Exemplo n.º 1
0
int main(int argc, char *argv[])
{
  struct        RNAcofold_args_info args_info;
  unsigned int  input_type;
  char          *string, *input_string;
  char    *structure, *cstruc, *rec_sequence, *orig_sequence, *rec_id, **rec_rest;
  char    fname[FILENAME_MAX_LENGTH], ffname[FILENAME_MAX_LENGTH];
  char    *ParamFile;
  char    *ns_bases, *c;
  char    *Concfile;
  int     i, length, l, sym, r, cl;
  double  min_en;
  double  kT, sfact, betaScale;
  int     pf, istty;
  int     noconv, noPS;
  int     doT;    /*compute dimere free energies etc.*/
  int     doC;    /*toggle to compute concentrations*/
  int     doQ;    /*toggle to compute prob of base being paired*/
  int     cofi;   /*toggle concentrations stdin / file*/
  plist   *prAB;
  plist   *prAA;   /*pair probabilities of AA dimer*/
  plist   *prBB;
  plist   *prA;
  plist   *prB;
  plist   *mfAB;
  plist   *mfAA;   /*pair mfobabilities of AA dimer*/
  plist   *mfBB;
  plist   *mfA;
  plist   *mfB;
  double  *ConcAandB;
  unsigned int    rec_type, read_opt;
  pf_paramT       *pf_parameters;
  model_detailsT  md;


  /*
  #############################################
  # init variables and parameter options
  #############################################
  */
  dangles       = 2;
  sfact         = 1.07;
  bppmThreshold = 1e-5;
  noconv        = 0;
  noPS          = 0;
  do_backtrack  = 1;
  pf            = 0;
  doT           = 0;
  doC           = 0;
  doQ           = 0;
  cofi          = 0;
  betaScale     = 1.;
  gquad         = 0;
  ParamFile     = NULL;
  pf_parameters = NULL;
  string        = NULL;
  Concfile      = NULL;
  structure     = NULL;
  cstruc        = NULL;
  ns_bases      = NULL;
  rec_type      = read_opt = 0;
  rec_id        = rec_sequence = orig_sequence = NULL;
  rec_rest      = NULL;

  set_model_details(&md);
  /*
  #############################################
  # check the command line prameters
  #############################################
  */
  if(RNAcofold_cmdline_parser (argc, argv, &args_info) != 0) exit(1);
  /* temperature */
  if(args_info.temp_given)            temperature = args_info.temp_arg;
  /* structure constraint */
  if(args_info.constraint_given)      fold_constrained=1;
  /* do not take special tetra loop energies into account */
  if(args_info.noTetra_given)         md.special_hp = tetra_loop=0;
  /* set dangle model */
  if(args_info.dangles_given){
    if((args_info.dangles_arg < 0) || (args_info.dangles_arg > 3))
      warn_user("required dangle model not implemented, falling back to default dangles=2");
    else
     md.dangles = dangles = args_info.dangles_arg;
  }
  /* do not allow weak pairs */
  if(args_info.noLP_given)            md.noLP = noLonelyPairs = 1;
  /* do not allow wobble pairs (GU) */
  if(args_info.noGU_given)            md.noGU = noGU = 1;
  /* do not allow weak closing pairs (AU,GU) */
  if(args_info.noClosingGU_given)     md.noGUclosure = no_closingGU = 1;
  /* gquadruplex support */
  if(args_info.gquad_given)           md.gquad = gquad = 1;
  /* enforce canonical base pairs in any case? */
  if(args_info.canonicalBPonly_given) md.canonicalBPonly = canonicalBPonly = 1;
  /* do not convert DNA nucleotide "T" to appropriate RNA "U" */
  if(args_info.noconv_given)          noconv = 1;
  /* set energy model */
  if(args_info.energyModel_given)     energy_set = args_info.energyModel_arg;
  /*  */
  if(args_info.noPS_given)            noPS = 1;
  /* take another energy parameter set */
  if(args_info.paramFile_given)       ParamFile = strdup(args_info.paramFile_arg);
  /* Allow other pairs in addition to the usual AU,GC,and GU pairs */
  if(args_info.nsp_given)             ns_bases = strdup(args_info.nsp_arg);
  /* set pf scaling factor */
  if(args_info.pfScale_given)         sfact = args_info.pfScale_arg;

  if(args_info.all_pf_given)          doT = pf = 1;
  /* concentrations from stdin */
  if(args_info.concentrations_given)  doC = doT = pf = 1;
  /* set the bppm threshold for the dotplot */
  if(args_info.bppmThreshold_given)
    bppmThreshold = MIN2(1., MAX2(0.,args_info.bppmThreshold_arg));
  /* concentrations in file */
  if(args_info.betaScale_given)       betaScale = args_info.betaScale_arg;
  if(args_info.concfile_given){
    Concfile = strdup(args_info.concfile_arg);
    doC = cofi = doT = pf = 1;
  }
  /* partition function settings */
  if(args_info.partfunc_given){
    pf = 1;
    if(args_info.partfunc_arg != -1)
      do_backtrack = args_info.partfunc_arg;
  }
  /* free allocated memory of command line data structure */
  RNAcofold_cmdline_parser_free (&args_info);


  /*
  #############################################
  # begin initializing
  #############################################
  */
  if(pf && gquad){
    nrerror("G-Quadruplex support is currently not available for partition function computations");
  }

  if (ParamFile != NULL)
    read_parameter_file(ParamFile);

  if (ns_bases != NULL) {
    nonstandards = space(33);
    c=ns_bases;
    i=sym=0;
    if (*c=='-') {
      sym=1; c++;
    }
    while (*c!='\0') {
      if (*c!=',') {
        nonstandards[i++]=*c++;
        nonstandards[i++]=*c;
        if ((sym)&&(*c!=*(c-1))) {
          nonstandards[i++]=*c;
          nonstandards[i++]=*(c-1);
        }
      }
      c++;
    }
  }
  istty = isatty(fileno(stdout))&&isatty(fileno(stdin));

  /* print user help if we get input from tty */
  if(istty){
    printf("Use '&' to connect 2 sequences that shall form a complex.\n");
    if(fold_constrained){
      print_tty_constraint(VRNA_CONSTRAINT_DOT | VRNA_CONSTRAINT_X | VRNA_CONSTRAINT_ANG_BRACK | VRNA_CONSTRAINT_RND_BRACK);
      print_tty_input_seq_str("Input sequence (upper or lower case) followed by structure constraint\n");
    }
    else print_tty_input_seq();
  }

  /* set options we wanna pass to read_record */
  if(istty)             read_opt |= VRNA_INPUT_NOSKIP_BLANK_LINES;
  if(!fold_constrained) read_opt |= VRNA_INPUT_NO_REST;

  /*
  #############################################
  # main loop: continue until end of file
  #############################################
  */
  while(
    !((rec_type = read_record(&rec_id, &rec_sequence, &rec_rest, read_opt))
        & (VRNA_INPUT_ERROR | VRNA_INPUT_QUIT))){

    /*
    ########################################################
    # init everything according to the data we've read
    ########################################################
    */
    if(rec_id){
      if(!istty) printf("%s\n", rec_id);
      (void) sscanf(rec_id, ">%" XSTR(FILENAME_ID_LENGTH) "s", fname);
    }
    else fname[0] = '\0';

    cut_point = -1;

    rec_sequence  = tokenize(rec_sequence); /* frees input_string and sets cut_point */
    length    = (int) strlen(rec_sequence);
    structure = (char *) space((unsigned) length+1);

    /* parse the rest of the current dataset to obtain a structure constraint */
    if(fold_constrained){
      cstruc = NULL;
      int cp = cut_point;
      unsigned int coptions = (rec_id) ? VRNA_CONSTRAINT_MULTILINE : 0;
      coptions |= VRNA_CONSTRAINT_DOT | VRNA_CONSTRAINT_X | VRNA_CONSTRAINT_ANG_BRACK | VRNA_CONSTRAINT_RND_BRACK;
      getConstraint(&cstruc, (const char **)rec_rest, coptions);
      cstruc = tokenize(cstruc);
      if(cut_point != cp) nrerror("cut point in sequence and structure constraint differs");
      cl = (cstruc) ? (int)strlen(cstruc) : 0;

      if(cl == 0)           warn_user("structure constraint is missing");
      else if(cl < length)  warn_user("structure constraint is shorter than sequence");
      else if(cl > length)  nrerror("structure constraint is too long");

      if(cstruc) strncpy(structure, cstruc, sizeof(char)*(cl+1));
    }

    /* convert DNA alphabet to RNA if not explicitely switched off */
    if(!noconv) str_DNA2RNA(rec_sequence);
    /* store case-unmodified sequence */
    orig_sequence = strdup(rec_sequence);
    /* convert sequence to uppercase letters only */
    str_uppercase(rec_sequence);

    if(istty){
      if (cut_point == -1)
        printf("length = %d\n", length);
      else
        printf("length1 = %d\nlength2 = %d\n", cut_point-1, length-cut_point+1);
    }

    /*
    ########################################################
    # begin actual computations
    ########################################################
    */

    if (doC) {
      FILE *fp;
      if (cofi) { /* read from file */
        fp = fopen(Concfile, "r");
        if (fp==NULL) {
          fprintf(stderr, "could not open concentration file %s", Concfile);
          nrerror("\n");
        }
        ConcAandB = read_concentrations(fp);
        fclose(fp);
      } else {
        printf("Please enter concentrations [mol/l]\n format: ConcA ConcB\n return to end\n");
        ConcAandB = read_concentrations(stdin);
      }
    }
    /*compute mfe of AB dimer*/
    min_en = cofold(rec_sequence, structure);
    assign_plist_from_db(&mfAB, structure, 0.95);

    {
      char *pstring, *pstruct;
      if (cut_point == -1) {
        pstring = strdup(orig_sequence);
        pstruct = strdup(structure);
      } else {
        pstring = costring(orig_sequence);
        pstruct = costring(structure);
      }
      printf("%s\n%s", pstring, pstruct);
      if (istty)
        printf("\n minimum free energy = %6.2f kcal/mol\n", min_en);
      else
        printf(" (%6.2f)\n", min_en);

      (void) fflush(stdout);

      if (!noPS) {
        char annot[512] = "";
        if (fname[0]!='\0') {
          strcpy(ffname, fname);
          strcat(ffname, "_ss.ps");
        } else {
          strcpy(ffname, "rna.ps");
        }
        if (cut_point >= 0)
          sprintf(annot,
                  "1 %d 9  0 0.9 0.2 omark\n%d %d 9  1 0.1 0.2 omark\n",
                  cut_point-1, cut_point+1, length+1);
        if(gquad){
          if (!noPS) (void) PS_rna_plot_a_gquad(pstring, pstruct, ffname, annot, NULL);
        } else {
          if (!noPS) (void) PS_rna_plot_a(pstring, pstruct, ffname, annot, NULL);
        }
      }
      free(pstring);
      free(pstruct);
    }

    if (length>2000)  free_co_arrays();

    /*compute partition function*/
    if (pf) {
      cofoldF AB, AA, BB;
      FLT_OR_DBL *probs;
      if (dangles==1) {
        dangles=2;   /* recompute with dangles as in pf_fold() */
        min_en = energy_of_structure(rec_sequence, structure, 0);
        dangles=1;
      }

      kT = (betaScale*((temperature+K0)*GASCONST))/1000.; /* in Kcal */
      pf_scale = exp(-(sfact*min_en)/kT/length);
      if (length>2000) fprintf(stderr, "scaling factor %f\n", pf_scale);

      pf_parameters = get_boltzmann_factors(temperature, betaScale, md, pf_scale);

      if (cstruc!=NULL)
        strncpy(structure, cstruc, length+1);
      AB = co_pf_fold_par(rec_sequence, structure, pf_parameters, do_backtrack, fold_constrained);

      if (do_backtrack) {
        char *costruc;
        costruc = (char *) space(sizeof(char)*(strlen(structure)+2));
        if (cut_point<0) printf("%s", structure);
        else {
          strncpy(costruc, structure, cut_point-1);
          strcat(costruc, "&");
          strcat(costruc, structure+cut_point-1);
          printf("%s", costruc);
        }
        if (!istty) printf(" [%6.2f]\n", AB.FAB);
        else printf("\n");/*8.6.04*/
      }
      if ((istty)||(!do_backtrack))
        printf(" free energy of ensemble = %6.2f kcal/mol\n", AB.FAB);
      printf(" frequency of mfe structure in ensemble %g",
             exp((AB.FAB-min_en)/kT));

      printf(" , delta G binding=%6.2f\n", AB.FcAB - AB.FA - AB.FB);

      probs = export_co_bppm();
      assign_plist_from_pr(&prAB, probs, length, bppmThreshold);

      /* if (doQ) make_probsum(length,fname); */ /*compute prob of base paired*/
      /* free_co_arrays(); */
      if (doT) { /* cofold of all dimers, monomers */
        int Blength, Alength;
        char  *Astring, *Bstring, *orig_Astring, *orig_Bstring;
        char *Newstring;
        char Newname[30];
        char comment[80];
        if (cut_point<0) {
          printf("Sorry, i cannot do that with only one molecule, please give me two or leave it\n");
          free(mfAB);
          free(prAB);
          continue;
        }
        if (dangles==1) dangles=2;
        Alength=cut_point-1;        /*length of first molecule*/
        Blength=length-cut_point+1; /*length of 2nd molecule*/

        Astring=(char *)space(sizeof(char)*(Alength+1));/*Sequence of first molecule*/
        Bstring=(char *)space(sizeof(char)*(Blength+1));/*Sequence of second molecule*/
        strncat(Astring,rec_sequence,Alength);
        strncat(Bstring,rec_sequence+Alength,Blength);

        orig_Astring=(char *)space(sizeof(char)*(Alength+1));/*Sequence of first molecule*/
        orig_Bstring=(char *)space(sizeof(char)*(Blength+1));/*Sequence of second molecule*/
        strncat(orig_Astring,orig_sequence,Alength);
        strncat(orig_Bstring,orig_sequence+Alength,Blength);

        /* compute AA dimer */
        AA=do_partfunc(Astring, Alength, 2, &prAA, &mfAA, pf_parameters);
        /* compute BB dimer */
        BB=do_partfunc(Bstring, Blength, 2, &prBB, &mfBB, pf_parameters);
        /*free_co_pf_arrays();*/

        /* compute A monomer */
        do_partfunc(Astring, Alength, 1, &prA, &mfA, pf_parameters);

        /* compute B monomer */
        do_partfunc(Bstring, Blength, 1, &prB, &mfB, pf_parameters);

        compute_probabilities(AB.F0AB, AB.FA, AB.FB, prAB, prA, prB, Alength);
        compute_probabilities(AA.F0AB, AA.FA, AA.FA, prAA, prA, prA, Alength);
        compute_probabilities(BB.F0AB, BB.FA, BB.FA, prBB, prA, prB, Blength);
        printf("Free Energies:\nAB\t\tAA\t\tBB\t\tA\t\tB\n%.6f\t%6f\t%6f\t%6f\t%6f\n",
               AB.FcAB, AA.FcAB, BB.FcAB, AB.FA, AB.FB);

        if (doC) {
          do_concentrations(AB.FcAB, AA.FcAB, BB.FcAB, AB.FA, AB.FB, ConcAandB);
          free(ConcAandB);/*freeen*/
        }

        if (fname[0]!='\0') {
          strcpy(ffname, fname);
          strcat(ffname, "_dp5.ps");
        } else strcpy(ffname, "dot5.ps");
        /*output of the 5 dot plots*/

        /*AB dot_plot*/
        /*write Free Energy into comment*/
        sprintf(comment,"\n%%Heterodimer AB FreeEnergy= %.9f\n", AB.FcAB);
        /*reset cut_point*/
        cut_point=Alength+1;
        /*write New name*/
        strcpy(Newname,"AB");
        strcat(Newname,ffname);
        (void)PS_dot_plot_list(orig_sequence, Newname, prAB, mfAB, comment);

        /*AA dot_plot*/
        sprintf(comment,"\n%%Homodimer AA FreeEnergy= %.9f\n",AA.FcAB);
        /*write New name*/
        strcpy(Newname,"AA");
        strcat(Newname,ffname);
        /*write AA sequence*/
        Newstring=(char*)space((2*Alength+1)*sizeof(char));
        strcpy(Newstring,orig_Astring);
        strcat(Newstring,orig_Astring);
        (void)PS_dot_plot_list(Newstring, Newname, prAA, mfAA, comment);
        free(Newstring);

        /*BB dot_plot*/
        sprintf(comment,"\n%%Homodimer BB FreeEnergy= %.9f\n",BB.FcAB);
        /*write New name*/
        strcpy(Newname,"BB");
        strcat(Newname,ffname);
        /*write BB sequence*/
        Newstring=(char*)space((2*Blength+1)*sizeof(char));
        strcpy(Newstring,orig_Bstring);
        strcat(Newstring,orig_Bstring);
        /*reset cut_point*/
        cut_point=Blength+1;
        (void)PS_dot_plot_list(Newstring, Newname, prBB, mfBB, comment);
        free(Newstring);

        /*A dot plot*/
        /*reset cut_point*/
        cut_point=-1;
        sprintf(comment,"\n%%Monomer A FreeEnergy= %.9f\n",AB.FA);
        /*write New name*/
        strcpy(Newname,"A");
        strcat(Newname,ffname);
        /*write BB sequence*/
        (void)PS_dot_plot_list(orig_Astring, Newname, prA, mfA, comment);

        /*B monomer dot plot*/
        sprintf(comment,"\n%%Monomer B FreeEnergy= %.9f\n",AB.FB);
        /*write New name*/
        strcpy(Newname,"B");
        strcat(Newname,ffname);
        /*write BB sequence*/
        (void)PS_dot_plot_list(orig_Bstring, Newname, prB, mfB, comment);
        free(Astring); free(Bstring); free(orig_Astring); free(orig_Bstring);
        free(prAB); free(prAA); free(prBB); free(prA); free(prB);
        free(mfAB); free(mfAA); free(mfBB); free(mfA); free(mfB);

      } /*end if(doT)*/

      free(pf_parameters);
    }/*end if(pf)*/


    if (do_backtrack) {
      if (fname[0]!='\0') {
        strcpy(ffname, fname);
        strcat(ffname, "_dp.ps");
      } else strcpy(ffname, "dot.ps");

      if (!doT) {
        if (pf) {          (void) PS_dot_plot_list(rec_sequence, ffname, prAB, mfAB, "doof");
        free(prAB);}
        free(mfAB);
      }
    }
    if (!doT) free_co_pf_arrays();

    (void) fflush(stdout);
    
    /* clean up */
    if(cstruc) free(cstruc);
    if(rec_id) free(rec_id);
    free(rec_sequence);
    free(orig_sequence);
    free(structure);
    /* free the rest of current dataset */
    if(rec_rest){
      for(i=0;rec_rest[i];i++) free(rec_rest[i]);
      free(rec_rest);
    }
    rec_id = rec_sequence = orig_sequence = structure = cstruc = NULL;
    rec_rest = NULL;

    /* print user help for the next round if we get input from tty */
    if(istty){
      printf("Use '&' to connect 2 sequences that shall form a complex.\n");
      if(fold_constrained){
        print_tty_constraint(VRNA_CONSTRAINT_DOT | VRNA_CONSTRAINT_X | VRNA_CONSTRAINT_ANG_BRACK | VRNA_CONSTRAINT_RND_BRACK);
        print_tty_input_seq_str("Input sequence (upper or lower case) followed by structure constraint\n");
      }
      else print_tty_input_seq();
    }
  }
  return EXIT_SUCCESS;
}
Exemplo n.º 2
0
int main(int argc, char *argv[]){
  struct        RNAsubopt_args_info args_info;
  unsigned int  input_type;
  char          fname[80], *cstruc, *sequence, *c, *input_string;
  char          *structure = NULL, *ParamFile = NULL, *ns_bases = NULL;
  int           i, length, l, sym, istty;
  double        deltaf, deltap;
  int           delta, n_back, noconv, circular, dos, zuker;

  do_backtrack  = 1;
  dangles       = 2;
  delta         = 100;
  deltap = n_back = noconv = circular = dos = zuker = 0;
  /*
  #############################################
  # check the command line parameters
  #############################################
  */
  if(RNAsubopt_cmdline_parser (argc, argv, &args_info) != 0) exit(1);
  /* temperature */
  if(args_info.temp_given)        temperature = args_info.temp_arg;
  /* structure constraint */
  if(args_info.constraint_given)  fold_constrained=1;
  /* do not take special tetra loop energies into account */
  if(args_info.noTetra_given)     tetra_loop=0;
  /* set dangle model */
  if(args_info.dangles_given)     dangles = args_info.dangles_arg;
  /* do not allow weak pairs */
  if(args_info.noLP_given)        noLonelyPairs = 1;
  /* do not allow wobble pairs (GU) */
  if(args_info.noGU_given)        noGU = 1;
  /* do not allow weak closing pairs (AU,GU) */
  if(args_info.noClosingGU_given) no_closingGU = 1;
  /* do not convert DNA nucleotide "T" to appropriate RNA "U" */
  if(args_info.noconv_given)      noconv = 1;
  /* take another energy parameter set */
  if(args_info.paramFile_given)   ParamFile = strdup(args_info.paramFile_arg);
  /* Allow other pairs in addition to the usual AU,GC,and GU pairs */
  if(args_info.nsp_given)         ns_bases = strdup(args_info.nsp_arg);
  /* energy range */
  if(args_info.deltaEnergy_given) delta = (int) (0.1+args_info.deltaEnergy_arg*100);
  /* energy range after post evaluation */
  if(args_info.deltaEnergyPost_given) deltap = args_info.deltaEnergyPost_arg;
  /* sorted output */
  if(args_info.sorted_given)      subopt_sorted = 1;
  /* assume RNA sequence to be circular */
  if(args_info.circ_given)        circular=1;
  /* stochastic backtracking */
  if(args_info.stochBT_given){
    n_back = args_info.stochBT_arg;
    init_rand();
  }
  /* density of states */
  if(args_info.dos_given){
    dos = 1;
    print_energy = -999999;
  }
  /* logarithmic multiloop energies */
  if(args_info.logML_given) logML = 1;
  /* zuker subopts */
  if(args_info.zuker_given) zuker = 1;

  if(zuker){
    if(circular){
      warn_user("Sorry, zuker subopts not yet implemented for circfold");
      RNAsubopt_cmdline_parser_print_help();
      exit(1);
    }
    else if(n_back>0){
      warn_user("Can't do zuker subopts and stochastic subopts at the same time");
      RNAsubopt_cmdline_parser_print_help();
      exit(1);
    }
  }

  /* free allocated memory of command line data structure */
  RNAsubopt_cmdline_parser_free(&args_info);

  /*
  #############################################
  # begin initializing
  #############################################
  */

  if (ParamFile != NULL) read_parameter_file(ParamFile);

  if (ns_bases != NULL) {
    nonstandards = space(33);
    c=ns_bases;
    i=sym=0;
    if (*c=='-') {
      sym=1; c++;
    }
    while (*c!='\0') {
      if (*c!=',') {
        nonstandards[i++]=*c++;
        nonstandards[i++]=*c;
        if ((sym)&&(*c!=*(c-1))) {
          nonstandards[i++]=*c;
          nonstandards[i++]=*(c-1);
        }
      }
      c++;
    }
  }

  istty = isatty(fileno(stdout))&&isatty(fileno(stdin));

  if(fold_constrained && istty) print_tty_constraint(VRNA_CONSTRAINT_DOT | VRNA_CONSTRAINT_X);


  /*
  #############################################
  # main loop: continue until end of file
  #############################################
  */
  do {
    cut_point = -1;
    /*
    ########################################################
    # handle user input from 'stdin'
    ########################################################
    */
    if(istty){ 
      if (!zuker)
        printf("Use '&' to connect 2 sequences that shall form a complex.\n");
      print_tty_input_seq();
    }
    /* extract filename from fasta header if available */
    fname[0] = '\0';
    while((input_type = get_input_line(&input_string, 0)) == VRNA_INPUT_FASTA_HEADER){
      printf(">%s\n", input_string);
      (void) sscanf(input_string, "%42s", fname);
      free(input_string);
    }

    /* break on any error, EOF or quit request */
    if(input_type & (VRNA_INPUT_QUIT | VRNA_INPUT_ERROR)){ break;}
    /* else assume a proper sequence of letters of a certain alphabet (RNA, DNA, etc.) */
    else{
      sequence  = tokenize(input_string); /* frees input_string */
      length    = (int) strlen(sequence);
    }
    structure = (char *) space((unsigned) length+1);

    if(noconv)  str_RNA2RNA(sequence);
    else        str_DNA2RNA(sequence);

    if(istty){
      if (cut_point == -1)
        printf("length = %d\n", length);
      else
        printf("length1 = %d\nlength2 = %d\n", cut_point-1, length-cut_point+1);
    }

    /* get structure constraint or break if necessary, entering an empty line results in a warning */
    if (fold_constrained) {
      input_type = get_input_line(&input_string, VRNA_INPUT_NOSKIP_COMMENTS);
      if(input_type & VRNA_INPUT_QUIT){ break;}
      else if((input_type & VRNA_INPUT_MISC) && (strlen(input_string) > 0)){
        cstruc = tokenize(input_string);
        strncpy(structure, cstruc, length);
        for (i=0; i<length; i++)
          if (structure[i]=='|')
            nrerror("constraints of type '|' not allowed");
        free(cstruc);
      }
      else warn_user("constraints missing");
    }
    /*
    ########################################################
    # done with 'stdin' handling, now init everything properly
    ########################################################
    */

    if((logML != 0 || dangles==1 || dangles==3) && dos == 0)
      if(deltap<=0) deltap = delta/100. + 0.001;
    if (deltap>0)
      print_energy = deltap;

    /* first lines of output (suitable  for sort +1n) */
    if (fname[0] != '\0')
      printf("> %s [%d]\n", fname, delta);

    /* stochastic backtracking */
    if(n_back>0){
      double mfe, kT;
      char *ss;
      st_back=1;
      ss = (char *) space(strlen(sequence)+1);
      strncpy(ss, structure, length);
      mfe = fold(sequence, ss);
      kT = (temperature+273.15)*1.98717/1000.; /* in Kcal */
      pf_scale = exp(-(1.03*mfe)/kT/length);
      strncpy(ss, structure, length);
      /* ignore return value, we are not interested in the free energy */
      (circular) ? (void) pf_circ_fold(sequence, ss) : (void) pf_fold(sequence, ss);
      free(ss);
      for (i=0; i<n_back; i++) {
        char *s;
        s =(circular) ? pbacktrack_circ(sequence) : pbacktrack(sequence);
        printf("%s\n", s);
        free(s);
      }
      free_pf_arrays();
    }
    /* normal subopt */
    else if(!zuker){
      (circular) ? subopt_circ(sequence, structure, delta, stdout) : subopt(sequence, structure, delta, stdout);
      if (dos) {
        int i;
        for (i=0; i<= MAXDOS && i<=delta/10; i++) {
          printf("%4d %6d\n", i, density_of_states[i]);
        }
      }
    }
    /* Zuker suboptimals */
    else{
      SOLUTION *zr;
      int i;
      if (cut_point!=-1) {
        nrerror("Sorry, zuker subopts not yet implemented for cofold\n");
      }
      zr = zukersubopt(sequence);
      putoutzuker(zr);
      (void)fflush(stdout);
      for (i=0; zr[i].structure; i++) {
        free(zr[i].structure);
      }
      free(zr);
    }
    (void)fflush(stdout);
    free(sequence);
    free(structure);
  } while (1);
  return 0;
}