Exemplo n.º 1
0
int main(void) {
	nvmType_t type=0;
	nvmErr_t err;
	volatile uint8_t c;
	volatile uint32_t i;
	volatile uint32_t buf[4];
	volatile uint32_t len=0;
	volatile uint32_t state = SCAN_X;
	volatile uint32_t addr,data;


	uart_init(UART1, 115200);
	disable_irq(UART1);

	vreg_init();

	dbg_putstr("Detecting internal nvm\n\r");

	err = nvm_detect(gNvmInternalInterface_c, &type);
		
	dbg_putstr("nvm_detect returned: 0x");
	dbg_put_hex(err);
	dbg_putstr(" type is: 0x");
	dbg_put_hex32(type);
	dbg_putstr("\n\r");
	
	err = nvm_read(gNvmInternalInterface_c, type, (uint8_t *)nvm_base, NVM_BASE, 0x100);
	dbg_putstr("nvm_read returned: 0x");
	dbg_put_hex(err);
	dbg_putstr("\n\r");

	/* erase the flash */
	nvm_setsvar(0);
	err = nvm_erase(gNvmInternalInterface_c, type, 0x40000000);

	dbg_putstr("nvm_erase returned: 0x");
	dbg_put_hex(err);
	dbg_putstr("\n\r");

	dbg_putstr(" type is: 0x");
	dbg_put_hex32(type);
	dbg_putstr("\n\r");

	err = nvm_write(gNvmInternalInterface_c, type, (uint8_t *)nvm_base, NVM_BASE, 0x100);
	dbg_putstr("nvm_write returned: 0x");
	dbg_put_hex(err);
	dbg_putstr("\n\r");

	/* say we are ready */
	len = 0;
	putstr("ready");
	flushrx();

	/* read the length */
	for(i=0; i<4; i++) {
		c = uart1_getc();
		/* bail if the first byte of the length is zero */
		len += (c<<(i*8));
	}

	dbg_putstr("len: ");
	dbg_put_hex32(len);
	dbg_putstr("\n\r");
	
	dbg_putstr(" type is: 0x");
	dbg_put_hex32(type);
	dbg_putstr("\n\r");

	putstr("flasher done\n\r");

	state = SCAN_X; addr=0;
	while((c=getc())) {
		if(state == SCAN_X) {
			/* read until we see an 'x' */
			if(c==0) { break; }
			if(c!='x'){ continue; } 	
			/* go to read_chars once we have an 'x' */
			state = READ_CHARS;
			i = 0; 
		}
		if(state == READ_CHARS) {
			/* read all the chars up to a ',' */
			((uint8_t *)buf)[i++] = c;
			/* after reading a ',' */
			/* goto PROCESS state */
			if((c == ',') || (c == 0)) { state = PROCESS; }				
		}
		if(state == PROCESS) {
			if(addr==0) {
				/*interpret the string as the starting address */
				addr = to_u32(buf);				
			} else {
				/* string is data to write */
				data = to_u32(buf);
				putstr("writing addr ");
				put_hex32(NVM_BASE+addr);
				putstr(" data ");
				put_hex32(data);
				err = nvm_write(gNvmInternalInterface_c, type, (uint8_t *)&data, NVM_BASE+addr, 4);
				addr += 4;
				putstr(" err ");
				put_hex32(err);
				putstr("\n\r");
			}
			/* look for the next 'x' */
			state=SCAN_X;
		}
	}
        putstr("process flasher done\n\r");

	while(1) {continue;};
}
Exemplo n.º 2
0
void main(void) {

	uart_init(UART1, 115200);

	*mem32(0x00401ffc) = 0x01234567;
	*mem32(0x00407ffc) = 0xdeadbeef;
	*mem32(0x0040fffc) = 0xface00ff;
	*mem32(0x00410000) = 0xabcd0123;



	putstr("sleep test\n\r");
	putstr("0x00401ffc: ");
	put_hex32(*mem32(0x00401ffc));
	putstr("\r\n");
	putstr("0x00407ffc: ");
	put_hex32(*mem32(0x00407ffc));
	putstr("\r\n");
	putstr("0x0040fffc: ");
	put_hex32(*mem32(0x0040fffc));
	putstr("\r\n");
	putstr("0x00410000: ");
	put_hex32(*mem32(0x00410000));
	putstr("\r\n");


GPIO->FUNC_SEL.ADC3 = 1;
GPIO->PAD_DIR.ADC3 = 0;
GPIO->PAD_KEEP.ADC3 = 0;
GPIO->PAD_PU_EN.ADC3 = 0;

adc_init();
ADC->COMP_3=	0x38ff;	//use channel 3, compare on 0ff
ADC->SEQ_1 =	0x8;	//only channel 3 is enabled
ADC->CONTROL &= ~0xe000;
	/* radio must be OFF before sleeping */
	/* otherwise MCU will not wake up properly */
	/* this is undocumented behavior */
//	radio_off();

#if USE_32KHZ
	/* turn on the 32kHz crystal */
	putstr("enabling 32kHz crystal\n\r");
	/* you have to hold it's hand with this on */
	/* once you start the 32xHz crystal it can only be stopped with a reset (hard or soft) */
	/* first, disable the ring osc */
	clear_bit(*CRM_RINGOSC_CNTL,0);
	/* enable the 32kHZ crystal */
	set_bit(*CRM_XTAL32_CNTL,0);

	/* set the XTAL32_EXISTS bit */
	/* the datasheet says to do this after you've check that RTC_COUNT is changing */
	/* the datasheet is not correct */
	set_bit(*CRM_SYS_CNTL,5);
	{
		static volatile uint32_t old;
		old = *CRM_RTC_COUNT;
		putstr("waiting for xtal\n\r");
		while(*CRM_RTC_COUNT == old) { 
			continue; 
		}
		/* RTC has started up */

		set_bit(*CRM_SYS_CNTL,5);
		putstr("32kHZ xtal started\n\r");

	}
#endif	
		

	/* go to sleep */
	*CRM_SLEEP_CNTL = 0x70;
//	*CRM_WU_CNTL = 0; /* don't wake up */
	*CRM_WU_CNTL = 0xb; /* enable wakeup from wakeup timer, rtc for sampling, and auto adc */
//	*CRM_WU_TIMEOUT = 1875000; /* wake 10 sec later if doze */
#if USE_32KHZ
	*CRM_WU_TIMEOUT = 327680*2;
#else
	*CRM_WU_TIMEOUT =	200000; /* wake 10 sec later if hibernate ring osc */
	*CRM_RTC_TIMEOUT=	200; //sample 10 times a second
#endif

enable_irq(ADC);
	/* hobby board: 2kHz = 11uA; 32kHz = 11uA */
//	*CRM_SLEEP_CNTL = 1; /* hibernate, RAM page 0 only, don't retain state, don't power GPIO */ /* approx. 2kHz = 2.0uA */
	/* hobby board: 2kHz = 18uA; 32kHz = 19uA */
//	*CRM_SLEEP_CNTL = 0x41; /* hibernate, RAM page 0 only, retain state, don't power GPIO */ /* approx. 2kHz = 10.0uA */
	/* hobby board: 2kHz = 20uA; 32kHz = 21uA */
//	*CRM_SLEEP_CNTL = 0x51; /* hibernate, RAM page 0&1 only, retain state, don't power GPIO */ /* approx. 2kHz = 11.7uA */
	/* hobby board: 2kHz = 22uA; 32kHz = 22.5uA */
//	*CRM_SLEEP_CNTL = 0x61; /* hibernate, RAM page 0,1,2 only, retain state, don't power GPIO */ /* approx. 2kHz = 13.9uA */
	/* hobby board: 2kHz = 24uA; 32kHz = 25uA */
	*CRM_SLEEP_CNTL = 0x71; /* hibernate, all RAM pages, retain state, don't power GPIO */ /* approx. 2kHz = 16.1uA */
//	*CRM_SLEEP_CNTL = 0xf1; /* hibernate, all RAM pages, retain state,       power GPIO */ /* consumption depends on GPIO hookup */

//	*CRM_SLEEP_CNTL = 2; /* doze     , RAM page 0 only, don't retain state, don't power GPIO */ /* approx. 69.2 uA */
//	*CRM_SLEEP_CNTL = 0x42; /* doze     , RAM page 0 only, retain state, don't power GPIO */ /* approx. 77.3uA */
//	*CRM_SLEEP_CNTL = 0x52; /* doze     , RAM page 0&1 only, retain state, don't power GPIO */ /* approx. 78.9uA */
//	*CRM_SLEEP_CNTL = 0x62; /* doze     , RAM page 0,1,2 only, retain state, don't power GPIO */ /* approx. 81.2uA */
//	*CRM_SLEEP_CNTL = 0x72; /* doze     , all RAM pages, retain state, don't power GPIO */ /* approx. 83.4uA - possibly with periodic refresh*/
//	*CRM_SLEEP_CNTL = 0xf2; /* doze     , all RAM pages, retain state,       power GPIO */ /* consumption depends on GPIO hookup */


	/* wait for the sleep cycle to complete */
	while((*CRM_STATUS & 0x1) == 0) { continue; }
	/* write 1 to sleep_sync --- this clears the bit (it's a r1wc bit) and powers down */
	*CRM_STATUS = 1; 
	
	/* asleep */

	/* wait for the awake cycle to complete */
	while((*CRM_STATUS & 0x1) == 0) { continue; }
	/* write 1 to sleep_sync --- this clears the bit (it's a r1wc bit) and finishes wakeup */
	*CRM_STATUS = 1; 

	putstr("\n\r\n\r\n\r");
	putstr("0x00401ffc: ");
	put_hex32(*mem32(0x00401ffc));
	putstr("\r\n");
	putstr("0x00407ffc: ");
	put_hex32(*mem32(0x00407ffc));
	putstr("\r\n");
	putstr("0x0040fffc: ");
	put_hex32(*mem32(0x0040fffc));
	putstr("\r\n");
	putstr("0x00410000: ");
	put_hex32(*mem32(0x00410000));
	putstr("\r\n");

	*GPIO_PAD_DIR0 = LED_RED;
#define DELAY 400000

//uint32_t read;
	volatile uint32_t i;
	while(1) {
		*GPIO_DATA0 = LED_RED;
		
		for(i=0; i<DELAY; i++) { continue; }

		*GPIO_DATA0 = 0;

		for(i=0; i<DELAY; i++) { continue; }
		if(rupt==1)
		{
			putstr("adc interrupt! \r\n");
			rupt=0;
		}
	};
}
Exemplo n.º 3
0
void main(void) {
	nvmType_t type=0;
	nvmErr_t err;
	volatile uint8_t c;
	volatile uint32_t i;
	volatile uint32_t buf[4];
	volatile uint32_t len=0;
	volatile uint32_t state = SCAN_X;
	volatile uint32_t addr,data;


	uart_init(INC, MOD, SAMP);
	disable_irq(UART1);

	vreg_init();

	dbg_putstr("Detecting internal nvm\n\r");

	err = nvm_detect(gNvmInternalInterface_c, &type);
		
	dbg_putstr("nvm_detect returned: 0x");
	dbg_put_hex(err);
	dbg_putstr(" type is: 0x");
	dbg_put_hex32(type);
	dbg_putstr("\n\r");
	
	/* erase the flash */
	err = nvm_erase(gNvmInternalInterface_c, type, 0x7fffffff); 

	dbg_putstr("nvm_erase returned: 0x");
	dbg_put_hex(err);
	dbg_putstr("\n\r");

	dbg_putstr(" type is: 0x");
	dbg_put_hex32(type);
	dbg_putstr("\n\r");

	/* say we are ready */
	len = 0;
	putstr("ready");
	flushrx();

	/* read the length */
	for(i=0; i<4; i++) {
		c = uart1_getc();
		/* bail if the first byte of the length is zero */
		len += (c<<(i*8));
	}

	dbg_putstr("len: ");
	dbg_put_hex32(len);
	dbg_putstr("\n\r");
	
	/* write the OKOK magic */

#if BOOT_OK
	((uint8_t *)buf)[0] = 'O'; ((uint8_t *)buf)[1] = 'K'; ((uint8_t *)buf)[2] = 'O'; ((uint8_t *)buf)[3] = 'K';	
#elif BOOT_SECURE
	((uint8_t *)buf)[0] = 'S'; ((uint8_t *)buf)[1] = 'E'; ((uint8_t *)buf)[2] = 'C'; ((uint8_t *)buf)[3] = 'U';	
#else
	((uint8_t *)buf)[0] = 'N'; ((uint8_t *)buf)[1] = 'O'; ((uint8_t *)buf)[2] = 'N'; ((uint8_t *)buf)[3] = 'O';
#endif

	dbg_putstr(" type is: 0x");
	dbg_put_hex32(type);
	dbg_putstr("\n\r");

	/* don't make a valid boot image if the received length is zero */
	if(len == 0) {
		((uint8_t *)buf)[0] = 'N'; 
		((uint8_t *)buf)[1] = 'O'; 
		((uint8_t *)buf)[2] = 'N'; 
		((uint8_t *)buf)[3] = 'O';
	}
	
	err = nvm_write(gNvmInternalInterface_c, type, (uint8_t *)buf, 0, 4);

	dbg_putstr("nvm_write returned: 0x");
	dbg_put_hex(err);
	dbg_putstr("\n\r");

	/* write the length */
	err = nvm_write(gNvmInternalInterface_c, type, (uint8_t *)&len, 4, 4);

	/* read a byte, write a byte */
	for(i=0; i<len; i++) {
		c = getc();	       
		err = nvm_write(gNvmInternalInterface_c, type, (uint8_t *)&c, 8+i, 1); 
	}

	putstr("flasher done\n\r");

	state = SCAN_X; addr=0;
	while((c=getc())) {
		if(state == SCAN_X) {
			/* read until we see an 'x' */
			if(c==0) { break; }
			if(c!='x'){ continue; } 	
			/* go to read_chars once we have an 'x' */
			state = READ_CHARS;
			i = 0; 
		}
		if(state == READ_CHARS) {
			/* read all the chars up to a ',' */
			((uint8_t *)buf)[i++] = c;
			/* after reading a ',' */
			/* goto PROCESS state */
			if((c == ',') || (c == 0)) { state = PROCESS; }				
		}
		if(state == PROCESS) {
			if(addr==0) {
				/*interpret the string as the starting address */
				addr = to_u32(buf);				
			} else {
				/* string is data to write */
				data = to_u32(buf);
				putstr("writing addr ");
				put_hex32(addr);
				putstr(" data ");
				put_hex32(data);
				putstr("\n\r");
				err = nvm_write(gNvmInternalInterface_c, 1, (uint8_t *)&data, addr, 4);
				addr += 4;
			}
			/* look for the next 'x' */
			state=SCAN_X;
		}
	}

	while(1) {continue;};
}