDED));
  FAILIF(0 != regcomp(&preg[ENUM_PPROP_NUM_EXPR], "NUM_EXPR:([0-9]+)", REG_EXTENDED));
  FAILIF(0 != regcomp(&preg[ENUM_PPROP_TBID], "TBID:([-]?[0-9]+)", REG_EXTENDED));
  FAILIF(0 != regcomp(&preg[ENUM_PPROP_TEID], "TEID:([-]?[0-9]+)", REG_EXTENDED));
  FAILIF(0 != regcomp(&preg[ENUM_PPROP_nVARs], "VARs:\\{[^}]*\\}([0-9]+)", REG_EXTENDED));
  FAILIF(0 != regcomp(&preg[ENUM_PPROP_CONTEXT_KIND], "CONTEXT_KIND:([0-9]+)", REG_EXTENDED));
  FAILIF(0 != regcomp(&preg[ENUM_PPROP_NEIGHBOR_KIND], "NEIGHBOR_KIND:([0-9]+)", REG_EXTENDED));
  FAILIF(0 != regcomp(&preg[ENUM_PPROP_OIDs], "OIDs:\\{[^}]*\\}([0-9]+)", REG_EXTENDED)); // TODO, pair-wise comparision of Vars.

  //initializeLSHGlobal();
  availableTotalMemory = 800000000;

  // Parse part of the command-line parameters.
  bool computeParameters = false;
  char *paramsFile = NULL;

  // Parameters for filtering:
  bool no_filtering = false, bug_detecting = true;
  int upperBound = 0, lowerBound = 2;
  int minNumNodes = 0, min_nVars = 0;
  int max_num_diff_vars = 16;
  float max_num_diff_nVars_diff = 0.5, max_nVars_diff = 0.35;
  bool interfiles = false;
  int min_lines = 0;

  for (int opt; (opt = getopt(argc, argv, "ABl:v:V:e:E:a:m:N:d:p:P:R:M:cFf:b:t:")) != -1; ) {
    // Needed: -p -f -R
    switch (opt) {
    case 'A': 
      fprintf(stderr, "Warning: output all clones. Takes more time...\n");
      no_filtering = true; break;
    case 'B':
      fprintf(stderr, "Warning: no filtering for bugs now.\n");
      bug_detecting = false; break;
    case 'l': min_lines = atoi(optarg); break;
    case 'v': min_nVars = atoi(optarg); break;
    case 'V': max_num_diff_vars = atoi(optarg); break;
    case 'e': max_num_diff_nVars_diff = atof(optarg); break;
    case 'E': max_nVars_diff = atof(optarg); break;
    case 'm': minNumNodes = atoi(optarg); break;
    case 'b': lowerBound = atoi(optarg); break;
    case 't': upperBound = atoi(optarg); break;
    case 'N': nPoints = atol(optarg); break;
    case 'd': pointsDimension = atol(optarg); break;
    case 'p': paramsFile = optarg; break;
    case 'P': successProbability = atof(optarg); break;
    case 'M': availableTotalMemory = atol(optarg); break;
    case 'a': prefetch = atol(optarg); break;
    case 'c':
      fprintf(stderr, "Warning: will compute parameters\n");
      computeParameters = true;
      break;
    case 'F':
      fprintf(stderr, "Warning: inter-file clone detection. Takes more time...\n");
      interfiles = true; break;
    case 'R':
      nRadii = 1;
      FAILIF(NULL == (listOfRadii = (RealT*)MALLOC(nRadii * sizeof(RealT))));
      FAILIF(NULL == (memRatiosForNNStructs = (RealT*)MALLOC(nRadii * sizeof(RealT))));
      listOfRadii[0] = strtod(optarg, NULL);
      memRatiosForNNStructs[0] = 1;
      break;
    case 'f':
      readDataSetFromFile2(optarg);
      DPRINTF("Allocated memory (after reading data set): %ld\n", totalAllocatedMemory);
      break;
    default:
      fprintf(stderr, "Unknown option: -%c\n", opt);
      usage(1, argv[0]);
    }
  }
  
  if (optind < argc) {
    fprintf(stderr, "There are unprocessed parameters left\n");
    usage(1, argv[0]);
  }

  CHECK_INT(availableTotalMemory);
  CHECK_INT(nPoints);
  CHECK_INT(pointsDimension);
  CHECK_INT(nRadii);

  if (nPoints > MAX_N_POINTS) {
    printf("Error: the structure supports at most %ld points (%ld were specified).\n", MAX_N_POINTS, nPoints);
    fprintf(ERROR_OUTPUT, "Error: the structure supports at most %ld points (%ld were specified).\n", MAX_N_POINTS, nPoints);
    exit(1);
  }

  if (computeParameters == false)
    computeParameters = readParamsFile(paramsFile);

  if (computeParameters) {
    IntT nSampleQueries = N_SAMPLE_QUERY_POINTS;
    PPointT sampleQueries[nSampleQueries];
    IntT sampleQBoundaryIndeces[nSampleQueries];
    
    // Choose several data set points for the sample query points.
    for(IntT i = 0; i < nSampleQueries; i++){
      sampleQueries[i] = dataSetPoints[genRandomInt(0, nPoints - 1)];
    }

    // Compute the array sampleQBoundaryIndeces that specifies how to
    // segregate the sample query points according to their distance
    // to NN.
    sortQueryPointsByRadii(pointsDimension,
			   nSampleQueries,
			   sampleQueries,
			   nPoints,
			   dataSetPoints,
			   nRadii,
			   listOfRadii,
			   sampleQBoundaryIndeces);


    // Compute the R-NN DS parameters
    // if a parameter file is given, output them to that file, and continue
    // otherwise, output them to stdout, and exit

    FILE *fd;
    if (paramsFile == NULL) {
      fd = stdout;
    } else {
      fd = fopen(paramsFile, "wt");
      if (fd == NULL) {
	fprintf(stderr, "Unable to write to parameter file %s\n", paramsFile);
	exit(1);
      }
    }

    fprintf(fd, "%ld\n", nRadii);
    transformMemRatios();
    for(IntT i = 0; i < nRadii; i++) {
      // which sample queries to use
      IntT segregatedQStart = (i == 0) ? 0 : sampleQBoundaryIndeces[i - 1];
      IntT segregatedQNumber = nSampleQueries - segregatedQStart;
      if (segregatedQNumber == 0) {
	// XXX: not the right answer
	segregatedQNumber = nSampleQueries;
	segregatedQStart = 0;
      }
      ASSERT(segregatedQStart < nSampleQueries);
      ASSERT(segregatedQStart >= 0);
      ASSERT(segregatedQStart + segregatedQNumber <= nSampleQueries);
      ASSERT(segregatedQNumber >= 0);
      RNNParametersT optParameters = computeOptimalParameters(listOfRadii[i],
							      successProbability,
							      nPoints,
							      pointsDimension,
							      dataSetPoints,
							      segregatedQNumber,
							      sampleQueries + segregatedQStart,
							      (UnsT)((availableTotalMemory - totalAllocatedMemory) * memRatiosForNNStructs[i]));
      printRNNParameters(fd, optParameters);
    }
    if (fd == stdout) {
      exit(0);
    } else {
      fclose(fd);
      ASSERT(readParamsFile(paramsFile) == false);
    }
  }

  // output vector clusters according to the filtering parameters.
  printf("========================= Structure built =========================\n");
  printf("nPoints = %ld, Dimension = %ld\n", nPoints, pointsDimension);
  printf("no_filtering (0/1) = %d, inter-file (0/1) = %d, prefetch = %ld\n", no_filtering, interfiles, prefetch);
  printf("*** Filtering Parameters for individual vectors ***\n");
  printf("minNumNodes = %d, min_nVars = %d, min_lines = %d\n", minNumNodes, min_nVars, min_lines);
  printf("*** Filtering Parameters for clusters ***\n");
  printf("lowerBound = %d, upperBound = %d\n", lowerBound, upperBound);
  printf("Max num of different nVars = %d, Max diff among different nVars = %g, \nMax diff among the num of different nVars = %g\n", max_num_diff_vars, max_nVars_diff, max_num_diff_nVars_diff);


  IntT resultSize = nPoints;
  PPointT *result = (PPointT*)MALLOC(resultSize * sizeof(*result));
  PPointT queryPoint;
  FAILIF(NULL == (queryPoint = (PPointT)MALLOC(sizeof(PointT))));
  FAILIF(NULL == (queryPoint->coordinates = (RealT*)MALLOC(pointsDimension * sizeof(RealT))));

  TimeVarT meanQueryTime = 0;
  IntT nQueries = 0;
  bool seen[nPoints];
  IntT nBuckets = 0, nBucketedPoints = 0;

  memset(seen, 0, nPoints * sizeof(bool));
  for(IntT i = 0; i < nPoints; nQueries++, i++) {

    // find the next unseen point
    while (i < nPoints && seen[i]) i++;
    if (i >= nPoints) break;
    queryPoint = dataSetPoints[i];

    // get the near neighbors.
    IntT nNNs = 0;
    for(IntT r = 0; r < nRadii; r++) { // nRadii is always 1 so far.
      nNNs = getRNearNeighbors(nnStructs[r], queryPoint, result, resultSize);
      //printf("Total time for R-NN query at radius %0.6lf (radius no. %ld):\t%0.6lf\n", (double)(listOfRadii[r]), r, timeRNNQuery);
      meanQueryTime += timeRNNQuery;

      //printf("\nQuery point %ld: found %ld NNs at distance %0.6lf (radius no. %ld). NNs are:\n",
      //       i, nNNs, (double)(listOfRadii[r]), r);

      // sort by filename, then number of variables, then line number
      qsort(result, nNNs, sizeof(*result), comparePoints);

      // The result array may contain the queryPoint, so do not output it in the following.

      PPointT *cur = result, *end = result + nNNs;

      if ( ! no_filtering ) { // Filter out certain vectors and clusters.
	while (cur < end)  {	// Shall we discard the rest results
				// and start over for a new point? Not
				// now for the sake of
				// performance...TODO
	  ASSERT(*cur != NULL);
	
	  // Look for the first un-filtered point for the next bucket.
	  while ( cur < end ) {
	    if ( pointIsNotFiltered(cur) ) {
	      break;
	    }
	    seen[(*cur)->index] = true;
	    cur++;
	  }
	  if ( cur >= end )
	    break;

	  bool worthy = false;
	  int sizeBucket = 1; // 1 means the first un-filtered point
	  PPointT *begin = cur;
	  seen[(*begin)->index] = true;
	  cur++;
	  while ( cur < end &&
		  // look for the next point outside the current file
		  // if interfiles is false; that point is the end of
		  // current bucket (assume vectors in a bucket are
		  // sorted by their filenames already).
		  ( interfiles || strcmp((*begin)->filename, (*cur)->filename)==0 ) ) {
	    if ( pointIsNotFiltered(cur) ) {
	      // prepare for filtering
	      sizeBucket++;

	      // the first heuristics for bugs AFTER filtering:
	      worthy = worthy || (*begin)->prop[ENUM_PPROP_nVARs-1] != (*cur)->prop[ENUM_PPROP_nVARs-1];

	      // the second heuristics for bugs AFTER filtering:
	      worthy = worthy || inconsistentIDchanges((*begin)->oids, (*cur)->oids); // TODO
	    }
	    seen[(*cur)->index] = true;
	    cur++;
	  }
	
	  // output the bucket if:
	  //   - there are >= 2 different points
	  //   - there are <= upperBound (default 0) && >= lowerBound (default 2) points
	  //   - there are >= 2 different numbers of variables
	  // and update nBuckets and nBucketedPoints consequently
	  if (sizeBucket >= lowerBound && (upperBound < lowerBound || sizeBucket <= upperBound) && ( bug_detecting ? worthy : true ) ) {
	    nBuckets++;
	    printf("\n");
	    for (PPointT *p = begin; p < cur; p++)  {
	      ASSERT(*p != NULL);
	      if ( pointIsNotFiltered(p) ) {
		nBucketedPoints++;
	      
		// compute the distance to the query point (maybe useless)
		RealT distance = 0.;
		for (IntT i = 0; i < pointsDimension; i++) {
		  RealT t = (*p)->coordinates[i] - queryPoint->coordinates[i];
		  // L1 distance
// 		  distance += (t >= 0) ? t : -t;
		  // Pi--L2 distance, LSH uses L2 by default, we should output L2 distance here. 
		  distance += t*t;
		}
		// L1 distance
// 		printf("%09d\tdist:%0.1lf", (*p)->index, distance);
		// L2 distance
		printf("%09d\tdist:%0.1lf", (*p)->index, sqrt(distance));
		printf("\tFILE %s LINE:%d:%d NODE_KIND:%d nVARs:%d NUM_NODE:%d TBID:%d TEID:%d\n",
		       (*p)->filename, (*p)->prop[ENUM_PPROP_LINE-1], (*p)->prop[ENUM_PPROP_OFFSET-1],
		       (*p)->prop[ENUM_PPROP_NODE_KIND-1], (*p)->prop[ENUM_PPROP_nVARs-1],
		       (*p)->prop[ENUM_PPROP_NUM_NODE-1], (*p)->prop[ENUM_PPROP_TBID-1], (*p)->prop[ENUM_PPROP_TEID-1]);
		//CR_ASSERT(distance(pointsDimension, queryPoint, *p) <= listOfRadii[r]);
		//DPRINTF("Distance: %lf\n", distance(pointsDimension, queryPoint, result[j]));
		//printRealVector("NN: ", pointsDimension, result[j]->coordinates);
	      }
	    }
	  } // end of enumeration of a bucket
	}	// end of !no_filtering
      }
      else {
	if ( nNNs>=lowerBound ) { // filter out non-clones anyway
	  nBuckets++;
	  printf("\n");
	  for (PPointT *p = cur; p < end; p++)  {
	    ASSERT(*p != NULL);
	    nBucketedPoints++;
	    seen[(*p)->index] = true;
  
	    // compute the distance to the query point (maybe useless)
	    RealT distance = 0.;
	    for (IntT i = 0; i < pointsDimension; i++) {
	      RealT t = (*p)->coordinates[i] - queryPoint->coordinates[i];
	      // L1 distance
// 	      distance += (t >= 0) ? t : -t;
	      // Pi--L2 distance, LSH uses L2 by default, we should output L2 distance here. 
	      distance += t*t;
	    }

	    // L1 distance
// 	    printf("%09d\tdist:%0.1lf", (*p)->index, distance);
	    // L2 distance
	    printf("%09d\tdist:%0.1lf", (*p)->index, sqrt(distance));
	    printf("\tFILE %s LINE:%d:%d NODE_KIND:%d nVARs:%d NUM_NODE:%d TBID:%d TEID:%d\n",
		   (*p)->filename, (*p)->prop[ENUM_PPROP_LINE-1], (*p)->prop[ENUM_PPROP_OFFSET-1],
		   (*p)->prop[ENUM_PPROP_NODE_KIND-1], (*p)->prop[ENUM_PPROP_nVARs-1],
		   (*p)->prop[ENUM_PPROP_NUM_NODE-1], (*p)->prop[ENUM_PPROP_TBID-1], (*p)->prop[ENUM_PPROP_TEID-1]);
	    //CR_ASSERT(distance(pointsDimension, queryPoint, *p) <= listOfRadii[r]);
	    //DPRINTF("Distance: %lf\n", distance(pointsDimension, queryPoint, result[j]));
	    //printRealVector("NN: ", pointsDimension, result[j]->coordinates);
	  } // end of enumeration of a bucket
	} // end of nNNs>=lowerBound
      }	// end of no_filtering and  exploration of NNs
    } // for (...nRadii...)
  }

  // Simple statistics and finish
  if (nQueries > 0) {
    meanQueryTime = meanQueryTime / nQueries;
    printf("\n%ld queries, Mean query time: %0.6lf\n", nQueries, (double)meanQueryTime);
    printf("%ld buckets, %ld points (out of %ld, %.2f %%) in them\n",
	   nBuckets, nBucketedPoints, nPoints, 100*(float)nBucketedPoints/(float)nPoints);
  } else {
    printf("No query\n");
  }

  //freePRNearNeighborStruct(nnStruct);

  return 0;
}
Exemplo n.º 4
0
/*
  The main entry to LSH package. Depending on the command line
  parameters, the function computes the R-NN data structure optimal
  parameters and/or construct the R-NN data structure and runs the
  queries on the data structure.
 */
int main_T(int nargs, char **args)
{


	//先分析参数
	/* 官方lsh文件:10个参数
	1000 9 784 0.9  0.6  mnist1k.dts  mnist1k.q
	bin/LSHMain $nDataSet $nQuerySet $dimension $successProbability "$1" "$2" "$3" $m -c*/


	//算参数	bin/LSHMain 1000 9 784 0.9  "0.6" "mnist1k.dts" "mnist1k.q" 1002000000  -c


	//bin/LSHMain $nDataSet $nQuerySet $dimension $successProbability 1.0 "$1" "$2" $m -p "$3"

	//匹配	bin/LSHMain 1000 9 784 0.9 1.0  "mnist1k.dts" "mnist1k.q" 1002000000  -p  "outputparma.txt"
  if(nargs < 9)
  {
    usage(args[0]);
    exit(1);
  }

  //initializeLSHGlobal();

  // Parse part of the command-line parameters.
  nPoints = atoi(args[1]);
  IntT nQueries = atoi(args[2]);
  pointsDimension = atoi(args[3]);
  successProbability = atof(args[4]);
  char* endPtr[1];
  RealT thresholdR = strtod(args[5], endPtr);//点相邻的距离阈值
  //str-to -double  将字符串转换成浮点数的函数
  //endPtr 接收数字结尾后非字符串字母

  //这个r阈值是什么呢?
  if (thresholdR == 0 || endPtr[1] == args[5])
  {//如果阈值为0,或者第一个字符就不是数字, 
	  //表示是用文件保存的
	  //这大概是用于测试哪个阈值好的
    // The value for R is not specified, instead there is a file
    // specifying multiple R's.
    thresholdR = 0;

    // Read in the file
    FILE *radiiFile = fopen(args[5], "rt");
    FAILIF(radiiFile == NULL);
    fscanf(radiiFile, "%d\n", &nRadii);
    ASSERT(nRadii > 0);
    FAILIF(NULL == (listOfRadii = (RealT*)MALLOC(nRadii * sizeof(RealT))));
    FAILIF(NULL == (memRatiosForNNStructs = (RealT*)MALLOC(nRadii * sizeof(RealT))));
    for(IntT i = 0; i < nRadii; i++)
	{
      FSCANF_REAL(radiiFile, &listOfRadii[i]);
      ASSERT(listOfRadii[i] > 0);
      FSCANF_REAL(radiiFile, &memRatiosForNNStructs[i]);
      ASSERT(memRatiosForNNStructs[i] > 0);
    }
  }
  else
  {
    nRadii = 1;
    FAILIF(NULL == (listOfRadii = (RealT*)MALLOC(nRadii * sizeof(RealT))));
    FAILIF(NULL == (memRatiosForNNStructs = (RealT*)MALLOC(nRadii * sizeof(RealT))));
    listOfRadii[0] = thresholdR;
    memRatiosForNNStructs[0] = 1;
  }//对阈值R 和Radiii的处理



  DPRINTF("No. radii: %d\n", nRadii);
  //thresholdR = atof(args[5]);
  availableTotalMemory = atoll(args[8]);//$M表示的是内存空间大小

  if (nPoints > MAX_N_POINTS)
  {
    printf("Error: the structure supports at most %d points (%d were specified).\n", MAX_N_POINTS, nPoints);
    fprintf(ERROR_OUTPUT, "Error: the structure supports at most %d points (%d were specified).\n", MAX_N_POINTS, nPoints);
    exit(1);
  }

  readDataSetFromFile(args[6]);//点读到dataSetPoints

  //这个totalAllocatedMemory初始化为0,但是
  //#define MALLOC(amount) ((amount > 0) ? totalAllocatedMemory += amount, malloc(amount) : NULL)
  //这样,每次申请内存都会统计到了

  DPRINTF("Allocated memory (after reading data set): %lld\n", totalAllocatedMemory);

  Int32T nSampleQueries = N_SAMPLE_QUERY_POINTS;
  PPointT sampleQueries[N_SAMPLE_QUERY_POINTS];
  Int32T sampleQBoundaryIndeces[N_SAMPLE_QUERY_POINTS];
//  PPointT sampleQueries[nSampleQueries];
 // Int32T sampleQBoundaryIndeces[nSampleQueries];
 
  
  if ((nargs <= 9)   ||  (strcmp("-c", args[9]) == 0)    )
  {
    // In this cases, we need to generate a sample query set for
    // computing the optimal parameters.

    // Generate a sample query set.
    FILE *queryFile = fopen(args[7], "rt");
    if (strcmp(args[7], ".") == 0 || queryFile == NULL || nQueries <= 0)
	{//没有查询文件,就用所有点产生随机点
      // Choose several data set points for the sample query points.
		for(IntT i = 0; i < nSampleQueries; i++){
			sampleQueries[i] = dataSetPoints[genRandomInt(0, nPoints - 1)];

	  }
    }
	else
	{
		//从查询文件中选取随机的点,
      // Choose several actual query points for the sample query points.
		  nSampleQueries = MIN(nSampleQueries, nQueries);
		   Int32T sampleIndeces[N_SAMPLE_QUERY_POINTS];
		  //Int32T sampleIndeces[nSampleQueries];
		  for(IntT i = 0; i < nSampleQueries; i++)
		  {
			sampleIndeces[i] = genRandomInt(0, nQueries - 1);
		  }
		  qsort(sampleIndeces, nSampleQueries, sizeof(*sampleIndeces), compareInt32T);
		  //printIntVector("sampleIndeces: ", nSampleQueries, sampleIndeces);
		  Int32T j = 0;
		  for(Int32T i = 0; i < nQueries; i++)
		  {
			  if (i == sampleIndeces[j])
			  {
				  sampleQueries[j] = readPoint(queryFile);
				  j++;
				  while (i == sampleIndeces[j])
				  {
					  sampleQueries[j] = sampleQueries[j - 1];
					  j++;
				  }
			  }else
			  {
				  fscanf(queryFile, "%[^\n]", sBuffer);
				  fscanf(queryFile, "\n");
			  }
		 }
		  nSampleQueries = j;
		  fclose(queryFile);
    }

	//前面那么多,好像就是在申请内存,读文件,读入参数

    // Compute the array sampleQBoundaryIndeces that specifies how to
    // segregate the sample query points according to their distance
    // to NN.
	//采用遍历的方法,计算查询点的最近邻(并且距离小于listOfRadii【nRadii】)
    sortQueryPointsByRadii(pointsDimension,
			   nSampleQueries,
			   sampleQueries,
			   nPoints,
			   dataSetPoints,
			   nRadii,
			   listOfRadii,
			   sampleQBoundaryIndeces);
  }//if ((nargs < 9) || (strcmp("-c", args[9]) == 0))


  RNNParametersT *algParameters = NULL;
  PRNearNeighborStructT *nnStructs = NULL;
  if (nargs > 9) 
  {/* 官方lsh文件:10个参数
bin/LSHMain $nDataSet $nQuerySet $dimension $successProbability "$1" "$2" "$3" $m -c


*/
	     
    // Additional command-line parameter is specified.
    if (strcmp("-c", args[9]) == 0) 	//-c表示参数优化
	{
 // Only compute the R-NN DS parameters and output them to stdout.
      printf("%d\n", nRadii);
      transformMemRatios();
      for(IntT i = 0; i < nRadii; i++)
	  {
		// which sample queries to use
		Int32T segregatedQStart = (i == 0) ? 0 : sampleQBoundaryIndeces[i - 1];
		Int32T segregatedQNumber = nSampleQueries - segregatedQStart;
		if (segregatedQNumber == 0) 
		{
		  // XXX: not the right answer
		  segregatedQNumber = nSampleQueries;
		  segregatedQStart = 0;
		}
		ASSERT(segregatedQStart < nSampleQueries);
		ASSERT(segregatedQStart >= 0);
		ASSERT(segregatedQStart + segregatedQNumber <= nSampleQueries);
		ASSERT(segregatedQNumber >= 0);

		//从文件读取点,然后计算优化后的参数
		RNNParametersT optParameters = computeOptimalParameters(listOfRadii[i],
									successProbability,
									nPoints,
									pointsDimension,
									dataSetPoints,
									segregatedQNumber,
									sampleQueries + segregatedQStart,
/*对内存的约束,就体现在这里,
availableTotalMemory总共的内存(传入) - totalAllocatedMemory(使用mallloc分配的)*1=内存上限

然后(L * nPoints > memoryUpperBound / 12 来约束
*/
									(MemVarT)((availableTotalMemory - totalAllocatedMemory) * memRatiosForNNStructs[i]));
		printRNNParameters(stdout, optParameters);
      }
      exit(0);
    } 
	else if (strcmp("-p", args[9]) == 0) 
	{//-p表示从文件读入参数,然后建立结构体
      // Read the R-NN DS parameters from the given file and run the
      // queries on the constructed data structure.
      if (nargs < 10)
	  {
		  usage(args[0]);
		  exit(1);
      }
      FILE *pFile = fopen(args[10], "rt");
      FAILIFWR(pFile == NULL, "Could not open the params file.");
      fscanf(pFile, "%d\n", &nRadii);
      DPRINTF1("Using the following R-NN DS parameters:\n");
      DPRINTF("N radii = %d\n", nRadii);
      FAILIF(NULL == (nnStructs = (PRNearNeighborStructT*)MALLOC(nRadii * sizeof(PRNearNeighborStructT))));
      FAILIF(NULL == (algParameters = (RNNParametersT*)MALLOC(nRadii * sizeof(RNNParametersT))));
      for(IntT i = 0; i < nRadii; i++)
	  {//默认i=1
		  algParameters[i] = readRNNParameters(pFile);//从文件读参数

		  printRNNParameters(stderr, algParameters[i]);
		  nnStructs[i] = initLSH_WithDataSet(algParameters[i], nPoints, dataSetPoints);
		  //核心
		  //初始化整个数据结构 包括整体+l个hash表 +点映射到桶
	  }

      pointsDimension = algParameters[0].dimension;
      FREE(listOfRadii);
      FAILIF(NULL == (listOfRadii = (RealT*)MALLOC(nRadii * sizeof(RealT))));
      for(IntT i = 0; i < nRadii; i++)
	  {
		  listOfRadii[i] = algParameters[i].parameterR;
	  }
    } 
	else
	{
      // Wrong option.
      usage(args[0]);
      exit(1);
    }
  }//if (nargs > 9) 
  else 
  {
    FAILIF(NULL == (nnStructs = (PRNearNeighborStructT*)MALLOC(nRadii * sizeof(PRNearNeighborStructT))));
    // Determine the R-NN DS parameters, construct the DS and run the queries.
    transformMemRatios();
    for(IntT i = 0; i < nRadii; i++)
	{
      // XXX: segregate the sample queries...
		//建立查询结构,自动优化参数
      nnStructs[i] = initSelfTunedRNearNeighborWithDataSet(listOfRadii[i], 
							   successProbability, 
							   nPoints, 
							   pointsDimension, 
							   dataSetPoints, 
							   nSampleQueries, 
							   sampleQueries, 
							   (MemVarT)((availableTotalMemory - totalAllocatedMemory) * memRatiosForNNStructs[i]));
    }
  } // if (nargs <= 9) 



  //上面都是根据不同配置,对参数的优化,建立查询结构

  DPRINTF1("X\n");

  IntT resultSize = nPoints;
  PPointT *result = (PPointT*)MALLOC(resultSize * sizeof(*result));
  PPointT queryPoint;
  FAILIF(NULL == (queryPoint = (PPointT)MALLOC(sizeof(PointT))));
  FAILIF(NULL == (queryPoint->coordinates = (RealT*)MALLOC(pointsDimension * sizeof(RealT))));

  //读取查询点的文件
  FILE *queryFile = fopen(args[7], "rt");
  FAILIF(queryFile == NULL);
  TimeVarT meanQueryTime = 0;
  PPointAndRealTStructT *distToNN = NULL;
  for(IntT i = 0; i < nQueries; i++)
  {//对于每一个要查询的点

    RealT sqrLength = 0;
    // read in the query point.
    for(IntT d = 0; d < pointsDimension; d++)
	{

      FSCANF_REAL(queryFile, &(queryPoint->coordinates[d]));
      sqrLength += SQR(queryPoint->coordinates[d]);


	  /*//test
	  if (d >150 &&  d<160)
	  {
		  printf(" %lf ",queryPoint->coordinates[d]);
	  }
	  if ( d==160)
	  {
		  printf("原始的文件数据\n");
	  }
	  */
	  
    }
    queryPoint->sqrLength = sqrLength;
    //printRealVector("Query: ", pointsDimension, queryPoint->coordinates);


	
    // get the near neighbors.
    IntT nNNs = 0;
    for(IntT r = 0; r < nRadii; r++)
	{//查询n个近邻点,并计算距离

		//查询核心
      nNNs = getRNearNeighbors(nnStructs[r], queryPoint, result, resultSize);



      printf("Total time for R-NN query at radius %0.6lf (radius no. %d):\t%0.6lf\n", (double)(listOfRadii[r]), r, timeRNNQuery);
      meanQueryTime += timeRNNQuery;

      if (nNNs > 0)
	  {
		printf("Query point %d: found %d NNs at distance %0.6lf (%dth radius). First %d NNs are:\n", 
			i, nNNs, (double)(listOfRadii[r]), r, MIN(nNNs, MAX_REPORTED_POINTS));
	
		// compute the distances to the found NN, and sort according to the distance
		//计算近邻点和查询点的距离
		FAILIF(NULL == (distToNN = (PPointAndRealTStructT*)REALLOC(distToNN, nNNs * sizeof(*distToNN))));
		for(IntT p = 0; p < nNNs; p++)
		{
		  distToNN[p].ppoint = result[p];
		  distToNN[p].real = distance(pointsDimension, queryPoint, result[p]);
		}
		qsort(distToNN, nNNs, sizeof(*distToNN), comparePPointAndRealTStructT);

		// Print the points
		for(IntT j = 0; j < MIN(nNNs, MAX_REPORTED_POINTS); j++)
		{
		  ASSERT(distToNN[j].ppoint != NULL);
		  printf("%09d\tDistance:%0.6lf\n", distToNN[j].ppoint->index, distToNN[j].real);
		  CR_ASSERT(distToNN[j].real <= listOfRadii[r]);
		  //DPRINTF("Distance: %lf\n", distance(pointsDimension, queryPoint, result[j]));
		  //printRealVector("NN: ", pointsDimension, result[j]->coordinates);
		}
		break;
      }
    }
    if (nNNs == 0)
	{
      printf("Query point %d: no NNs found.\n", i);
    }
  }//  for(IntT i = 0; i < nQueries; i++)每个点查询

  //
  if (nQueries > 0)
  {
    meanQueryTime = meanQueryTime / nQueries;
    printf("Mean query time: %0.6lf\n", (double)meanQueryTime);
  }


  for(IntT i = 0; i < nRadii; i++)
  {
    freePRNearNeighborStruct(nnStructs[i]);
  }
  // XXX: should ideally free the other stuff as well.


  return 0;
}
Exemplo n.º 5
0
/*
  The main entry to LSH package. Depending on the command line
  parameters, the function computes the R-NN data structure optimal
  parameters and/or construct the R-NN data structure and runs the
  queries on the data structure.
 */
int main(int nargs, char **args){
  if(nargs < 9){
    usage(args[0]);
    exit(1);
  }

  //initializeLSHGlobal();

  // Parse part of the command-line parameters.
  nPoints = atoi(args[1]);
  IntT nQueries = atoi(args[2]);
  pointsDimension = atoi(args[3]);
  successProbability = atof(args[4]);
  char* endPtr[1];
  RealT thresholdR = strtod(args[5], endPtr);
  if (thresholdR == 0 || endPtr[1] == args[5]){
    // The value for R is not specified, instead there is a file
    // specifying multiple R's.
    thresholdR = 0;

    // Read in the file
    FILE *radiiFile = fopen(args[5], "rt");
    FAILIF(radiiFile == NULL);
    fscanf(radiiFile, "%d\n", &nRadii);
    ASSERT(nRadii > 0);
    FAILIF(NULL == (listOfRadii = (RealT*)MALLOC(nRadii * sizeof(RealT))));
    FAILIF(NULL == (memRatiosForNNStructs = (RealT*)MALLOC(nRadii * sizeof(RealT))));
    for(IntT i = 0; i < nRadii; i++){
      FSCANF_REAL(radiiFile, &listOfRadii[i]);
      ASSERT(listOfRadii[i] > 0);
      FSCANF_REAL(radiiFile, &memRatiosForNNStructs[i]);
      ASSERT(memRatiosForNNStructs[i] > 0);
    }
  }else{
    nRadii = 1;
    FAILIF(NULL == (listOfRadii = (RealT*)MALLOC(nRadii * sizeof(RealT))));
    FAILIF(NULL == (memRatiosForNNStructs = (RealT*)MALLOC(nRadii * sizeof(RealT))));
    listOfRadii[0] = thresholdR;
    memRatiosForNNStructs[0] = 1;
  }
  DPRINTF("No. radii: %d\n", nRadii);
  //thresholdR = atof(args[5]);
  availableTotalMemory = atoll(args[8]);

  if (nPoints > MAX_N_POINTS) { // 104w points
    printf("Error: the structure supports at most %d points (%d were specified).\n", MAX_N_POINTS, nPoints);
    fprintf(ERROR_OUTPUT, "Error: the structure supports at most %d points (%d were specified).\n", MAX_N_POINTS, nPoints);
    exit(1);
  }

  readDataSetFromFile(args[6]); // read points into data structure
  DPRINTF("Allocated memory (after reading data set): %lld\n", totalAllocatedMemory);

  Int32T nSampleQueries = N_SAMPLE_QUERY_POINTS;
  PPointT sampleQueries[nSampleQueries];
  Int32T sampleQBoundaryIndeces[nSampleQueries];
  if ((nargs < 9) || (strcmp("-c", args[9]) == 0)){
    // In this cases, we need to generate a sample query set for
    // computing the optimal parameters.

    // Generate a sample query set.
    FILE *queryFile = fopen(args[7], "rt");
    if (strcmp(args[7], ".") == 0 || queryFile == NULL || nQueries <= 0){
      // Choose several data set points for the sample query points.
      for(IntT i = 0; i < nSampleQueries; i++){
	sampleQueries[i] = dataSetPoints[genRandomInt(0, nPoints - 1)];
      }
    }else{
      // Choose several actual query points for the sample query points.
      nSampleQueries = MIN(nSampleQueries, nQueries);
      Int32T sampleIndeces[nSampleQueries];
      for(IntT i = 0; i < nSampleQueries; i++){
	sampleIndeces[i] = genRandomInt(0, nQueries - 1);
      }
      qsort(sampleIndeces, nSampleQueries, sizeof(*sampleIndeces), compareInt32T);
      //printIntVector("sampleIndeces: ", nSampleQueries, sampleIndeces);
      Int32T j = 0;
      for(Int32T i = 0; i < nQueries; i++){
	if (i == sampleIndeces[j]){
	  sampleQueries[j] = readPoint(queryFile);
	  j++;
	  while (i == sampleIndeces[j]){
	    sampleQueries[j] = sampleQueries[j - 1];
	    j++;
	  }
	}else{
	  fscanf(queryFile, "%[^\n]", sBuffer);
	  fscanf(queryFile, "\n");
	}
      }
      nSampleQueries = j;
      fclose(queryFile);
    }

    // Compute the array sampleQBoundaryIndeces that specifies how to
    // segregate the sample query points according to their distance
    // to NN.
    sortQueryPointsByRadii(pointsDimension,
			   nSampleQueries,
			   sampleQueries,
			   nPoints,
			   dataSetPoints,
			   nRadii,
			   listOfRadii,
			   sampleQBoundaryIndeces);
  }

  RNNParametersT *algParameters = NULL;
  PRNearNeighborStructT *nnStructs = NULL;
  if (nargs > 9) {
    // Additional command-line parameter is specified.
    if (strcmp("-c", args[9]) == 0) {
      // Only compute the R-NN DS parameters and output them to stdout.
      
      printf("%d\n", nRadii);
      transformMemRatios();
      for(IntT i = 0; i < nRadii; i++){
	// which sample queries to use
	Int32T segregatedQStart = (i == 0) ? 0 : sampleQBoundaryIndeces[i - 1];
	Int32T segregatedQNumber = nSampleQueries - segregatedQStart;
	if (segregatedQNumber == 0) {
	  // XXX: not the right answer
	  segregatedQNumber = nSampleQueries;
	  segregatedQStart = 0;
	}
	ASSERT(segregatedQStart < nSampleQueries);
	ASSERT(segregatedQStart >= 0);
	ASSERT(segregatedQStart + segregatedQNumber <= nSampleQueries);
	ASSERT(segregatedQNumber >= 0);
	RNNParametersT optParameters = computeOptimalParameters(listOfRadii[i],
								successProbability,
								nPoints,
								pointsDimension,
								dataSetPoints,
								segregatedQNumber,
								sampleQueries + segregatedQStart,
								(MemVarT)((availableTotalMemory - totalAllocatedMemory) * memRatiosForNNStructs[i]));
	printRNNParameters(stdout, optParameters);
      }
      exit(0);
    } else if (strcmp("-p", args[9]) == 0) {
      // Read the R-NN DS parameters from the given file and run the
      // queries on the constructed data structure.
      if (nargs < 10){
	usage(args[0]);
	exit(1);
      }
      FILE *pFile = fopen(args[10], "rt");
      FAILIFWR(pFile == NULL, "Could not open the params file.");
      fscanf(pFile, "%d\n", &nRadii);
      DPRINTF1("Using the following R-NN DS parameters:\n");
      DPRINTF("N radii = %d\n", nRadii);
      FAILIF(NULL == (nnStructs = (PRNearNeighborStructT*)MALLOC(nRadii * sizeof(PRNearNeighborStructT))));
      FAILIF(NULL == (algParameters = (RNNParametersT*)MALLOC(nRadii * sizeof(RNNParametersT))));
      for(IntT i = 0; i < nRadii; i++){
	algParameters[i] = readRNNParameters(pFile);
	printRNNParameters(stderr, algParameters[i]);
	nnStructs[i] = initLSH_WithDataSet(algParameters[i], nPoints, dataSetPoints);
      }

      pointsDimension = algParameters[0].dimension;
      FREE(listOfRadii);
      FAILIF(NULL == (listOfRadii = (RealT*)MALLOC(nRadii * sizeof(RealT))));
      for(IntT i = 0; i < nRadii; i++){
	listOfRadii[i] = algParameters[i].parameterR;
      }
    } else{
      // Wrong option.
      usage(args[0]);
      exit(1);
    }
  } else {
    FAILIF(NULL == (nnStructs = (PRNearNeighborStructT*)MALLOC(nRadii * sizeof(PRNearNeighborStructT))));
    // Determine the R-NN DS parameters, construct the DS and run the queries.
    transformMemRatios();
    for(IntT i = 0; i < nRadii; i++){
      // XXX: segregate the sample queries...
      nnStructs[i] = initSelfTunedRNearNeighborWithDataSet(listOfRadii[i], 
							   successProbability, 
							   nPoints, 
							   pointsDimension, 
							   dataSetPoints, 
							   nSampleQueries, 
							   sampleQueries, 
							   (MemVarT)((availableTotalMemory - totalAllocatedMemory) * memRatiosForNNStructs[i]));
    }
  }

  DPRINTF1("X\n");

  IntT resultSize = nPoints;
  PPointT *result = (PPointT*)MALLOC(resultSize * sizeof(*result));
  PPointT queryPoint;
  FAILIF(NULL == (queryPoint = (PPointT)MALLOC(sizeof(PointT))));
  FAILIF(NULL == (queryPoint->coordinates = (RealT*)MALLOC(pointsDimension * sizeof(RealT))));

  FILE *queryFile = fopen(args[7], "rt");
  FAILIF(queryFile == NULL);
  TimeVarT meanQueryTime = 0;
  PPointAndRealTStructT *distToNN = NULL;
  for(IntT i = 0; i < nQueries; i++){

    RealT sqrLength = 0;
    // read in the query point.
    for(IntT d = 0; d < pointsDimension; d++){
      FSCANF_REAL(queryFile, &(queryPoint->coordinates[d]));
      sqrLength += SQR(queryPoint->coordinates[d]);
    }
    queryPoint->sqrLength = sqrLength;
    //printRealVector("Query: ", pointsDimension, queryPoint->coordinates);

    // get the near neighbors.
    IntT nNNs = 0;
    for(IntT r = 0; r < nRadii; r++){
      nNNs = getRNearNeighbors(nnStructs[r], queryPoint, result, resultSize);
      printf("Total time for R-NN query at radius %0.6lf (radius no. %d):\t%0.6lf\n", (double)(listOfRadii[r]), r, timeRNNQuery);
      meanQueryTime += timeRNNQuery;

      if (nNNs > 0){
	printf("Query point %d: found %d NNs at distance %0.6lf (%dth radius). First %d NNs are:\n", i, nNNs, (double)(listOfRadii[r]), r, MIN(nNNs, MAX_REPORTED_POINTS));
	
	// compute the distances to the found NN, and sort according to the distance
	FAILIF(NULL == (distToNN = (PPointAndRealTStructT*)REALLOC(distToNN, nNNs * sizeof(*distToNN))));
	for(IntT p = 0; p < nNNs; p++){
	  distToNN[p].ppoint = result[p];
	  distToNN[p].real = distance(pointsDimension, queryPoint, result[p]);
	}
	qsort(distToNN, nNNs, sizeof(*distToNN), comparePPointAndRealTStructT);

	// Print the points
	for(IntT j = 0; j < MIN(nNNs, MAX_REPORTED_POINTS); j++){
	  ASSERT(distToNN[j].ppoint != NULL);
	  printf("%09d\tDistance:%0.6lf\n", distToNN[j].ppoint->index, distToNN[j].real);
	  CR_ASSERT(distToNN[j].real <= listOfRadii[r]);
	  //DPRINTF("Distance: %lf\n", distance(pointsDimension, queryPoint, result[j]));
	  //printRealVector("NN: ", pointsDimension, result[j]->coordinates);
	}
	break;
      }
    }
    if (nNNs == 0){
      printf("Query point %d: no NNs found.\n", i);
    }
  }
  if (nQueries > 0){
    meanQueryTime = meanQueryTime / nQueries;
    printf("Mean query time: %0.6lf\n", (double)meanQueryTime);
  }

  for(IntT i = 0; i < nRadii; i++){
    freePRNearNeighborStruct(nnStructs[i]);
  }
  // XXX: should ideally free the other stuff as well.


  return 0;
}
Exemplo n.º 6
0
/*
  The main entry to LSH package. Depending on the command line
  parameters, the function computes the R-NN data structure optimal
  parameters and/or construct the R-NN data structure and runs the
  queries on the data structure.
 */
int main(int nargs, char **args){
  if(nargs < 9){
    usage(args[0]);
    exit(1);
  }

  //initializeLSHGlobal();

  // Parse part of the command-line parameters.
  nPoints = atoi(args[1]);
  IntT nQueries = atoi(args[2]);
  pointsDimension = atoi(args[3]);
  successProbability = atof(args[4]);
  char* endPtr[1];
  RealT thresholdR = strtod(args[5], endPtr);  //strtod将字符串转换成浮点数   //r=0.6
  //strtod()会扫描参数nptr字符串,跳过前面的空格字符,直到遇上数字或正负符号才开始做转换
  //,到出现非数字或字符串结束时('')才结束转换, 并将结果返回。
  //若endptr不为NULL,则会将遇到不合条件而终止的nptr中的字符指针由endptr传回。
  if (thresholdR == 0 || endPtr[1] == args[5]){   //确保阈值合法
    // The value for R is not specified, instead there is a file
    // specifying multiple R's.
    thresholdR = 0;

    // Read in the file
    FILE *radiiFile = fopen(args[5], "rt");
    FAILIF(radiiFile == NULL);
    fscanf(radiiFile, "%d\n", &nRadii);
    ASSERT(nRadii > 0);
    FAILIF(NULL == (listOfRadii = (RealT*)MALLOC(nRadii * sizeof(RealT))));
    FAILIF(NULL == (memRatiosForNNStructs = (RealT*)MALLOC(nRadii * sizeof(RealT))));
    for(IntT i = 0; i < nRadii; i++){
      FSCANF_REAL(radiiFile, &listOfRadii[i]);
      ASSERT(listOfRadii[i] > 0);
      FSCANF_REAL(radiiFile, &memRatiosForNNStructs[i]);
      ASSERT(memRatiosForNNStructs[i] > 0);
    }
  }else{
    nRadii = 1;     //半径的个数为1个
    FAILIF(NULL == (listOfRadii = (RealT*)MALLOC(nRadii * sizeof(RealT))));
    FAILIF(NULL == (memRatiosForNNStructs = (RealT*)MALLOC(nRadii * sizeof(RealT))));
    listOfRadii[0] = thresholdR;
    memRatiosForNNStructs[0] = 1;
  }
  DPRINTF("No. radii: %d\n", nRadii);
  //thresholdR = atof(args[5]);
  availableTotalMemory = atoll(args[8]);

  if (nPoints > MAX_N_POINTS) {
    printf("Error: the structure supports at most %d points (%d were specified).\n", MAX_N_POINTS, nPoints);
    fprintf(ERROR_OUTPUT, "Error: the structure supports at most %d points (%d were specified).\n", MAX_N_POINTS, nPoints);
    exit(1);
  }

  readDataSetFromFile(args[6]);    //数据集的文件名
  DPRINTF("Allocated memory (after reading data set): %lld\n", totalAllocatedMemory);

  Int32T nSampleQueries = N_SAMPLE_QUERY_POINTS;   //样本查询点的个数,100
  PPointT sampleQueries[nSampleQueries];      //对查询点编号
  Int32T sampleQBoundaryIndeces[nSampleQueries];   //第一个大于半径的点的编号,如果有多个半径的话,就会记录更多
  if ((nargs < 9) || (strcmp("-c", args[9]) == 0)){       //计算最优参数
    // In this cases, we need to generate a sample query set for
    // computing the optimal parameters.

    // Generate a sample query set.
    FILE *queryFile = fopen(args[7], "rt");              //打开查询集,以只读文本方式打开
    if (strcmp(args[7], ".") == 0 || queryFile == NULL || nQueries <= 0){
      // Choose several data set points for the sample query points.  //如果没有查询点就随机选择几个数据集点作为查询点
      for(IntT i = 0; i < nSampleQueries; i++){
	sampleQueries[i] = dataSetPoints[genRandomInt(0, nPoints - 1)];
      }
    }else{
      // Choose several actual query points for the sample query points.
      nSampleQueries = MIN(nSampleQueries, nQueries);    //MIN(100,9)
      Int32T sampleIndeces[nSampleQueries];              //定义了一个查询点样本索引数组
      for(IntT i = 0; i < nSampleQueries; i++){          
	  ////为什么要对查询点索引进行随机变化? 想把样本查询点控制在一定的范围内,如果查询点过多,则样本点最多取100个查询点。
	      sampleIndeces[i] = genRandomInt(0, nQueries - 1);  //对查询点做了一下顺序的变化,对查询点的索引做随机处理。
      }
	   // 根据你给的比较条件进行快速排序,通过指针的移动实验排序,排序之后的结果仍然放在原数组中,必须自己写一个比较函数
	  //http://www.slyar.com/blog/stdlib-qsort.html qsort(数组起始地址,数组元素大小,每个元素的大小,函数指针指向比较函数)
      qsort(sampleIndeces, nSampleQueries, sizeof(*sampleIndeces), compareInt32T); //qsort,C语言标准库函数,对样本查询点的索引值进行排序
      //printIntVector("sampleIndeces: ", nSampleQueries, sampleIndeces);
      Int32T j = 0;
      for(Int32T i = 0; i < nQueries; i++){
	if (i == sampleIndeces[j]){  //如果样本查询点的索引值与实际查询点的索引值一致,读入点
	  sampleQueries[j] = readPoint(queryFile);
	  j++;
	  while (i == sampleIndeces[j]){   //如果样本查询点之后的索引值与实践查询点的索引值一致,则直接将此点的值赋给后面一点的值
	    sampleQueries[j] = sampleQueries[j - 1];   //覆盖之后索引点的值
	    j++;          //取后面的点
	  }
	}else{
	  fscanf(queryFile, "%[^\n]", sBuffer);
	  fscanf(queryFile, "\n");
	}
      }
      nSampleQueries = j;
      fclose(queryFile);
    }

    // Compute the array sampleQBoundaryIndeces that specifies how to
    // segregate the sample query points according to their distance
    // to NN.
	//边界sampleQBoundaryIndeces只会存取一个点的索引,该点的大小为第一个大于半径点的值
    sortQueryPointsByRadii(pointsDimension,
			   nSampleQueries,    //查询集的点的个数
			   sampleQueries,     //查询点的集合,函数运行完成后,点的值将以距离数据集合的距离由小到大的顺序排序
			   nPoints,           //数据集点的个数
			   dataSetPoints,     //数据集集合
			   nRadii,            //半径的个数
			   listOfRadii,        //半径的值
			   sampleQBoundaryIndeces);
  }
//之前的东西-c运行的,-p是不会运行的
  RNNParametersT *algParameters = NULL;
  PRNearNeighborStructT *nnStructs = NULL;
  if (nargs > 9) {
    // Additional command-line parameter is specified.
    if (strcmp("-c", args[9]) == 0) {
      // Only compute the R-NN DS parameters and output them to stdout. // 如果是-c,就只计算数据集参数,然后输出
      
      printf("%d\n", nRadii);           //打印出半径的个数:1个。 将写入到参数文件中,
      transformMemRatios();        //memRatiosForNNstructs,转换内存使用率。假设每个结构为1,每个半径占用的总内存的比率,用于计算内存
      for(IntT i = 0; i < nRadii; i++){   //看使用哪个样本查询点
	// which sample queries to use
	Int32T segregatedQStart = (i == 0) ? 0 : sampleQBoundaryIndeces[i - 1];   //起始点的位置
	Int32T segregatedQNumber = nSampleQueries - segregatedQStart;              //查询点的个数
	if (segregatedQNumber == 0) {                        //如果计算所得点的个数为0,就查询所有的点,从0到最后
	  // XXX: not the right answer
	  segregatedQNumber = nSampleQueries;
	  segregatedQStart = 0;
	}
	ASSERT(segregatedQStart < nSampleQueries);
	ASSERT(segregatedQStart >= 0);
	ASSERT(segregatedQStart + segregatedQNumber <= nSampleQueries);
	ASSERT(segregatedQNumber >= 0);
	RNNParametersT optParameters = computeOptimalParameters(listOfRadii[i],    //计算最优的运行时间,
								successProbability,
								nPoints,
								pointsDimension,
								dataSetPoints,
								segregatedQNumber,
								sampleQueries + segregatedQStart,
								(MemVarT)((availableTotalMemory - totalAllocatedMemory) * memRatiosForNNStructs[i])); //比率
								////memRatioForNNStructs[i]:近邻结构体每个半径所占用的内存比率,计算能用多少内存
	printRNNParameters(stdout, optParameters);  //将参数打印出来
      }
      exit(0);
    } else if (strcmp("-p", args[9]) == 0) {
      // Read the R-NN DS parameters from the given file and run the
      // queries on the constructed data structure.
      if (nargs < 10){
	usage(args[0]);
	exit(1);
      }
      FILE *pFile = fopen(args[10], "rt");    //读取参数文件,由lsh_computeParas产生
      FAILIFWR(pFile == NULL, "Could not open the params file.");
      fscanf(pFile, "%d\n", &nRadii);    //这里只取了参数文件中的半径,那参数文件中的其他数据怎样被取用的??
     DPRINTF1("Using the following R-NN DS parameters:\n");   //使用R-NN DS(DateSet)参数
      DPRINTF("N radii = %d\n", nRadii);     //不知道将数据输出到哪里了??
	 // printf("Using the following R-NN DS parameters:\n");
	 // printf("N radii=%d\n",nRadii);
      FAILIF(NULL == (nnStructs = (PRNearNeighborStructT*)MALLOC(nRadii * sizeof(PRNearNeighborStructT))));
      FAILIF(NULL == (algParameters = (RNNParametersT*)MALLOC(nRadii * sizeof(RNNParametersT))));
      for(IntT i = 0; i < nRadii; i++){
	        algParameters[i] = readRNNParameters(pFile);      //将参数信息,输出到屏幕上
  //	printRNNParameters(stderr, algParameters[i]);@727
      //printRNNParameters(stdout,algParameters[i]);
	        nnStructs[i] = initLSH_WithDataSet(algParameters[i], nPoints, dataSetPoints);  //根据用户输入的参数,初始化结构
      }

      pointsDimension = algParameters[0].dimension;
      FREE(listOfRadii);
      FAILIF(NULL == (listOfRadii = (RealT*)MALLOC(nRadii * sizeof(RealT))));
      for(IntT i = 0; i < nRadii; i++){
	listOfRadii[i] = algParameters[i].parameterR;
      }
    } else{
      // Wrong option.
      usage(args[0]);
      exit(1);
    }
  } else {
    FAILIF(NULL == (nnStructs = (PRNearNeighborStructT*)MALLOC(nRadii * sizeof(PRNearNeighborStructT))));
    // Determine the R-NN DS parameters, construct the DS and run the queries.
    transformMemRatios();
    for(IntT i = 0; i < nRadii; i++){
      // XXX: segregate the sample queries...
      nnStructs[i] = initSelfTunedRNearNeighborWithDataSet(listOfRadii[i], 
							   successProbability, 
							   nPoints, 
							   pointsDimension, 
							   dataSetPoints, 
							   nSampleQueries, 
							   sampleQueries, 
							   (MemVarT)((availableTotalMemory - totalAllocatedMemory) * memRatiosForNNStructs[i]));
    }
  }

 // DPRINTF1("X\n");@
  printf("X\n");

  IntT resultSize = nPoints;
  PPointT *result = (PPointT*)MALLOC(resultSize * sizeof(*result));
  PPointT queryPoint;
  FAILIF(NULL == (queryPoint = (PPointT)MALLOC(sizeof(PointT))));
  FAILIF(NULL == (queryPoint->coordinates = (RealT*)MALLOC(pointsDimension * sizeof(RealT))));

  FILE *queryFile = fopen(args[7], "rt");
  FAILIF(queryFile == NULL);
  TimeVarT meanQueryTime = 0;
  PPointAndRealTStructT *distToNN = NULL;
  for(IntT i = 0; i < nQueries; i++){

    RealT sqrLength = 0;
    // read in the query point.
    for(IntT d = 0; d < pointsDimension; d++){
      FSCANF_REAL(queryFile, &(queryPoint->coordinates[d]));
      sqrLength += SQR(queryPoint->coordinates[d]);   //向量到原点的距离
    }
    queryPoint->sqrLength = sqrLength;
    //printRealVector("Query: ", pointsDimension, queryPoint->coordinates);

    // get the near neighbors.
    IntT nNNs = 0;
    for(IntT r = 0; r < nRadii; r++){
      nNNs = getRNearNeighbors(nnStructs[r], queryPoint, result, resultSize);
      printf("Total time for R-NN query at radius %0.6lf (radius no. %d):\t%0.6lf\n", (double)(listOfRadii[r]), r, timeRNNQuery);
      meanQueryTime += timeRNNQuery;

      if (nNNs > 0){
	printf("Query point %d: found %d NNs at distance %0.6lf (%dth radius). First %d NNs are:\n", i, nNNs, (double)(listOfRadii[r]), r, MIN(nNNs, MAX_REPORTED_POINTS));
	
	// compute the distances to the found NN, and sort according to the distance
	FAILIF(NULL == (distToNN = (PPointAndRealTStructT*)REALLOC(distToNN, nNNs * sizeof(*distToNN))));
	for(IntT p = 0; p < nNNs; p++){
	  distToNN[p].ppoint = result[p];
	  distToNN[p].real = distance(pointsDimension, queryPoint, result[p]);
	}
	qsort(distToNN, nNNs, sizeof(*distToNN), comparePPointAndRealTStructT);  //C语言标准的函数

	// Print the points
	for(IntT j = 0; j < MIN(nNNs, MAX_REPORTED_POINTS); j++){
	  ASSERT(distToNN[j].ppoint != NULL);
	  printf("%09d\tDistance:%0.6lf\n", distToNN[j].ppoint->index, distToNN[j].real);   //打印点的坐标
	  CR_ASSERT(distToNN[j].real <= listOfRadii[r]);
	  //DPRINTF("Distance: %lf\n", distance(pointsDimension, queryPoint, result[j]));
	  //printRealVector("NN: ", pointsDimension, result[j]->coordinates);
	}
	break;
      }
    }
    if (nNNs == 0){
      printf("Query point %d: no NNs found.\n", i);
    }
  }
  if (nQueries > 0){
    meanQueryTime = meanQueryTime / nQueries;
    printf("Mean query time: %0.6lf\n", (double)meanQueryTime);
  }

  for(IntT i = 0; i < nRadii; i++){
    freePRNearNeighborStruct(nnStructs[i]);
  }
  // XXX: should ideally free the other stuff as well.


  return 0;
}