Exemplo n.º 1
0
	RetType put<const float3& >(VM vm, const float3 & f)
	{
		putFloat(vm,f[0]);
		putFloat(vm,f[1]);
		putFloat(vm,f[2]);
		return 3;
	}
Exemplo n.º 2
0
	RetType put<float3>(VM vm, float3 f)
	{
		putFloat(vm,f[0]);
		putFloat(vm,f[1]);
		putFloat(vm,f[2]);
		return 3;
	}
void da_setupScale()
{
  high(pinCh0);
  high(pinCh1);

  pause(5);

  float vA = ad_volts(0);
  float vB = ad_volts(1);

  //print("%f %f\n", vA, vB);

  if( (vA > 3.1 && vA < 3.5 && vB > 3.1 && vB < 3.5))
  {
    for(int i = 0; i < 39; i++)
    {
      vA += ad_volts(0);
      vB += ad_volts(1);
    }
    vA /= 40;
    vB /= 40;

    vA = 3.3 / vA;
    vB = 3.3 / vB;

    int addr = _abvolts_EE_start_;

    ee_putStr("abvolts", 8, addr);
    addr += 8;

    ee_putFloat32(vA, addr);
    addr += 4;

    ee_putFloat32(vB, addr);
    addr += 4;

    low(pinCh0);
    low(pinCh1);

    input(pinCh0);
    input(pinCh1);

    putStr("Ch0 scalar = ");
    putFloat(vA);
    putStr("\nCh1 scalar = ");
    putFloat(vB);
    putChar('\n');
    putChar('\n');

    abvolts_scale[0] = vA;
    abvolts_scale[1] = vB;
  }
  else
  {
    putStr("Error! Something went wrong. Check your circuit and power source.");
  }
}
Exemplo n.º 4
0
				uint64_t serialise(std::ostream & out) const
				{
					uint64_t offset = 0;

					putLittleEndianInteger4(out,ureads,offset);
					putLittleEndianInteger4(out,treads,offset);
					putLittleEndianInteger4(out,cutoff,offset);
					putLittleEndianInteger4(out,all,offset);

					for ( size_t i = 0; i < sizeof(freq)/sizeof(freq[0]); ++i )
						putFloat(out,freq[i],offset);

					putLittleEndianInteger4(out,maxlen,offset);
					putLittleEndianInteger8(out,totlen,offset);
					putLittleEndianInteger4(out,nreads,offset);
					putLittleEndianInteger4(out,trimmed,offset);

					putLittleEndianInteger4(out,0,offset); // part
					putLittleEndianInteger4(out,0,offset); // ufirst
					putLittleEndianInteger4(out,0,offset); // tfirst

					putLittleEndianInteger8(out,0,offset); // path
					putLittleEndianInteger4(out,0,offset); // loaded
					putLittleEndianInteger8(out,0,offset); // bases
					putLittleEndianInteger8(out,0,offset); // reads
					putLittleEndianInteger8(out,0,offset); // tracks

					return offset;
				}
Exemplo n.º 5
0
//////////////////////////////////////////////////////////////////////////
// Vector2
bool BasePersistenceManager::transferVector2(const char *name, Vector2 *val) {
    if (_saving) {
        putFloat(val->x);
        putFloat(val->y);
        if (_saveStream->err()) {
            return STATUS_FAILED;
        }
        return STATUS_OK;
    } else {
        val->x = getFloat();
        val->y = getFloat();
        if (_loadStream->err()) {
            return STATUS_FAILED;
        }
        return STATUS_OK;
    }
}
Exemplo n.º 6
0
    encode()
    {
        Packet::encode();
        buffer+=ID;
        putInt(seed);
        putByte(dimension);
        putInt(generator);
        putInt(gamemode);
        putLong(eid);
        putInt(spawnX);
        putInt(spawnY);
        putInt(spawnZ);
        putFloat(x);
        putFloat(y);
        putFloat(z);
        putByte('\0');


    }
Exemplo n.º 7
0
int dumpNBT_list(NBT_list *input, uint8 *buffer)
{
    int curpos=0;
    buffer[curpos]=TAG_LIST;
    curpos++;
    curpos+=dumpNBT_string(&buffer[curpos],input->name);

    buffer[curpos]=input->tagId;
    curpos++;

    putSint32(&buffer[curpos],input->length);
    curpos+=4;

    for(int i=0; i<input->length; i++)
    {
        switch(input->tagId)
        {
        case TAG_BYTE:
            buffer[curpos]=*(char *)input->items[i];
            curpos++;
            break;
        case TAG_SHORT:
            putSint16(&buffer[curpos], *(int *)input->items[i]);
            curpos+=2;
            break;
        case TAG_INT:
            putSint32(&buffer[curpos], *(int *)input->items[i]);
            curpos+=4;
            break;
        case TAG_LONG:
            putSint64(&buffer[curpos], *(long long *)input->items[i]);
            curpos+=8;
            break;
        case TAG_FLOAT:
            putFloat(&buffer[curpos], *(float *)input->items[i]);
            curpos+=4;
            break;
        case TAG_DOUBLE:
            putDouble(&buffer[curpos], *(double *)input->items[i]);
            curpos+=8;
            break;
        case TAG_STRING:
            curpos+=dumpNBT_string(&buffer[curpos],*(std::string *)input->items[i]);
            break;
        case TAG_BYTE_ARRAY:
            curpos+=dumpNBT_byte_array((NBT_byte_array *)input->items[i], &buffer[curpos],true);
            break;
        case TAG_COMPOUND:
            curpos+=dumpNBT_struct((NBT_struct *)input->items[i], &buffer[curpos],true);
            break;
        }
    }

    return curpos;
}
Exemplo n.º 8
0
/*
 * Class:     sun_font_SunLayoutEngine
 * Method:    nativeLayout
 * Signature: (Lsun/font/FontStrike;[CIIIIZLjava/awt/geom/Point2D$Float;Lsun/font/GlyphLayout$GVData;)V
 */
JNIEXPORT void JNICALL Java_sun_font_SunLayoutEngine_nativeLayout
   (JNIEnv *env, jclass cls, jobject font2d, jobject strike, jfloatArray matrix, jint gmask,
   jint baseIndex, jcharArray text, jint start, jint limit, jint min, jint max,
   jint script, jint lang, jint typo_flags, jobject pt, jobject gvdata,
   jlong upem, jlong layoutTables)
{
    //  fprintf(stderr, "nl font: %x strike: %x script: %d\n", font2d, strike, script); fflush(stderr);
  float mat[4];
  env->GetFloatArrayRegion(matrix, 0, 4, mat);
  FontInstanceAdapter fia(env, font2d, strike, mat, 72, 72, (le_int32) upem, (TTLayoutTableCache *) layoutTables);
  LEErrorCode success = LE_NO_ERROR;
  LayoutEngine *engine = LayoutEngine::layoutEngineFactory(&fia, script, lang, typo_flags & TYPO_MASK, success);

  if (min < 0) min = 0; if (max < min) max = min; /* defensive coding */
  // have to copy, yuck, since code does upcalls now.  this will be soooo slow
  jint len = max - min;
  jchar buffer[256];
  jchar* chars = buffer;
  if (len > 256) {
    size_t size = len * sizeof(jchar);
    if (size / sizeof(jchar) != len) {
      return;
    }
    chars = (jchar*)malloc(size);
    if (chars == 0) {
      return;
    }
  }
  //  fprintf(stderr, "nl chars: %x text: %x min %d len %d typo %x\n", chars, text, min, len, typo_flags); fflush(stderr);

  env->GetCharArrayRegion(text, min, len, chars);

  jfloat x, y;
  getFloat(env, pt, x, y);
  jboolean rtl = (typo_flags & TYPO_RTL) != 0;
  int glyphCount = engine->layoutChars(chars, start - min, limit - start, len, rtl, x, y, success);
  //   fprintf(stderr, "sle nl len %d -> gc: %d\n", len, glyphCount); fflush(stderr);

  engine->getGlyphPosition(glyphCount, x, y, success);

  //  fprintf(stderr, "layout glyphs: %d x: %g y: %g\n", glyphCount, x, y); fflush(stderr);

  if (putGV(env, gmask, baseIndex, gvdata, engine, glyphCount)) {
    // !!! hmmm, could use current value in positions array of GVData...
    putFloat(env, pt, x, y);
  }

  if (chars != buffer) {
    free(chars);
  }

  delete engine;

}
Exemplo n.º 9
0
//////////////////////////////////////////////////////////////////////////
// float
bool BasePersistenceManager::transferFloat(const char *name, float *val) {
    if (_saving) {
        putFloat(*val);
        if (_saveStream->err()) {
            return STATUS_FAILED;
        }
        return STATUS_OK;
    } else {
        *val = getFloat();
        if (_loadStream->err()) {
            return STATUS_FAILED;
        }
        return STATUS_OK;
    }
}
Exemplo n.º 10
0
int dumpNBT_value(NBT_value *input, uint8 *buffer)
{
    int curpos=0;
    buffer[curpos]=input->type;
    curpos++;
    curpos+=dumpNBT_string(&buffer[curpos],input->name);

    switch(input->type)
    {
    case TAG_BYTE:
        buffer[curpos]=*(char *)input->value;
        curpos++;
        break;
    case TAG_SHORT:
        putSint16(&buffer[curpos], *(int *)input->value);
        curpos+=2;
        break;
    case TAG_INT:
        putSint32(&buffer[curpos], *(int *)input->value);
        curpos+=4;
        break;
    case TAG_LONG:
        putSint64(&buffer[curpos], *(long long *)input->value);
        curpos+=8;
        break;
    case TAG_FLOAT:
        putFloat(&buffer[curpos], *(float *)input->value);
        curpos+=4;
        break;
    case TAG_DOUBLE:
        putDouble(&buffer[curpos], *(double *)input->value);
        curpos+=8;
        break;
    case TAG_STRING:
        curpos+=dumpNBT_string(&buffer[curpos],*(std::string *)input->value);
        break;
    }

    return curpos;
}
Exemplo n.º 11
0
void NBT_Value::Write(std::vector<uint8> &buffer)
{
  int storeAt = buffer.size();;
  switch(m_type)
  {
  case TAG_BYTE:
    buffer.push_back(m_value.byteVal);
    break;
  case TAG_SHORT:
    buffer.resize(storeAt + 2);
    putSint16(&buffer[storeAt], m_value.shortVal);
    break;
  case TAG_INT:
    buffer.resize(storeAt + 4);
    putSint32(&buffer[storeAt], m_value.intVal);
    break;
  case TAG_LONG:
    buffer.resize(storeAt + 8);
    putSint64(&buffer[storeAt], m_value.longVal);
    break;
  case TAG_FLOAT:
    buffer.resize(storeAt + 4);
    putFloat(&buffer[storeAt], m_value.floatVal);
    break;
  case TAG_DOUBLE:
    buffer.resize(storeAt + 8);
    putDouble(&buffer[storeAt], m_value.doubleVal);
    break;
  case TAG_BYTE_ARRAY:
    {
      int arraySize = m_value.byteArrayVal ? m_value.byteArrayVal->size() : 0;
      buffer.resize(storeAt + 4 + arraySize);
      putSint32(&buffer[storeAt], arraySize);
      storeAt += 4;
      if(arraySize)
        memcpy(&buffer[storeAt], &(*m_value.byteArrayVal)[0], arraySize);
      break;
    }
  case TAG_STRING:
    {
      int stringLen = m_value.stringVal ? m_value.stringVal->size() : 0;
      buffer.resize(storeAt + 2 + stringLen);
      putSint16(&buffer[storeAt], (sint16)stringLen);
      storeAt += 2;
      if(stringLen>0)
        memcpy(&buffer[storeAt], m_value.stringVal->c_str(), stringLen);
      break;
    }
  case TAG_LIST:
    {
      buffer.resize(storeAt + 5);
      int listCount = m_value.listVal.data ? m_value.listVal.data->size() : 0;
      buffer[storeAt] = m_value.listVal.type;
      storeAt++;
      putSint32(&buffer[storeAt], listCount);
      for(int i=0;i<listCount;i++)
        (*m_value.listVal.data)[i]->Write(buffer);
      break;
    }
  case TAG_COMPOUND:
    {
      int compoundCount = m_value.compoundVal ? m_value.compoundVal->size() : 0;
      if(compoundCount)
      {
        std::map<std::string, NBT_Value*>::iterator iter = m_value.compoundVal->begin(), end = m_value.compoundVal->end();
        for( ; iter != end; iter++)
        {
          const std::string &key = iter->first;
          int keySize = key.size();
          NBT_Value *val = iter->second;
          int curPos = buffer.size();
          buffer.resize(curPos + 3 + keySize);
          buffer[curPos] = (uint8)val->GetType();
          curPos++;
          putSint16(&buffer[curPos], keySize);
          curPos += 2;
          if(keySize)
            memcpy(&buffer[curPos], key.c_str(), keySize);
          val->Write(buffer);
        }
      }
      buffer.push_back(TAG_END);
      break;
    }
  case TAG_END:
    break; //for completeness
  }
}
Exemplo n.º 12
0
int ExportQuake3Model(const TCHAR *filename, ExpInterface *ei, Interface *gi, int start_time, std::list<ExportNode> lTags, std::list<ExportNode> lMeshes)
{
	FILE *file;
	int i, j, totalTags, totalMeshes, current_time = 0;
	long pos_current, totalTris = 0, totalVerts = 0;
	std::list<FrameRange>::iterator range_i;
	std::vector<Point3> lFrameBBoxMin;
	std::vector<Point3> lFrameBBoxMax;
	long pos_tagstart;
	long pos_tagend;
	long pos_filesize;
	long pos_framestart;
	int lazynamesfixed = 0;
	const Point3 x_axis(1, 0, 0);
	const Point3 z_axis(0, 0, 1);

	SceneEnumProc checkScene(ei->theScene, start_time, gi);
	totalTags = (int)lTags.size();
	if (g_tag_for_pivot)
		totalTags++;
	totalMeshes = (int)lMeshes.size();

	// open file
	file = _tfopen(filename, _T("wb"));
	if (!file)
	{
		ExportError("Cannot open file '%s'.", filename);
		return FALSE;
	}
	ExportDebug("%s:", filename);

	// sync pattern and version
	putChars("IDP3", 4, file);
	put32(15, file);
	putChars("Darkplaces MD3 Exporter", 64, file);
	put32(0, file);   // flags
	
	// MD3 header
	ExportState("Writing MD3 header");
	put32(g_total_frames, file);      // how many frames
	put32(totalTags, file);	  // tagsnum
	put32(totalMeshes, file); // meshnum
	put32(1, file);   // maxskinnum
	put32(108, file); // headersize
	pos_tagstart = ftell(file); put32(0, file);   // tagstart
	pos_tagend	= ftell(file);  put32(256, file); // tagend
	pos_filesize = ftell(file); put32(512, file); // filesize
	ExportDebug("    %i frames, %i tags, %i meshes", g_total_frames, totalTags, totalMeshes);

	// frame info
	// bbox arrays get filled while exported mesh and written back then
	ExportState("Writing frame info");
	pos_framestart = ftell(file);
	lFrameBBoxMin.resize(g_total_frames);
	lFrameBBoxMax.resize(g_total_frames);
	for (i = 0; i < g_total_frames; i++)
	{
		// init frame data
		lFrameBBoxMin[i].Set(0, 0, 0);
		lFrameBBoxMax[i].Set(0, 0, 0);
		// put data
		putFloat(-1.0f, file); // bbox min vector
		putFloat(-1.0f, file);
		putFloat(-1.0f, file);	
		putFloat( 1.0f, file); // bbox max vector
		putFloat(1.0f, file);
		putFloat(1.0f, file);
		putFloat(0.0f, file);  // local origin (usually 0 0 0)
		putFloat(0.0f, file);
		putFloat(0.0f, file);
		putFloat(1.0f, file);  // radius of bounding sphere
		putChars("", 16, file);
	}

	// tags
	pos_current = ftell(file);
	fseek(file, pos_tagstart, SEEK_SET);
	put32(pos_current, file);
	fseek(file, pos_current, SEEK_SET);
	
	// for each frame range cycle all frames and write out each tag
	long pos_tags = pos_current;
	if (totalTags)
	{
		long current_frame = 0;
		ExportState("Writing %i tags", totalTags);
		for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++)
		{
			for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++)
			{
				SceneEnumProc current_scene(ei->theScene, i * g_ticks_per_frame, gi);
				current_time = current_scene.time;

				// write out tags
				if (lTags.size())
				{
					for (std::list<ExportNode>::iterator tag_i = lTags.begin(); tag_i != lTags.end(); tag_i++)
					{
						INode *node	= current_scene[tag_i->i]->node;
						Matrix3	tm = node->GetObjTMAfterWSM(current_time);

						ExportState("Writing '%s' frame %i of %i", tag_i->name, i, g_total_frames);

						// tagname
						putChars(tag_i->name, 64, file);
						// origin, rotation matrix
						Point3 row = tm.GetRow(3);
						putFloat(row.x, file);
						putFloat(row.y, file);
						putFloat(row.z, file);
						row = tm.GetRow(0);
						putFloat(row.x, file);
						putFloat(row.y, file);
						putFloat(row.z, file);
						row = tm.GetRow(1);
						putFloat(row.x, file);
						putFloat(row.y, file);
						putFloat(row.z, file);
						row = tm.GetRow(2);
						putFloat(row.x, file);
						putFloat(row.y, file);
						putFloat(row.z, file);
					}
				}

				// write the center of mass tag_pivot which is avg of all objects's pivots
				if (g_tag_for_pivot)
				{
					ExportState("Writing 'tag_pivot' frame %i of %i", i, g_total_frames);

					// write the null data as tag_pivot need to be written after actual geometry
					// (it needs information on frame bound boxes to get proper blendings)
					putChars("tag_pivot", 64, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(1, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(1, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(1, file);
				}
			}
		}
	}

	// write the tag object offsets
	pos_current = ftell(file);
	fseek(file, pos_tagend, SEEK_SET);
	put32(pos_current, file);
	fseek(file, pos_current, SEEK_SET);

	// allocate the structs used to calculate tag_pivot
	std::vector<Point3> tag_pivot_origin;
	std::vector<double> tag_pivot_volume;
	if (g_tag_for_pivot)
	{
		tag_pivot_origin.resize(g_total_frames);
		tag_pivot_volume.resize(g_total_frames);
	}

	// mesh objects
	// for each mesh object write uv and frames
	SceneEnumProc scratch(ei->theScene, start_time, gi);
	ExportState("Writing %i meshes", (int)lMeshes.size());
	for (std::list<ExportNode>::iterator mesh_i = lMeshes.begin(); mesh_i != lMeshes.end(); mesh_i++)
	{
		bool needsDel;

		ExportState("Start mesh #%i", mesh_i);
		INode *node = checkScene[mesh_i->i]->node;
		Matrix3 tm	= node->GetObjTMAfterWSM(start_time);
		TriObject *tri = GetTriObjectFromNode(node, start_time, needsDel);
		if (!tri)
			continue;

		// get mesh, compute normals
		Mesh &mesh = tri->GetMesh();
		MeshNormalSpec *meshNormalSpec = mesh.GetSpecifiedNormals();
		if (meshNormalSpec)
		{
			if (!meshNormalSpec->GetNumFaces())
				meshNormalSpec = NULL;
			else
			{
				meshNormalSpec->SetParent(&mesh);
				meshNormalSpec->CheckNormals();
			}
		}
		mesh.checkNormals(TRUE);

		// fix lazy object names
		ExportState("Attempt to fix mesh name '%s'", mesh_i->name);
		char  meshname[64];
		size_t meshnamelen = min(63, strlen(mesh_i->name));
		memset(meshname, 0, 64);
		strncpy(meshname, mesh_i->name, meshnamelen);
		meshname[meshnamelen] = 0;
		if (!strncmp("Box", meshname, 3)    || !strncmp("Sphere", meshname, 6)  || !strncmp("Cylinder", meshname, 8) ||
            !strncmp("Torus", meshname, 5)  || !strncmp("Cone", meshname, 4)    || !strncmp("GeoSphere", meshname, 9) ||
			!strncmp("Tube", meshname, 4)   || !strncmp("Pyramid", meshname, 7) || !strncmp("Plane", meshname, 5) ||
			!strncmp("Teapot", meshname, 6) || !strncmp("Object", meshname, 6))
		{
name_conflict:
			lazynamesfixed++;
			if (lazynamesfixed == 1)
				strcpy(meshname, "base");
			else
				sprintf(meshname, "base%i", lazynamesfixed);

			// check if it's not used by another mesh
			for (std::list<ExportNode>::iterator m_i = lMeshes.begin(); m_i != lMeshes.end(); m_i++)
				if (!strncmp(m_i->name, meshname, strlen(meshname)))
					goto name_conflict;
			// approve name
			ExportWarning("Lazy object name '%s' (mesh renamed to '%s').", node->GetName(), meshname);
		}

		// special mesh check
		bool shadow_or_collision = false;
		if (g_mesh_special)
			  if (!strncmp("collision", meshname, 9) || !strncmp("shadow", meshname, 6))
				shadow_or_collision = true;

		// get material
		const char *shadername = NULL;
		Texmap *tex = 0;
		Mtl *mtl = 0;
		if (!shadow_or_collision)
		{
			mtl = node->GetMtl();
			if (mtl)
			{
				// check for multi-material
				if (mtl->IsMultiMtl())
				{
					// check if it's truly multi material
					// we do support multi-material with only one texture (some importers set it)
					bool multi_material = false;
					MtlID matId = mesh.faces[0].getMatID();
					for (i = 1; i < mesh.getNumFaces(); i++)
						if (mesh.faces[i].getMatID() != matId)
							multi_material = true;

					if (multi_material)
						if (g_mesh_multimaterials == MULTIMATERIALS_NONE)
							ExportWarning("Object '%s' is multimaterial and using multiple materials on its faces, that case is not yet supported (truncating to first submaterial).", node->GetName());
					
					// switch to submaterial
					mtl = mtl->GetSubMtl(matId);
				}

				// get shader from material if supplied
				char *materialname = GetChar(mtl->GetName());
				if (g_mesh_materialasshader && (strstr(materialname, "/") != NULL || strstr(materialname, "\\") != NULL))
					shadername = GetChar(mtl->GetName());
				else
				{
					// get texture
					tex = mtl->GetSubTexmap(ID_DI);
					if (tex)
					{
						if (tex->ClassID() == Class_ID(BMTEX_CLASS_ID, 0x00))
						{
							shadername = GetChar(((BitmapTex *)tex)->GetMapName());
							if (shadername == NULL || !shadername[0])
								ExportWarning("Object '%s' material '%s' has no bitmap.", tex->GetName(), node->GetName());
						}
						else
						{
							tex = NULL;
							ExportWarning("Object '%s' has material with wrong texture type (only Bitmap are supported).", node->GetName());
						}
					}
					else
						ExportWarning("Object '%s' has material but no texture.", node->GetName());
				}
			}
			else
				ExportWarning("Object '%s' has no material.", node->GetName());
		}

		long pos_meshstart = ftell(file);

		// surface object
		ExportState("Writing mesh '%s' header", meshname);
		putChars("IDP3", 4, file);
		putChars(meshname, 64, file);
		put32(0, file); // flags
		put32(g_total_frames, file);                          // framecount
		put32(1, file);                                       // skincount
		long pos_vertexnum = ftell(file); put32(0, file);     // vertexcount
		put32(mesh.getNumFaces(), file);                      // trianglecount
		long pos_trianglestart = ftell(file); put32(0, file); // start triangles
		put32(108, file);                                     // header size
		long pos_texvecstart = ftell(file); put32(0, file);   // texvecstart
		long pos_vertexstart = ftell(file); put32(16, file);  // vertexstart
		long pos_meshsize = ftell(file); put32(32, file);	  // meshsize

		// write out a single 'skin'
		ExportState("Writing mesh %s texture", meshname);
		if (shadow_or_collision)
			putChars(meshname, 64, file);
		else if (shadername) 
			putMaterial(shadername, mtl, tex, file);
		else
			putChars("noshader", 64, file);
		put32(0, file); // flags

		// build geometry
		ExportState("Building vertexes/triangles");
		std::vector<ExportVertex>vVertexes;
		std::vector<ExportTriangle>vTriangles;
		vVertexes.resize(mesh.getNumVerts());
		int vExtraVerts = mesh.getNumVerts();
		for (i = 0; i < mesh.getNumVerts(); i++)
		{
			vVertexes[i].vert = i;
			vVertexes[i].normalfilled = false;
			// todo: check for coincident verts
		}
		int vNumExtraVerts = 0;

		// check normals
		if (!mesh.normalsBuilt && !shadow_or_collision)
			ExportWarning("Object '%s' does not have normals contructed.", node->GetName());

		// get info for triangles
		const float normal_epsilon = 0.01f;
		vTriangles.resize(mesh.getNumFaces());
		for (i = 0; i < mesh.getNumFaces(); i++)
		{
			DWORD smGroup = mesh.faces[i].getSmGroup();
			ExportState("Mesh %s: checking normals for face %i of %i", meshname, i, mesh.getNumFaces());
			for (j = 0; j < 3; j++)
			{
				int vert = mesh.faces[i].getVert(j);
				vTriangles[i].e[j] = vert;
				// find a right normal for this vertex and save its 'address'
				int vni;
				Point3 vn;
				if (!mesh.normalsBuilt || shadow_or_collision)
				{
					vn.Set(0, 0, 0);
					vni = 0;
				}
				else
				{
					int numNormals;
					RVertex *rv = mesh.getRVertPtr(vert);
					if (meshNormalSpec)
					{  
						ExportState("face %i vert %i have normal specified", i, j);
						// mesh have explicit normals (i.e. Edit Normals modifier)
						vn = meshNormalSpec->GetNormal(i, j);
						vni = meshNormalSpec->GetNormalIndex(i, j);
					}
					else if (rv && rv->rFlags & SPECIFIED_NORMAL)
					{
						ExportState("face %i vert %i have SPECIFIED_NORMAL flag", i, j);
						// SPECIFIED_NORMAL flag
						vn = rv->rn.getNormal();
						vni = 0;
					}
					else if (rv && (numNormals = rv->rFlags & NORCT_MASK) && smGroup)
					{
						// If there is only one vertex is found in the rn member.
						if (numNormals == 1)
						{
							ExportState("face %i vert %i have solid smooth group", i, j);
							vn = rv->rn.getNormal();
							vni = 0;
							
						}
						else
						{
							ExportState("face %i vert %i have mixed smoothing groups", i, j);
							// If two or more vertices are there you need to step through them
							// and find the vertex with the same smoothing group as the current face.
							// You will find multiple normals in the ern member.
							for (int k = 0; k < numNormals; k++)
							{
								if (rv->ern[k].getSmGroup() & smGroup)
								{
									vn = rv->ern[k].getNormal();
									vni = 1 + k;
								}
							}
						}
					}
					else
					{
						ExportState("face %i vert %i flat shaded", i, j);
						// Get the normal from the Face if no smoothing groups are there
						vn = mesh.getFaceNormal(i);
						vni = 0 - (i + 1);
					}
				}

				// subdivide to get all normals right
				if (!vVertexes[vert].normalfilled)
				{
					vVertexes[vert].normal = vn;
					vVertexes[vert].normalindex = vni;
					vVertexes[vert].normalfilled = true;
				}
				else if ((vVertexes[vert].normal - vn).Length() >= normal_epsilon)
				{
					// current vertex not matching normal - it was already filled by different smoothing group
					// find a vert in extra verts in case it was already created
					bool vert_found = false;
					for (int ev = vExtraVerts; ev < (int)vVertexes.size(); ev++)
					{
						if (vVertexes[ev].vert == vert && (vVertexes[ev].normal - vn).Length() < normal_epsilon)
						{
							vert_found = true;
							vTriangles[i].e[j] = ev;
							break;
						}
					}
					// we havent found a vertex, create new
					if (!vert_found)
					{
						ExportVertex NewVert;
						NewVert.vert = vVertexes[vert].vert;
						NewVert.normal = vn;
						NewVert.normalindex = vni;
						NewVert.normalfilled = true;
						vTriangles[i].e[j] = (int)vVertexes.size();
						vVertexes.push_back(NewVert);
						vNumExtraVerts++;
					}
				}
			}
		}
		int vNumExtraVertsForSmoothGroups = vNumExtraVerts;

		// generate UV map
		// VorteX: use direct maps reading since getNumTVerts()/getTVert is deprecated
		//  max sets two default mesh maps: 0 - vertex color, 1 : UVW, 2 & up are custom ones
		ExportState("Building UV map");
		std::vector<ExportUV>vUVMap;
		vUVMap.resize(vVertexes.size());
		int meshMap = 1;
		if (!mesh.mapSupport(meshMap) || !mesh.getNumMapVerts(meshMap) || shadow_or_collision)
		{
			for (i = 0; i < mesh.getNumVerts(); i++)
			{
				vUVMap[i].u = 0.5;
				vUVMap[i].v = 0.5;
			}
			if (!shadow_or_collision)
				ExportWarning("No UV mapping was found on object '%s'.", node->GetName());
		}
		else
		{
			UVVert *meshUV = mesh.mapVerts(meshMap);
			for (i = 0; i < (int)vTriangles.size(); i++)
			{
				ExportState("Mesh %s: converting tvert for face %i of %i", meshname, i, (int)vTriangles.size());
				// for 3 face vertexes
				for (j = 0; j < 3; j++)
				{
					int vert = vTriangles[i].e[j];
					int tv = mesh.tvFace[i].t[j];
					UVVert &UV = meshUV[tv];

					if (!vUVMap[vert].filled)
					{
						// fill uvMap vertex
						vUVMap[vert].u = UV.x;
						vUVMap[vert].v = UV.y;
						vUVMap[vert].filled = true;
						vUVMap[vert].tvert = tv;
					}
					else if (tv != vUVMap[vert].tvert)
					{
						// uvMap slot for this vertex has been filled
						// we should arrange triangle to other vertex, which not filled and having same shading and uv
						// check if any of the extra vertices can fit
						bool vert_found = false;
						for (int ev = vExtraVerts; ev < (int)vVertexes.size(); ev++)
						{
							if (vVertexes[ev].vert == vert && vUVMap[vert].u == UV.x &&vUVMap[vert].v == UV.y  && (vVertexes[ev].normal - vVertexes[vert].normal).Length() < normal_epsilon)
							{
								vert_found = true;
								vTriangles[i].e[j] = vVertexes[ev].vert;
								break;
							}
						}
						if (!vert_found)
						{
							// create new vert
							ExportVertex NewVert;
							NewVert.vert = vVertexes[vert].vert;
							NewVert.normal = vVertexes[vert].normal;
							NewVert.normalindex = vVertexes[vert].normalindex;
							NewVert.normalfilled = vVertexes[vert].normalfilled;
							vTriangles[i].e[j] = (int)vVertexes.size();
							vVertexes.push_back(NewVert);
							vNumExtraVerts++;
							// create new TVert
							ExportUV newUV;
							newUV.filled = true;
							newUV.u = UV.x;
							newUV.v = UV.y;
							newUV.tvert = tv;
							vUVMap.push_back(newUV);
						}
					}
				}
			}
		}
		int vNumExtraVertsForUV = (vNumExtraVerts - vNumExtraVertsForSmoothGroups);

		// print some debug stats
		ExportDebug("    mesh %s: %i vertexes +%i %s +%i UV, %i triangles", meshname, ((int)vVertexes.size() - vNumExtraVerts), vNumExtraVertsForSmoothGroups, meshNormalSpec ? "EditNormals" : "SmoothGroups", vNumExtraVertsForUV, (int)vTriangles.size());

		// fill in triangle start
		pos_current = ftell(file);
		fseek(file, pos_trianglestart, SEEK_SET);
		put32(pos_current - pos_meshstart, file);
		fseek(file, pos_current, SEEK_SET);

		// detect if object have negative scale (mirrored)
		// in this canse we should rearrange triangles counterclockwise
		// so stuff will not be inverted
		ExportState("Mesh %s: writing %i triangles", meshname, (int)vTriangles.size());
		if (DotProd(CrossProd(tm.GetRow(0), tm.GetRow(1)), tm.GetRow(2)) < 0.0)
		{
			ExportWarning("Object '%s' is mirrored (having negative scale on it's transformation)", node->GetName());
			for (i = 0; i < (int)vTriangles.size(); i++)
			{
				put32(vTriangles[i].b, file);	// vertex index
				put32(vTriangles[i].c, file);	// for 3 vertices
				put32(vTriangles[i].a, file);	// of triangle
			}
		}
		else
		{
			for (i = 0; i < (int)vTriangles.size(); i++)
			{
				put32(vTriangles[i].a, file);	// vertex index
				put32(vTriangles[i].c, file);	// for 3 vertices
				put32(vTriangles[i].b, file);	// of triangle
			}
		}

		// fill in texvecstart
		// write out UV mapping coords.
		ExportState("Mesh %s: writing %i UV vertexes", meshname, (int)vUVMap.size());
		pos_current = ftell(file);
		fseek(file, pos_texvecstart, SEEK_SET);
		put32(pos_current - pos_meshstart, file);
		fseek(file, pos_current, SEEK_SET);
		for (i = 0; i < (int)vUVMap.size(); i++)
		{
			putFloat(vUVMap[i].u, file); // texture coord u,v
			putFloat(1.0f - vUVMap[i].v, file);	// for vertex
		}
		vUVMap.clear();

		// fill in vertexstart
		pos_current = ftell(file);
		fseek(file, pos_vertexstart, SEEK_SET);
		put32(pos_current - pos_meshstart, file);
		fseek(file, pos_current, SEEK_SET);

		// fill in vertexnum
		pos_current = ftell(file);
		fseek(file, pos_vertexnum, SEEK_SET);
		put32((int)vVertexes.size(), file);
		fseek(file, pos_current, SEEK_SET);

		// write out for each frame the position of each vertex
		long current_frame = 0;
		ExportState("Mesh %s: writing %i frames", meshname, g_total_frames);
		for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++)
		{
			for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++)
			{
				bool _needsDel;

				// get triobject for current frame
				SceneEnumProc current_scene(ei->theScene, i * g_ticks_per_frame, gi);
				current_time = current_scene.time;
				INode *_node = current_scene[mesh_i->i]->node;
				TriObject *_tri	= GetTriObjectFromNode(_node, current_time, _needsDel);
				if (!_tri)
					continue;

				// get mesh, compute normals
				Mesh &_mesh	= _tri->GetMesh();
				MeshNormalSpec *_meshNormalSpec = _mesh.GetSpecifiedNormals();
				if (_meshNormalSpec)
				{
					if (!_meshNormalSpec->GetNumFaces())
						_meshNormalSpec = NULL;
					else
					{
						_meshNormalSpec->SetParent(&_mesh);
						_meshNormalSpec->CheckNormals();
					}
				}
				_mesh.checkNormals(TRUE);

				// get transformations for current frame
				Matrix3 _tm	= _node->GetObjTMAfterWSM(current_time);

				ExportState("Mesh %s: writing frame %i of %i", meshname, current_frame, g_total_frames);

				Point3 BoxMin(0, 0, 0);
				Point3 BoxMax(0, 0, 0);
				for (j = 0; j < (int)vVertexes.size(); j++) // number of vertices
				{
					ExportState("Mesh %s: transform vertex %i of %i", meshname, j, (int)vVertexes.size());

					int vert = vVertexes[j].vert;
					Point3 &v = _tm.PointTransform(_mesh.getVert(vert));
					
					// populate bbox data
					if (!shadow_or_collision)
					{
						BoxMin.x = min(BoxMin.x, v.x);
						BoxMin.y = min(BoxMin.y, v.y);
						BoxMin.z = min(BoxMin.z, v.z);
						BoxMax.x = max(BoxMax.x, v.x);
						BoxMax.y = max(BoxMax.y, v.y);
						BoxMax.z = max(BoxMax.z, v.z);
					}

					// write vertex
					double f;
					f = v.x * 64.0f; if (f < -32768.0) f = -32768.0; if (f > 32767.0) f = 32767.0; put16((short)f, file);
					f = v.y * 64.0f; if (f < -32768.0) f = -32768.0; if (f > 32767.0) f = 32767.0; put16((short)f, file);
					f = v.z * 64.0f; if (f < -32768.0) f = -32768.0; if (f > 32767.0) f = 32767.0; put16((short)f, file);

					// get normal
					ExportState("Mesh %s: transform vertex normal %i of %i", meshname, j, (int)vVertexes.size());
					Point3 n;
					if (_meshNormalSpec) // mesh have explicit normals (i.e. Edit Normals modifier)
						n = _meshNormalSpec->Normal(vVertexes[j].normalindex);
					else if (!vVertexes[j].normalfilled || !_mesh.normalsBuilt)
						n = _mesh.getNormal(vert);
					else
					{
						RVertex *rv = _mesh.getRVertPtr(vert);
						if (vVertexes[j].normalindex < 0)
							n = _mesh.getFaceNormal((0 - vVertexes[j].normalindex) - 1);
						else if (vVertexes[j].normalindex == 0)
							n = rv->rn.getNormal();
						else 
							n = rv->ern[vVertexes[j].normalindex - 1].getNormal();
					}

					// transform normal
					Point3 &nt = _tm.VectorTransform(n).Normalize();

					// encode a normal vector into a 16-bit latitude-longitude value
					double lng = acos(nt.z) * 255 / (2 * pi);
					double lat = atan2(nt.y, nt.x) * 255 / (2 * pi);
					put16((((int)lat & 0xFF) << 8) | ((int)lng & 0xFF), file);
				}

				// blend the pivot positions for tag_pivot using mesh's volumes for blending power
				if (g_tag_for_pivot && !shadow_or_collision)
				{
					ExportState("Mesh %s: writing tag_pivot", meshname);

					Point3 Size = BoxMax - BoxMin;
					double BoxVolume = pow(Size.x * Size.y * Size.z, 0.333f);

					// blend matrices
					float blend = (float)(BoxVolume / (BoxVolume + tag_pivot_volume[current_frame]));
					float iblend = 1 - blend;
					tag_pivot_volume[current_frame]   = tag_pivot_volume[current_frame] + BoxVolume;
					Point3 row = _tm.GetRow(3) - _node->GetObjOffsetPos();
					tag_pivot_origin[current_frame].x = tag_pivot_origin[current_frame].x * iblend + row.x * blend;
					tag_pivot_origin[current_frame].y = tag_pivot_origin[current_frame].y * iblend + row.y * blend;
					tag_pivot_origin[current_frame].z = tag_pivot_origin[current_frame].z * iblend + row.z * blend;
				}

				// populate bbox data for frames
				lFrameBBoxMin[current_frame].x = min(lFrameBBoxMin[current_frame].x, BoxMin.x);
				lFrameBBoxMin[current_frame].y = min(lFrameBBoxMin[current_frame].y, BoxMin.y);
				lFrameBBoxMin[current_frame].z = min(lFrameBBoxMin[current_frame].z, BoxMin.z);
				lFrameBBoxMax[current_frame].x = max(lFrameBBoxMax[current_frame].x, BoxMax.x);
				lFrameBBoxMax[current_frame].y = max(lFrameBBoxMax[current_frame].y, BoxMax.y);
				lFrameBBoxMax[current_frame].z = max(lFrameBBoxMax[current_frame].z, BoxMax.z);

				// delete the working object, if necessary.
				if (_needsDel)
					delete _tri;
			}
		}

		// delete if necessary
		if (needsDel)
			delete tri;

		// fill in meshsize
		pos_current = ftell(file);
		fseek(file, pos_meshsize, SEEK_SET);
		put32(pos_current - pos_meshstart, file);
		fseek(file, pos_current, SEEK_SET);  

		// reset back to first frame
		SceneEnumProc scratch(ei->theScene, start_time, gi);
		totalTris += (long)vTriangles.size();
		totalVerts += (long)vVertexes.size();
		vTriangles.clear();
		vVertexes.clear();
	}

	// write tag_pivot
	ExportState("Writing tag_pivot positions");
	if (g_tag_for_pivot)
	{
		pos_current = ftell(file);
		long current_frame = 0;
		for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++)
		{
			for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++)
			{
				fseek(file, pos_tags + totalTags*112*current_frame + (int)lTags.size()*112 + 64, SEEK_SET);
				// origin
				putFloat(tag_pivot_origin[current_frame].x, file);
				putFloat(tag_pivot_origin[current_frame].y, file);
				putFloat(tag_pivot_origin[current_frame].z, file);
			}
		}
		fseek(file, pos_current, SEEK_SET);
	}
	tag_pivot_volume.clear();
	tag_pivot_origin.clear();

	// write frame data
	ExportState("Writing culling info");
	long current_frame = 0;
	pos_current = ftell(file);
	for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++)
	{
		for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++)
		{
			fseek(file, pos_framestart + current_frame*56, SEEK_SET);
			putFloat(lFrameBBoxMin[current_frame].x, file);	// bbox min vector
			putFloat(lFrameBBoxMin[current_frame].y, file);
			putFloat(lFrameBBoxMin[current_frame].z, file);	
			putFloat(lFrameBBoxMax[current_frame].x, file); // bbox max vector
			putFloat(lFrameBBoxMax[current_frame].y, file);
			putFloat(lFrameBBoxMax[current_frame].z, file);
			putFloat(0, file); // local origin (usually 0 0 0)
			putFloat(0, file);
			putFloat(0, file);
			putFloat(max(lFrameBBoxMin[current_frame].Length(), lFrameBBoxMax[current_frame].Length()) , file); // radius of bounding sphere
		}
	}
	fseek(file, pos_current, SEEK_SET);
	lFrameBBoxMin.clear();
	lFrameBBoxMax.clear();

	// fill in filesize
	pos_current = ftell(file);
	fseek(file, pos_filesize, SEEK_SET);
	put32(pos_current, file);
	fseek(file, pos_current, SEEK_SET);

	fclose(file);

	ExportDebug("    total: %i vertexes, %i triangles", totalVerts, totalTris);

	return TRUE;
}
Exemplo n.º 13
0
num_put<Pt::Char, ostreambuf_iterator<Pt::Char> >::iter_type
num_put<Pt::Char, ostreambuf_iterator<Pt::Char> >::do_put(iter_type s, ios_base& f, char_type fill, long double val) const
{
    putFloat(s, val, f.flags(), f.width(0), fill, f.precision());
    return s;
}
Exemplo n.º 14
0
// gmask is the composite font slot mask
// baseindex is to be added to the character (code point) index.
jboolean storeGVData(JNIEnv* env,
                     jobject gvdata, jint slot,
                     jint baseIndex, int offset, jobject startPt,
                     int charCount, int glyphCount, hb_glyph_info_t *glyphInfo,
                     hb_glyph_position_t *glyphPos, float devScale) {

    int i, needToGrow;
    float x=0, y=0;
    float startX, startY, advX, advY;
    float scale = 1.0f / HBFloatToFixedScale / devScale;
    unsigned int* glyphs;
    float* positions;
    int initialCount, glyphArrayLen, posArrayLen, maxGlyphs, storeadv, maxStore;
    unsigned int* indices;
    jarray glyphArray, posArray, inxArray;

    if (!init_JNI_IDs(env)) {
        return JNI_FALSE;
    }

    initialCount = (*env)->GetIntField(env, gvdata, gvdCountFID);
    do {
        glyphArray = (jarray)(*env)->GetObjectField(env, gvdata, gvdGlyphsFID);
        posArray = (jarray)(*env)->GetObjectField(env, gvdata, gvdPositionsFID);
        inxArray = (jarray)(*env)->GetObjectField(env, gvdata, gvdIndicesFID);
        if (glyphArray == NULL || posArray == NULL || inxArray == NULL) {
            JNU_ThrowArrayIndexOutOfBoundsException(env, "");
            return JNI_FALSE;
        }
        glyphArrayLen = (*env)->GetArrayLength(env, glyphArray);
        posArrayLen = (*env)->GetArrayLength(env, posArray);
        maxGlyphs = (charCount > glyphCount) ? charCount : glyphCount;
        maxStore = maxGlyphs + initialCount;
        needToGrow = (maxStore > glyphArrayLen) ||
                     (maxStore * 2 + 2 >  posArrayLen);
        if (needToGrow) {
            (*env)->CallVoidMethod(env, gvdata, gvdGrowMID);
            if ((*env)->ExceptionCheck(env)) {
                return JNI_FALSE;
            }
        }
    } while (needToGrow);

    getFloat(env, startPt, &startX, &startY);

    glyphs =
        (unsigned int*)(*env)->GetPrimitiveArrayCritical(env, glyphArray, NULL);
    if (glyphs == NULL) {
        return JNI_FALSE;
    }
    positions = (jfloat*)(*env)->GetPrimitiveArrayCritical(env, posArray, NULL);
    if (positions == NULL) {
        (*env)->ReleasePrimitiveArrayCritical(env, glyphArray, glyphs, 0);
        return JNI_FALSE;
    }
    indices =
        (unsigned int*)(*env)->GetPrimitiveArrayCritical(env, inxArray, NULL);
    if (indices == NULL) {
        (*env)->ReleasePrimitiveArrayCritical(env, glyphArray, glyphs, 0);
        (*env)->ReleasePrimitiveArrayCritical(env, posArray, positions, 0);
        return JNI_FALSE;
    }

    for (i = 0; i < glyphCount; i++) {
        int storei = i + initialCount;
        int cluster = glyphInfo[i].cluster - offset;
        indices[storei] = baseIndex + cluster;
        glyphs[storei] = (unsigned int)(glyphInfo[i].codepoint | slot);
        positions[storei*2] = startX + x + glyphPos[i].x_offset * scale;
        positions[(storei*2)+1] = startY + y - glyphPos[i].y_offset * scale;
        x += glyphPos[i].x_advance * scale;
        y -= glyphPos[i].y_advance * scale;
        storei++;
    }
    storeadv = initialCount + glyphCount;
    // The final slot in the positions array is important
    // because when the GlyphVector is created from this
    // data it determines the overall advance of the glyphvector
    // and this is used in positioning the next glyphvector
    // during rendering where text is broken into runs.
    // We also need to report it back into "pt", so layout can
    // pass it back down for that next run in this code.
    advX = startX + x;
    advY = startY + y;
    positions[(storeadv*2)] = advX;
    positions[(storeadv*2)+1] = advY;
    (*env)->ReleasePrimitiveArrayCritical(env, glyphArray, glyphs, 0);
    (*env)->ReleasePrimitiveArrayCritical(env, posArray, positions, 0);
    (*env)->ReleasePrimitiveArrayCritical(env, inxArray, indices, 0);
    putFloat(env, startPt, advX, advY);
    (*env)->SetIntField(env, gvdata, gvdCountFID, storeadv);

    return JNI_TRUE;
}
Exemplo n.º 15
0
bool savePeople (FILE * fp) {
	onScreenPerson * me = allPeople;
	int countPeople = 0, a;

	putSigned (scaleHorizon, fp);
	putSigned (scaleDivide, fp);

	while (me) {
		countPeople ++;
		me = me -> next;
	}

	put2bytes (countPeople, fp);

	me = allPeople;
	for (a = 0; a < countPeople; a ++) {

		putFloat (me -> x, fp);
		putFloat (me -> y, fp);

		saveCostume (me -> myPersona, fp);
		saveAnim (me -> myAnim, fp);
		fputc (me -> myAnim == me -> lastUsedAnim, fp);

		putFloat (me -> scale, fp);

		put2bytes (me -> extra, fp);
		put2bytes (me -> height, fp);
		put2bytes (me -> walkToX, fp);
		put2bytes (me -> walkToY, fp);
		put2bytes (me -> thisStepX, fp);
		put2bytes (me -> thisStepY, fp);
		put2bytes (me -> frameNum, fp);
		put2bytes (me -> frameTick, fp);
		put2bytes (me -> walkSpeed, fp);
		put2bytes (me -> spinSpeed, fp);
		putSigned (me -> floaty, fp);
		fputc (me -> show, fp);
		fputc (me -> walking, fp);
		fputc (me -> spinning, fp);
		if (me -> continueAfterWalking) {
			fputc (1, fp);
			saveFunction (me -> continueAfterWalking, fp);
		} else {
			fputc (0, fp);
		}
		put2bytes (me -> direction, fp);
		put2bytes (me -> angle, fp);
		put2bytes (me -> angleOffset, fp);
		put2bytes (me -> wantAngle, fp);
		putSigned (me -> directionWhenDoneWalking, fp);
		putSigned (me -> inPoly, fp);
		putSigned (me -> walkToPoly, fp);

		fputc (me -> r, fp);
		fputc (me -> g, fp);
		fputc (me -> b, fp);
		fputc (me -> colourmix, fp);
		fputc (me -> transparency, fp);
		
		saveObjectRef (me -> thisType, fp);

		me = me -> next;
	}
	return true;
}
Exemplo n.º 16
0
void convert(String& str, float value)
{
    str.clear();
    putFloat(std::back_inserter(str), value);
}
Exemplo n.º 17
0
void convert(std::string& str, long double value)
{
    str.clear();
    putFloat(std::back_inserter(str), value);
}
Exemplo n.º 18
0
sp<ByteBuffer> ByteBuffer::putFloat(float value) {
    putFloat(mPosition, value);
    mPosition += sizeof(value);
    return this;
}