Exemplo n.º 1
0
/* $Procedure      ZZGFSSOB ( GF, state of sub-observer point ) */
/* Subroutine */ int zzgfssob_(char *method, integer *trgid, doublereal *et, 
	char *fixref, char *abcorr, integer *obsid, doublereal *radii, 
	doublereal *state, ftnlen method_len, ftnlen fixref_len, ftnlen 
	abcorr_len)
{
    /* Initialized data */

    static logical first = TRUE_;
    static integer prvobs = 0;
    static integer prvtrg = 0;
    static char svobs[36] = "                                    ";
    static char svtarg[36] = "                                    ";

    /* System generated locals */
    integer i__1;

    /* Builtin functions */
    integer s_rnge(char *, integer, char *, integer);

    /* Local variables */
    doublereal dalt[2];
    logical near__, geom;
    extern /* Subroutine */ int vhat_(doublereal *, doublereal *), vscl_(
	    doublereal *, doublereal *, doublereal *);
    extern doublereal vdot_(doublereal *, doublereal *);
    logical xmit;
    extern /* Subroutine */ int mxvg_(doublereal *, doublereal *, integer *, 
	    integer *, doublereal *);
    doublereal upos[3];
    extern /* Subroutine */ int zzstelab_(logical *, doublereal *, doublereal 
	    *, doublereal *, doublereal *, doublereal *), zzcorsxf_(logical *,
	     doublereal *, doublereal *, doublereal *);
    integer i__;
    extern /* Subroutine */ int zzprscor_(char *, logical *, ftnlen);
    doublereal t;
    extern /* Subroutine */ int vaddg_(doublereal *, doublereal *, integer *, 
	    doublereal *);
    doublereal scale;
    extern /* Subroutine */ int chkin_(char *, ftnlen), errch_(char *, char *,
	     ftnlen, ftnlen);
    doublereal savel[3];
    logical found;
    extern /* Subroutine */ int moved_(doublereal *, integer *, doublereal *),
	     vsubg_(doublereal *, doublereal *, integer *, doublereal *);
    doublereal stemp[6];
    extern logical eqstr_(char *, char *, ftnlen, ftnlen);
    doublereal xform[36]	/* was [6][6] */;
    logical uselt;
    extern /* Subroutine */ int bodc2s_(integer *, char *, ftnlen);
    doublereal ssbtg0[6];
    extern logical failed_(void);
    doublereal sa[3];
    extern /* Subroutine */ int cleard_(integer *, doublereal *);
    doublereal lt;
    integer frcode;
    extern doublereal clight_(void);
    extern logical return_(void);
    doublereal corxfi[36]	/* was [6][6] */, corxfm[36]	/* was [6][6] 
	    */, fxosta[6], fxpsta[6], fxpvel[3], fxtsta[6], obspnt[6], obssta[
	    12]	/* was [6][2] */, obstrg[6], acc[3], pntsta[6], raysta[6], 
	    sastat[6], spoint[3], srfvec[3], ssbobs[6], ssbtrg[6], trgepc;
    integer center, clssid, frclss;
    logical attblk[6], usestl;
    extern /* Subroutine */ int setmsg_(char *, ftnlen);
    logical fnd;
    extern /* Subroutine */ int sigerr_(char *, ftnlen), chkout_(char *, 
	    ftnlen), namfrm_(char *, integer *, ftnlen), frinfo_(integer *, 
	    integer *, integer *, integer *, logical *), errint_(char *, 
	    integer *, ftnlen), spkgeo_(integer *, doublereal *, char *, 
	    integer *, doublereal *, doublereal *, ftnlen), vminug_(
	    doublereal *, integer *, doublereal *), dnearp_(doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, logical *), surfpv_(doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, logical *)
	    , subpnt_(char *, char *, doublereal *, char *, char *, char *, 
	    doublereal *, doublereal *, doublereal *, ftnlen, ftnlen, ftnlen, 
	    ftnlen, ftnlen), spkssb_(integer *, doublereal *, char *, 
	    doublereal *, ftnlen);
    doublereal dlt;
    extern /* Subroutine */ int sxform_(char *, char *, doublereal *, 
	    doublereal *, ftnlen, ftnlen), qderiv_(integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *), invstm_(doublereal *, 
	    doublereal *);

/* $ Abstract */

/*     SPICE private routine intended solely for the support of SPICE */
/*     routines. Users should not call this routine directly due to the */
/*     volatile nature of this routine. */

/*     Return the state of a sub-observer point used to define */
/*     coordinates referenced in a GF search. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Required_Reading */

/*     GF */
/*     SPK */
/*     TIME */
/*     NAIF_IDS */
/*     FRAMES */

/* $ Keywords */

/*     GEOMETRY */
/*     PRIVATE */
/*     SEARCH */

/* $ Declarations */
/* $ Abstract */

/*     This file contains public, global parameter declarations */
/*     for the SPICELIB Geometry Finder (GF) subsystem. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Required_Reading */

/*     GF */

/* $ Keywords */

/*     GEOMETRY */
/*     ROOT */

/* $ Restrictions */

/*     None. */

/* $ Author_and_Institution */

/*     N.J. Bachman      (JPL) */
/*     L.E. Elson        (JPL) */
/*     E.D. Wright       (JPL) */

/* $ Literature_References */

/*     None. */

/* $ Version */

/* -    SPICELIB Version 1.3.0, 01-OCT-2011 (NJB) */

/*       Added NWILUM parameter. */

/* -    SPICELIB Version 1.2.0, 14-SEP-2010 (EDW) */

/*       Added NWPA parameter. */

/* -    SPICELIB Version 1.1.0, 08-SEP-2009 (EDW) */

/*       Added NWRR parameter. */
/*       Added NWUDS parameter. */

/* -    SPICELIB Version 1.0.0, 21-FEB-2009 (NJB) (LSE) (EDW) */

/* -& */

/*     Root finding parameters: */

/*     CNVTOL is the default convergence tolerance used by the */
/*     high-level GF search API routines. This tolerance is */
/*     used to terminate searches for binary state transitions: */
/*     when the time at which a transition occurs is bracketed */
/*     by two times that differ by no more than CNVTOL, the */
/*     transition time is considered to have been found. */

/*     Units are TDB seconds. */


/*     NWMAX is the maximum number of windows allowed for user-defined */
/*     workspace array. */

/*        DOUBLE PRECISION      WORK   ( LBCELL : MW, NWMAX ) */

/*     Currently no more than twelve windows are required; the three */
/*     extra windows are spares. */

/*     Callers of GFEVNT can include this file and use the parameter */
/*     NWMAX to declare the second dimension of the workspace array */
/*     if necessary. */


/*     Callers of GFIDST should declare their workspace window */
/*     count using NWDIST. */


/*     Callers of GFSEP should declare their workspace window */
/*     count using NWSEP. */


/*     Callers of GFRR should declare their workspace window */
/*     count using NWRR. */


/*     Callers of GFUDS should declare their workspace window */
/*     count using NWUDS. */


/*     Callers of GFPA should declare their workspace window */
/*     count using NWPA. */


/*     Callers of GFILUM should declare their workspace window */
/*     count using NWILUM. */


/*     ADDWIN is a parameter used to expand each interval of the search */
/*     (confinement) window by a small amount at both ends in order to */
/*     accommodate searches using equality constraints. The loaded */
/*     kernel files must accommodate these expanded time intervals. */


/*     FRMNLN is a string length for frame names. */


/*     NVRMAX is the maximum number of vertices if FOV type is "POLYGON" */


/*     FOVTLN -- maximum length for FOV string. */


/*     Specify the character strings that are allowed in the */
/*     specification of field of view shapes. */


/*     Character strings that are allowed in the */
/*     specification of occultation types: */


/*     Occultation target shape specifications: */


/*     Specify the number of supported occultation types and occultation */
/*     type string length: */


/*     Instrument field-of-view (FOV) parameters */

/*     Maximum number of FOV boundary vectors: */


/*     FOV shape parameters: */

/*        circle */
/*        ellipse */
/*        polygon */
/*        rectangle */


/*     End of file gf.inc. */

/* $ Abstract */

/*     SPICE private include file intended solely for the support of */
/*     SPICE routines. Users should not include this routine in their */
/*     source code due to the volatile nature of this file. */

/*     This file contains private, global parameter declarations */
/*     for the SPICELIB Geometry Finder (GF) subsystem. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Required_Reading */

/*     GF */

/* $ Keywords */

/*     GEOMETRY */
/*     ROOT */

/* $ Restrictions */

/*     None. */

/* $ Author_and_Institution */

/*     N.J. Bachman      (JPL) */
/*     E.D. Wright       (JPL) */

/* $ Literature_References */

/*     None. */

/* $ Version */

/* -    SPICELIB Version 1.0.0, 17-FEB-2009 (NJB) (EDW) */

/* -& */

/*     The set of supported coordinate systems */

/*        System          Coordinates */
/*        ----------      ----------- */
/*        Rectangular     X, Y, Z */
/*        Latitudinal     Radius, Longitude, Latitude */
/*        Spherical       Radius, Colatitude, Longitude */
/*        RA/Dec          Range, Right Ascension, Declination */
/*        Cylindrical     Radius, Longitude, Z */
/*        Geodetic        Longitude, Latitude, Altitude */
/*        Planetographic  Longitude, Latitude, Altitude */

/*     Below we declare parameters for naming coordinate systems. */
/*     User inputs naming coordinate systems must match these */
/*     when compared using EQSTR. That is, user inputs must */
/*     match after being left justified, converted to upper case, */
/*     and having all embedded blanks removed. */


/*     Below we declare names for coordinates. Again, user */
/*     inputs naming coordinates must match these when */
/*     compared using EQSTR. */


/*     Note that the RA parameter value below matches */

/*        'RIGHT ASCENSION' */

/*     when extra blanks are compressed out of the above value. */


/*     Parameters specifying types of vector definitions */
/*     used for GF coordinate searches: */

/*     All string parameter values are left justified, upper */
/*     case, with extra blanks compressed out. */

/*     POSDEF indicates the vector is defined by the */
/*     position of a target relative to an observer. */


/*     SOBDEF indicates the vector points from the center */
/*     of a target body to the sub-observer point on */
/*     that body, for a given observer and target. */


/*     SOBDEF indicates the vector points from the center */
/*     of a target body to the surface intercept point on */
/*     that body, for a given observer, ray, and target. */


/*     Number of workspace windows used by ZZGFREL: */


/*     Number of additional workspace windows used by ZZGFLONG: */


/*     Index of "existence window" used by ZZGFCSLV: */


/*     Progress report parameters: */

/*     MXBEGM, */
/*     MXENDM    are, respectively, the maximum lengths of the progress */
/*               report message prefix and suffix. */

/*     Note: the sum of these lengths, plus the length of the */
/*     "percent complete" substring, should not be long enough */
/*     to cause wrap-around on any platform's terminal window. */


/*     Total progress report message length upper bound: */


/*     End of file zzgf.inc. */

/* $ Abstract */

/*     Include file zzabcorr.inc */

/*     SPICE private file intended solely for the support of SPICE */
/*     routines.  Users should not include this file directly due */
/*     to the volatile nature of this file */

/*     The parameters below define the structure of an aberration */
/*     correction attribute block. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Parameters */

/*     An aberration correction attribute block is an array of logical */
/*     flags indicating the attributes of the aberration correction */
/*     specified by an aberration correction string.  The attributes */
/*     are: */

/*        - Is the correction "geometric"? */

/*        - Is light time correction indicated? */

/*        - Is stellar aberration correction indicated? */

/*        - Is the light time correction of the "converged */
/*          Newtonian" variety? */

/*        - Is the correction for the transmission case? */

/*        - Is the correction relativistic? */

/*    The parameters defining the structure of the block are as */
/*    follows: */

/*       NABCOR    Number of aberration correction choices. */

/*       ABATSZ    Number of elements in the aberration correction */
/*                 block. */

/*       GEOIDX    Index in block of geometric correction flag. */

/*       LTIDX     Index of light time flag. */

/*       STLIDX    Index of stellar aberration flag. */

/*       CNVIDX    Index of converged Newtonian flag. */

/*       XMTIDX    Index of transmission flag. */

/*       RELIDX    Index of relativistic flag. */

/*    The following parameter is not required to define the block */
/*    structure, but it is convenient to include it here: */

/*       CORLEN    The maximum string length required by any aberration */
/*                 correction string */

/* $ Author_and_Institution */

/*     N.J. Bachman    (JPL) */

/* $ Literature_References */

/*     None. */

/* $ Version */

/* -    SPICELIB Version 1.0.0, 18-DEC-2004 (NJB) */

/* -& */
/*     Number of aberration correction choices: */


/*     Aberration correction attribute block size */
/*     (number of aberration correction attributes): */


/*     Indices of attributes within an aberration correction */
/*     attribute block: */


/*     Maximum length of an aberration correction string: */


/*     End of include file zzabcorr.inc */

/* $ Brief_I/O */

/*     VARIABLE  I/O  DESCRIPTION */
/*     --------  ---  -------------------------------------------------- */
/*     METHOD     I   Computation method. */
/*     TRGID      I   Target ID code. */
/*     ET         I   Computation epoch. */
/*     FIXREF     I   Reference frame name. */
/*     ABCORR     I   Aberration correction. */
/*     OBSID      I   Observer ID code. */
/*     RADII      I   Target radii. */
/*     STATE      O   State used to define coordinates. */

/* $ Detailed_Input */

/*     METHOD      is a short string providing parameters defining */
/*                 the computation method to be used. Any value */
/*                 supported by SUBPNT may be used. */


/*     TRGID      is the NAIF ID code of the target object. */

/*                *This routine assumes that the target is modeled */
/*                as a tri-axial ellipsoid.* */


/*     ET         is the time, expressed as ephemeris seconds past J2000 */
/*                TDB, at which the specified state is to be computed. */


/*     FIXREF     is the name of the reference frame relative to which */
/*                the state of interest is specified. */

/*                FIXREF must be centered on the target body. */

/*                Case, leading and trailing blanks are not significant */
/*                in the string FIXREF. */


/*     ABCORR     indicates the aberration corrections to be applied to */
/*                the state of the target body to account for one-way */
/*                light time and stellar aberration. The orientation */
/*                of the target body will also be corrected for one-way */
/*                light time when light time corrections are requested. */

/*                Supported aberration correction options for */
/*                observation (case where radiation is received by */
/*                observer at ET) are: */

/*                   NONE           No correction. */
/*                   LT             Light time only. */
/*                   LT+S           Light time and stellar aberration. */
/*                   CN             Converged Newtonian (CN) light time. */
/*                   CN+S           CN light time and stellar aberration. */

/*                Supported aberration correction options for */
/*                transmission (case where radiation is emitted from */
/*                observer at ET) are: */

/*                   XLT            Light time only. */
/*                   XLT+S          Light time and stellar aberration. */
/*                   XCN            Converged Newtonian (CN) light time. */
/*                   XCN+S          CN light time and stellar aberration. */

/*                For detailed information, see the geometry finder */
/*                required reading, gf.req.  Also see the header of */
/*                SPKEZR, which contains a detailed discussion of */
/*                aberration corrections. */

/*                Case, leading and trailing blanks are not significant */
/*                in the string ABCORR. */


/*     OBSID      is the NAIF ID code of the observer. */


/*     RADII      is an array containing three radii defining */
/*                a reference ellipsoid for the target body. */

/* $ Detailed_Output */

/*     STATE     is the state of the sub-observer point at ET. */
/*               The first three components of STATE contain the */
/*               sub-observer point itself; the last three */
/*               components contain the derivative with respect to */
/*               time of the position. The state is expressed */
/*               relative to the body-fixed frame designated by */
/*               FIXREF. */

/*               Units are km and km/s. */

/* $ Parameters */

/*     None. */

/* $ Exceptions */

/*     1)  If the aberration correction ABCORR is not recognized, */
/*         the error will be diagnosed by routines in the call tree */
/*         of this routine. */

/*     2)  If the frame FIXREF is not recognized by the frames */
/*         subsystem, the error will be diagnosed by routines in the */
/*         call tree of this routine. */

/*     3)  FIXREF must be centered on the target body; if it isn't, */
/*         the error will be diagnosed by routines in the call tree */
/*         of this routine. */

/*     4)  Any error that occurs while look up the state of the target */
/*         or observer will be diagnosed by routines in the call tree of */
/*         this routine. */

/*     5)  Any error that occurs while look up the orientation of */
/*         the target will be diagnosed by routines in the call tree of */
/*         this routine. */

/*     6)  If the input method is not recognized, the error */
/*         SPICE(NOTSUPPORTED) will be signaled. */

/* $ Files */

/*     Appropriate kernels must be loaded by the calling program before */
/*     this routine is called. */

/*     The following data are required: */

/*        - SPK data: ephemeris data for target and observer must be */
/*          loaded. If aberration corrections are used, the states of */
/*          target and observer relative to the solar system barycenter */
/*          must be calculable from the available ephemeris data. */
/*          Typically ephemeris data are made available by loading one */
/*          or more SPK files via FURNSH. */

/*        - PCK data: if the target body shape is modeled as an */
/*          ellipsoid, triaxial radii for the target body must be loaded */
/*          into the kernel pool. Typically this is done by loading a */
/*          text PCK file via FURNSH. */

/*        - Further PCK data: rotation data for the target body must be */
/*          loaded. These may be provided in a text or binary PCK file. */

/*        - Frame data: if a frame definition is required to convert the */
/*          observer and target states to the body-fixed frame of the */
/*          target, that definition must be available in the kernel */
/*          pool. Typically the definition is supplied by loading a */
/*          frame kernel via FURNSH. */

/*     In all cases, kernel data are normally loaded once per program */
/*     run, NOT every time this routine is called. */

/* $ Particulars */

/*     This routine isolates the computation of the sub-observer state */
/*     (that is, the sub-observer point and its derivative with respect */
/*     to time). */

/*     This routine is used by the GF coordinate utility routines in */
/*     order to solve for time windows on which specified mathematical */
/*     conditions involving coordinates are satisfied. The role of */
/*     this routine is to provide Cartesian state vectors enabling */
/*     the GF coordinate utilities to determine the signs of the */
/*     derivatives with respect to time of coordinates of interest. */

/* $ Examples */

/*     See ZZGFCOST. */

/* $ Restrictions */

/*     1)  This routine is restricted to use with ellipsoidal target */
/*         shape models. */

/*     2)  The computations performed by this routine are intended */
/*         to be compatible with those performed by the SPICE */
/*         routine SUBPNT. If that routine changes, this routine */
/*         may need to be updated. */

/*     3)  This routine presumes that error checking of inputs */
/*         has, where possible, already been performed by the */
/*         GF coordinate utility initialization routine. */

/*     4)  The interface and functionality of this set of routines may */
/*         change without notice. These routines should be called only */
/*         by SPICELIB routines. */

/* $ Literature_References */

/*     None. */

/* $ Author_and_Institution */

/*     N.J. Bachman   (JPL) */

/* $ Version */

/* -    SPICELIB Version 2.0.0 12-MAY-2009 (NJB) */

/*        Upgraded to support targets and observers having */
/*        no names associated with their ID codes. */

/* -    SPICELIB Version 1.0.0 05-MAR-2009 (NJB) */

/* -& */
/* $ Index_Entries */

/*     sub-observer state */

/* -& */

/*     SPICELIB functions */


/*     Local parameters */


/*     Local variables */


/*     Saved variables */


/*     Initial values */


/*     Standard SPICE error handling. */

    if (return_()) {
	return 0;
    }
    chkin_("ZZGFSSOB", (ftnlen)8);
    if (first || *trgid != prvtrg) {
	bodc2s_(trgid, svtarg, (ftnlen)36);
	prvtrg = *trgid;
    }
    if (first || *obsid != prvobs) {
	bodc2s_(obsid, svobs, (ftnlen)36);
	prvobs = *obsid;
    }
    first = FALSE_;

/*     Parse the aberration correction specifier. */

    zzprscor_(abcorr, attblk, abcorr_len);
    geom = attblk[0];
    uselt = attblk[1];
    usestl = attblk[2];
    xmit = attblk[4];

/*     Decide whether the sub-observer point is computed using */
/*     the "near point" or "surface intercept" method. Only */
/*     ellipsoids may be used a shape models for this computation. */

    if (eqstr_(method, "Near point: ellipsoid", method_len, (ftnlen)21)) {
	near__ = TRUE_;
    } else if (eqstr_(method, "Intercept: ellipsoid", method_len, (ftnlen)20))
	     {
	near__ = FALSE_;
    } else {
	setmsg_("Sub-observer point computation method # is not supported by"
		" this routine.", (ftnlen)73);
	errch_("#", method, (ftnlen)1, method_len);
	sigerr_("SPICE(NOTSUPPORTED)", (ftnlen)19);
	chkout_("ZZGFSSOB", (ftnlen)8);
	return 0;
    }
    if (geom) {

/*        This is the geometric case. */

/*        We need to check the body-fixed reference frame here. */

	namfrm_(fixref, &frcode, fixref_len);
	frinfo_(&frcode, &center, &frclss, &clssid, &fnd);
	if (failed_()) {
	    chkout_("ZZGFSSOB", (ftnlen)8);
	    return 0;
	}
	if (! fnd) {
	    setmsg_("Input reference frame # was not recognized.", (ftnlen)43)
		    ;
	    errch_("#", fixref, (ftnlen)1, fixref_len);
	    sigerr_("SPICE(NOFRAME)", (ftnlen)14);
	    chkout_("ZZGFSSOB", (ftnlen)8);
	    return 0;
	}
	if (center != *trgid) {
	    setmsg_("Input reference frame # is centered on body # instead o"
		    "f body #.", (ftnlen)64);
	    errch_("#", fixref, (ftnlen)1, fixref_len);
	    errint_("#", &center, (ftnlen)1);
	    errint_("#", trgid, (ftnlen)1);
	    sigerr_("SPICE(INVALIDFRAME)", (ftnlen)19);
	    chkout_("ZZGFSSOB", (ftnlen)8);
	    return 0;
	}

/*        Get the state of the target with respect to the observer, */
/*        expressed relative to the target body-fixed frame. We don't */
/*        need to propagate states to the solar system barycenter in */
/*        this case. */

	spkgeo_(trgid, et, fixref, obsid, fxtsta, &lt, fixref_len);
	if (failed_()) {
	    chkout_("ZZGFSSOB", (ftnlen)8);
	    return 0;
	}

/*        Compute the state of the observer with respect to the target */
/*        in the body-fixed frame. */

	vminug_(fxtsta, &c__6, fxosta);

/*        Now we can obtain the surface velocity of the sub-observer */
/*        point. */

	if (near__) {

/*           The sub-observer point method is "near point." */

	    dnearp_(fxosta, radii, &radii[1], &radii[2], fxpsta, dalt, &found)
		    ;
	    if (! found) {
		setmsg_("The sub-observer state could could not be computed "
			"because the velocity was not well defined. DNEARP re"
			"turned \"not found.\"", (ftnlen)122);
		sigerr_("SPICE(DEGENERATECASE)", (ftnlen)21);
		chkout_("ZZGFSSOB", (ftnlen)8);
		return 0;
	    }
	} else {

/*           The sub-observer point method is "surface */
/*           intercept point." The ray direction is simply */
/*           the negative of the observer's position relative */
/*           to the target center. */

	    vminug_(fxosta, &c__6, raysta);
	    surfpv_(fxosta, raysta, radii, &radii[1], &radii[2], fxpsta, &
		    found);

/*           Although in general it's not an error for SURFPV to */
/*           be unable to compute an intercept state, it *is* */
/*           an error in this case, since the ray points toward */
/*           the center of the target. */

	    if (! found) {
		setmsg_("The sub-observer state could could not be computed "
			"because the velocity was not well defined. SURFPV re"
			"turned \"not found.\"", (ftnlen)122);
		sigerr_("SPICE(DEGENERATECASE)", (ftnlen)21);
		chkout_("ZZGFSSOB", (ftnlen)8);
		return 0;
	    }
	}
    } else if (uselt) {

/*        Light time and possibly stellar aberration corrections are */
/*        applied. */

/*        Most our work consists of getting ready to call either of the */
/*        SPICELIB routines DNEARP or SURFPV. In order to make this */
/*        call, we'll need the velocity of the observer relative to the */
/*        target body's center in the target body-fixed frame. We must */
/*        evaluate the rotation state of the target at the correct */
/*        epoch, and account for the rate of change of light time, if */
/*        light time corrections are used. The algorithm we use depends */
/*        on the algorithm used in SUBPNT, since we're computing the */
/*        derivative with respect to time of the solution found by that */
/*        routine. */

/*        In this algorithm, we must take into account the fact that */
/*        SUBPNT performs light time and stellar aberration corrections */
/*        for the sub-observer point, not for the center of the target */
/*        body. */

/*        If light time and stellar aberration corrections are used, */

/*           - Find the aberration corrected sub-observer point and the */
/*             light time-corrected epoch TRGEPC associated with the */
/*             sub-observer point. */

/*           - Use TRGEPC to find the position of the target relative to */
/*             the solar system barycenter. */

/*           - Use TRGEPC to find the orientation of the target relative */
/*             to the J2000 reference frame. */

/*           - Find the light-time corrected position of the */
/*             sub-observer point; use this to compute the stellar */
/*             aberration offset that applies to the sub-observer point, */
/*             as well as the velocity of this offset. */

/*           - Find the corrected state of the target center as seen */
/*             from the observer, where the corrections are those */
/*             applicable to the sub-observer point. */

/*           - Negate the corrected target center state to obtain the */
/*             state of the observer relative to the target. */

/*           - Express the state of the observer relative to the target */
/*             in the target body fixed frame at TRGEPC. */


/*        Below, we'll use the convention that vectors expressed */
/*        relative to the body-fixed frame have names of the form */

/*           FX* */

/*        Note that SUBPNT will signal an error if FIXREF is not */
/*        actually centered on the target body. */

	subpnt_(method, svtarg, et, fixref, abcorr, svobs, spoint, &trgepc, 
		srfvec, method_len, (ftnlen)36, fixref_len, abcorr_len, (
		ftnlen)36);

/*        Get J2000-relative states of observer and target with respect */
/*        to the solar system barycenter at their respective epochs of */
/*        participation. */

	spkssb_(obsid, et, "J2000", ssbobs, (ftnlen)5);
	spkssb_(trgid, &trgepc, "J2000", ssbtg0, (ftnlen)5);

/*        Get the uncorrected J2000 to body-fixed to state */
/*        transformation at TRGEPC. */

	sxform_("J2000", fixref, &trgepc, xform, (ftnlen)5, fixref_len);
	if (failed_()) {
	    chkout_("ZZGFSSOB", (ftnlen)8);
	    return 0;
	}

/*        Initialize the state of the sub-observer point in the */
/*        body-fixed frame. At this point we don't know the */
/*        point's velocity; set it to zero. */

	moved_(spoint, &c__3, fxpsta);
	cleard_(&c__3, &fxpsta[3]);
	if (usestl) {

/*           We're going to need the acceleration of the observer */
/*           relative to the SSB. Compute this now. */

	    for (i__ = 1; i__ <= 2; ++i__) {

/*              The epoch is ET -/+ TDELTA. */

		t = *et + ((i__ << 1) - 3) * 1.;
		spkssb_(obsid, &t, "J2000", &obssta[(i__1 = i__ * 6 - 6) < 12 
			&& 0 <= i__1 ? i__1 : s_rnge("obssta", i__1, "zzgfss"
			"ob_", (ftnlen)652)], (ftnlen)5);
	    }
	    if (failed_()) {
		chkout_("ZZGFSSOB", (ftnlen)8);
		return 0;
	    }

/*           Compute the observer's acceleration using a quadratic */
/*           approximation. */

	    qderiv_(&c__3, &obssta[3], &obssta[9], &c_b40, acc);
	}

/*        The rest of the algorithm is iterative. On the first */
/*        iteration, we don't have a good estimate of the velocity */
/*        of the sub-observer point relative to the body-fixed */
/*        frame. Since we're using this velocity as an input */
/*        to the aberration velocity computations, we */
/*        expect that treating this velocity as zero on the first */
/*        pass yields a reasonable estimate. On the second pass, */
/*        we'll use the velocity derived on the first pass. */

	cleard_(&c__3, fxpvel);

/*        We'll also estimate the rate of change of light time */
/*        as zero on the first pass. */

	dlt = 0.;
	for (i__ = 1; i__ <= 2; ++i__) {

/*           Correct the target's velocity for the rate of */
/*           change of light time. */

	    if (xmit) {
		scale = dlt + 1.;
	    } else {
		scale = 1. - dlt;
	    }

/*           Scale the velocity portion of the target state to */
/*           correct the velocity for the rate of change of light */
/*           time. */

	    moved_(ssbtg0, &c__3, ssbtrg);
	    vscl_(&scale, &ssbtg0[3], &ssbtrg[3]);

/*           Get the state of the target with respect to the observer. */

	    vsubg_(ssbtrg, ssbobs, &c__6, obstrg);

/*           Correct the J2000 to body-fixed state transformation matrix */
/*           for the rate of change of light time. */

	    zzcorsxf_(&xmit, &dlt, xform, corxfm);

/*           Invert CORXFM to obtain the corrected */
/*           body-fixed to J2000 state transformation. */

	    invstm_(corxfm, corxfi);

/*           Convert the sub-observer point state to the J2000 frame. */

	    mxvg_(corxfi, fxpsta, &c__6, &c__6, pntsta);

/*           Find the J2000-relative state of the sub-observer */
/*           point with respect to the target. */

	    vaddg_(obstrg, pntsta, &c__6, obspnt);
	    if (usestl) {

/*              Now compute the stellar aberration correction */
/*              applicable to OBSPNT. We need the velocity of */
/*              this correction as well. */

		zzstelab_(&xmit, acc, &ssbobs[3], obspnt, sa, savel);
		moved_(sa, &c__3, sastat);
		moved_(savel, &c__3, &sastat[3]);

/*              Adding the stellar aberration state to the target center */
/*              state gives us the state of the target center with */
/*              respect to the observer, corrected for the aberrations */
/*              applicable to the sub-observer point. */
		vaddg_(obstrg, sastat, &c__6, stemp);
	    } else {
		moved_(obstrg, &c__6, stemp);
	    }

/*           Convert STEMP to the body-fixed reference frame. */

	    mxvg_(corxfm, stemp, &c__6, &c__6, fxtsta);

/*           At long last, compute the state of the observer */
/*           with respect to the target in the body-fixed frame. */

	    vminug_(fxtsta, &c__6, fxosta);

/*           Now we can obtain the surface velocity of the */
/*           sub-observer point. */

	    if (near__) {

/*              The sub-observer point method is "near point." */

		dnearp_(fxosta, radii, &radii[1], &radii[2], fxpsta, dalt, &
			found);
		if (! found) {
		    setmsg_("The sub-observer state could could not be compu"
			    "ted because the velocity was not well defined.  "
			    "DNEARP returned \"not found.\"", (ftnlen)123);
		    sigerr_("SPICE(DEGENERATECASE)", (ftnlen)21);
		    chkout_("ZZGFSSOB", (ftnlen)8);
		    return 0;
		}
	    } else {

/*              The sub-observer point method is "surface intercept */
/*              point." The ray direction is simply the negative of the */
/*              observer's position relative to the target center. */

		vminug_(fxosta, &c__6, raysta);
		surfpv_(fxosta, raysta, radii, &radii[1], &radii[2], fxpsta, &
			found);

/*              Although in general it's not an error for SURFPV to be */
/*              unable to compute an intercept state, it *is* an error */
/*              in this case, since the ray points toward the center of */
/*              the target. */

		if (! found) {
		    setmsg_("The sub-observer state could could not be compu"
			    "ted because the velocity was not well defined. S"
			    "URFPV returned \"not found.\"", (ftnlen)122);
		    sigerr_("SPICE(DEGENERATECASE)", (ftnlen)21);
		    chkout_("ZZGFSSOB", (ftnlen)8);
		    return 0;
		}
	    }

/*           At this point we can update the surface point */
/*           velocity and light time derivative estimates. */

/*           In order to compute the light time rate, we'll */
/*           need the J2000-relative velocity of the sub-observer */
/*           point with respect to the observer. First convert */
/*           the sub-observer state to the J2000 frame, then */
/*           add the result to the state of the target center */
/*           with respect to the observer. */

	    mxvg_(corxfi, fxpsta, &c__6, &c__6, pntsta);
	    vaddg_(obstrg, pntsta, &c__6, obspnt);

/*           Now that we have an improved estimate of the */
/*           sub-observer state, we can estimate the rate of */
/*           change of light time as */

/*              range rate */
/*              ---------- */
/*                  c */


/*           If we're correcting for stellar aberration, *ideally* we */
/*           should remove that correction now, since the light time */
/*           rate is based on light time between the observer and the */
/*           light-time corrected sub-observer point. But the error made */
/*           by including stellar aberration is too small to make it */
/*           worthwhile to make this adjustment. */

	    vhat_(obspnt, upos);
	    dlt = vdot_(&obspnt[3], upos) / clight_();

/*           With FXPVEL and DLT updated, we'll repeat our */
/*           computations. */

	}
    } else {

/*        We should never get here. */

	setmsg_("Aberration correction # was not recognized.", (ftnlen)43);
	errch_("#", abcorr, (ftnlen)1, abcorr_len);
	sigerr_("SPICE(NOTSUPPORTED)", (ftnlen)19);
	chkout_("ZZGFSSOB", (ftnlen)8);
	return 0;
    }

/*     Copy the computed state to the output argument STATE. */

    moved_(fxpsta, &c__6, state);
    chkout_("ZZGFSSOB", (ftnlen)8);
    return 0;
} /* zzgfssob_ */
Exemplo n.º 2
0
/* $Procedure ZZSPKAC0 ( S/P Kernel, aberration corrected state ) */
/* Subroutine */ int zzspkac0_(integer *targ, doublereal *et, char *ref, char 
	*abcorr, integer *obs, doublereal *starg, doublereal *lt, doublereal *
	dlt, ftnlen ref_len, ftnlen abcorr_len)
{
    /* Initialized data */

    static logical first = TRUE_;
    static char prvcor[5] = "     ";

    /* System generated locals */
    integer i__1;

    /* Builtin functions */
    integer s_cmp(char *, char *, ftnlen, ftnlen);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_rnge(char *, integer, char *, integer);

    /* Local variables */
    extern /* Subroutine */ int zzspkas0_(integer *, doublereal *, char *, 
	    char *, doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, ftnlen, ftnlen), zzspkgo0_(integer *, doublereal *, 
	    char *, integer *, doublereal *, doublereal *, ftnlen);
    integer i__;
    extern /* Subroutine */ int zzprscor_(char *, logical *, ftnlen);
    doublereal t;
    integer refid;
    extern /* Subroutine */ int chkin_(char *, ftnlen), errch_(char *, char *,
	     ftnlen, ftnlen);
    doublereal ltssb, ssblt, stobs[12]	/* was [6][2] */;
    extern logical failed_(void);
    extern /* Subroutine */ int cleard_(integer *, doublereal *);
    logical attblk[15];
    extern /* Subroutine */ int qderiv_(integer *, doublereal *, doublereal *,
	     doublereal *, doublereal *);
    doublereal ssbobs[6];
    extern /* Subroutine */ int chkout_(char *, ftnlen), sigerr_(char *, 
	    ftnlen), irfnum_(char *, integer *, ftnlen), setmsg_(char *, 
	    ftnlen);
    extern logical return_(void);
    static logical usestl;
    doublereal acc[3];

/* $ Abstract */

/*     Return the state (position and velocity) of a target body */
/*     relative to an observer, optionally corrected for light time */
/*     and stellar aberration, expressed relative to an inertial */
/*     reference frame. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Required_Reading */

/*     SPK */

/* $ Keywords */

/*     EPHEMERIS */

/* $ Declarations */
/* $ Abstract */

/*     Include file zzabcorr.inc */

/*     SPICE private file intended solely for the support of SPICE */
/*     routines.  Users should not include this file directly due */
/*     to the volatile nature of this file */

/*     The parameters below define the structure of an aberration */
/*     correction attribute block. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Parameters */

/*     An aberration correction attribute block is an array of logical */
/*     flags indicating the attributes of the aberration correction */
/*     specified by an aberration correction string.  The attributes */
/*     are: */

/*        - Is the correction "geometric"? */

/*        - Is light time correction indicated? */

/*        - Is stellar aberration correction indicated? */

/*        - Is the light time correction of the "converged */
/*          Newtonian" variety? */

/*        - Is the correction for the transmission case? */

/*        - Is the correction relativistic? */

/*    The parameters defining the structure of the block are as */
/*    follows: */

/*       NABCOR    Number of aberration correction choices. */

/*       ABATSZ    Number of elements in the aberration correction */
/*                 block. */

/*       GEOIDX    Index in block of geometric correction flag. */

/*       LTIDX     Index of light time flag. */

/*       STLIDX    Index of stellar aberration flag. */

/*       CNVIDX    Index of converged Newtonian flag. */

/*       XMTIDX    Index of transmission flag. */

/*       RELIDX    Index of relativistic flag. */

/*    The following parameter is not required to define the block */
/*    structure, but it is convenient to include it here: */

/*       CORLEN    The maximum string length required by any aberration */
/*                 correction string */

/* $ Author_and_Institution */

/*     N.J. Bachman    (JPL) */

/* $ Literature_References */

/*     None. */

/* $ Version */

/* -    SPICELIB Version 1.0.0, 18-DEC-2004 (NJB) */

/* -& */
/*     Number of aberration correction choices: */


/*     Aberration correction attribute block size */
/*     (number of aberration correction attributes): */


/*     Indices of attributes within an aberration correction */
/*     attribute block: */


/*     Maximum length of an aberration correction string: */


/*     End of include file zzabcorr.inc */

/* $ Brief_I/O */

/*     Variable  I/O  Description */
/*     --------  ---  -------------------------------------------------- */
/*     TARG       I   Target body. */
/*     ET         I   Observer epoch. */
/*     REF        I   Inertial reference frame of output state. */
/*     ABCORR     I   Aberration correction flag. */
/*     OBS        I   Observer. */
/*     STARG      O   State of target. */
/*     LT         O   One way light time between observer and target. */
/*     DLT        O   Derivative of light time with respect to time. */

/* $ Detailed_Input */

/*     TARG        is the NAIF ID code for a target body.  The target */
/*                 and observer define a state vector whose position */
/*                 component points from the observer to the target. */

/*     ET          is the ephemeris time, expressed as seconds past */
/*                 J2000 TDB, at which the state of the target body */
/*                 relative to the observer is to be computed.  ET */
/*                 refers to time at the observer's location. */

/*     REF         is the inertial reference frame with respect to which */
/*                 the output state STARG is expressed. REF must be */
/*                 recognized by the SPICE Toolkit.  The acceptable */
/*                 frames are listed in the Frames Required Reading, as */
/*                 well as in the SPICELIB routine CHGIRF. */

/*                 Case and blanks are not significant in the string */
/*                 REF. */

/*     ABCORR      indicates the aberration corrections to be applied */
/*                 to the state of the target body to account for one-way */
/*                 light time and stellar aberration.  See the discussion */
/*                 in the Particulars section for recommendations on */
/*                 how to choose aberration corrections. */

/*                 ABCORR may be any of the following: */

/*                    'NONE'     Apply no correction. Return the */
/*                               geometric state of the target body */
/*                               relative to the observer. */

/*                 The following values of ABCORR apply to the */
/*                 "reception" case in which photons depart from the */
/*                 target's location at the light-time corrected epoch */
/*                 ET-LT and *arrive* at the observer's location at ET: */

/*                    'LT'       Correct for one-way light time (also */
/*                               called "planetary aberration") using a */
/*                               Newtonian formulation. This correction */
/*                               yields the state of the target at the */
/*                               moment it emitted photons arriving at */
/*                               the observer at ET. */

/*                               The light time correction uses an */
/*                               iterative solution of the light time */
/*                               equation (see Particulars for details). */
/*                               The solution invoked by the 'LT' option */
/*                               uses one iteration. */

/*                    'LT+S'     Correct for one-way light time and */
/*                               stellar aberration using a Newtonian */
/*                               formulation. This option modifies the */
/*                               state obtained with the 'LT' option to */
/*                               account for the observer's velocity */
/*                               relative to the solar system */
/*                               barycenter. The result is the apparent */
/*                               state of the target---the position and */
/*                               velocity of the target as seen by the */
/*                               observer. */

/*                    'CN'       Converged Newtonian light time */
/*                               correction. In solving the light time */
/*                               equation, the 'CN' correction iterates */
/*                               until the solution converges (three */
/*                               iterations on all supported platforms). */
/*                               Whether the 'CN+S' solution is */
/*                               substantially more accurate than the */
/*                               'LT' solution depends on the geometry */
/*                               of the participating objects and on the */
/*                               accuracy of the input data. In all */
/*                               cases this routine will execute more */
/*                               slowly when a converged solution is */
/*                               computed. See the Particulars section of */
/*                               SPKEZR for a discussion of precision of */
/*                               light time corrections. */

/*                    'CN+S'     Converged Newtonian light time */
/*                               correction and stellar aberration */
/*                               correction. */


/*                 The following values of ABCORR apply to the */
/*                 "transmission" case in which photons *depart* from */
/*                 the observer's location at ET and arrive at the */
/*                 target's location at the light-time corrected epoch */
/*                 ET+LT: */

/*                    'XLT'      "Transmission" case:  correct for */
/*                               one-way light time using a Newtonian */
/*                               formulation. This correction yields the */
/*                               state of the target at the moment it */
/*                               receives photons emitted from the */
/*                               observer's location at ET. */

/*                    'XLT+S'    "Transmission" case:  correct for */
/*                               one-way light time and stellar */
/*                               aberration using a Newtonian */
/*                               formulation  This option modifies the */
/*                               state obtained with the 'XLT' option to */
/*                               account for the observer's velocity */
/*                               relative to the solar system */
/*                               barycenter. The position component of */
/*                               the computed target state indicates the */
/*                               direction that photons emitted from the */
/*                               observer's location must be "aimed" to */
/*                               hit the target. */

/*                    'XCN'      "Transmission" case:  converged */
/*                               Newtonian light time correction. */

/*                    'XCN+S'    "Transmission" case:  converged */
/*                               Newtonian light time correction and */
/*                               stellar aberration correction. */


/*     OBS         is the NAIF ID code for the observer body.  The */
/*                 target and observer define a state vector whose */
/*                 position component points from the observer to the */
/*                 target. */

/* $ Detailed_Output */

/*     STARG       is a Cartesian state vector representing the position */
/*                 and velocity of the target body relative to the */
/*                 specified observer. STARG is corrected for the */
/*                 specified aberrations, and is expressed with respect */
/*                 to the specified inertial reference frame.  The first */
/*                 three components of STARG represent the x-, y- and */
/*                 z-components of the target's position; last three */
/*                 components form the corresponding velocity vector. */

/*                 The position component of STARG points from the */
/*                 observer's location at ET to the aberration-corrected */
/*                 location of the target. Note that the sense of the */
/*                 position vector is independent of the direction of */
/*                 radiation travel implied by the aberration */
/*                 correction. */

/*                 Units are always km and km/sec. */

/*     LT          is the one-way light time between the observer and */
/*                 target in seconds.  If the target state is corrected */
/*                 for aberrations, then LT is the one-way light time */
/*                 between the observer and the light time corrected */
/*                 target location. */

/*     DLT         is the derivative with respect to barycentric */
/*                 dynamical time of the one way light time between */
/*                 target and observer: */

/*                    DLT = d(LT)/d(ET) */

/*                 DLT can also be described as the rate of change of */
/*                 one way light time. DLT is unitless, since LT and */
/*                 ET both have units of TDB seconds. */

/*                 If the observer and target are at the same position, */
/*                 then DLT is set to zero. */

/* $ Parameters */

/*     None. */

/* $ Exceptions */

/*     1) If the value of ABCORR is not recognized, the error */
/*        is diagnosed by a routine in the call tree of this */
/*        routine. */

/*     2) If the reference frame requested is not a recognized */
/*        inertial reference frame, the error SPICE(BADFRAME) */
/*        is signaled. */

/*     3) If the state of the target relative to the solar system */
/*        barycenter cannot be computed, the error will be diagnosed */
/*        by routines in the call tree of this routine. */

/*     4) If the observer and target are at the same position, */
/*        then DLT is set to zero. This situation could arise, */
/*        for example, when the observer is Mars and the target */
/*        is the Mars barycenter. */

/* $ Files */

/*     This routine computes states using SPK files that have been */
/*     loaded into the SPICE system, normally via the kernel loading */
/*     interface routine FURNSH.  Application programs typically load */
/*     kernels once before this routine is called, for example during */
/*     program initialization; kernels need not be loaded repeatedly. */
/*     See the routine FURNSH and the SPK and KERNEL Required Reading */
/*     for further information on loading (and unloading) kernels. */

/*     If any of the ephemeris data used to compute STARG are expressed */
/*     relative to a non-inertial frame in the SPK files providing those */
/*     data, additional kernels may be needed to enable the reference */
/*     frame transformations required to compute the state. Normally */
/*     these additional kernels are PCK files or frame kernels. Any */
/*     such kernels must already be loaded at the time this routine is */
/*     called. */

/* $ Particulars */

/*     This routine supports higher-level SPK API routines that can */
/*     perform both light time and stellar aberration corrections. */
/*     User applications normally will not need to call this routine */
/*     directly. */

/*     See the header of the routine SPKEZR for a detailed discussion */
/*     of aberration corrections. */

/* $ Examples */

/*    1) Look up a sequence of states of the Moon as seen from the */
/*       Earth. Use light time and stellar aberration corrections. */
/*       Compute the first state for the epoch 2000 JAN 1 12:00:00 TDB; */
/*       compute subsequent states at intervals of 1 hour. For each */
/*       epoch, display the states, the one way light time between */
/*       target and observer, and the rate of change of the one way */
/*       light time. */

/*       Use the following meta-kernel to specify the kernels to */
/*       load: */

/*          KPL/MK */

/*          This meta-kernel is intended to support operation of SPICE */
/*          example programs. The kernels shown here should not be */
/*          assumed to contain adequate or correct versions of data */
/*          required by SPICE-based user applications. */

/*          In order for an application to use this meta-kernel, the */
/*          kernels referenced here must be present in the user's */
/*          current working directory. */


/*          \begindata */

/*             KERNELS_TO_LOAD = ( 'de418.bsp', */
/*                                 'pck00008.tpc', */
/*                                 'naif0008.tls'  ) */

/*          \begintext */


/*       The code example follows: */

/*           PROGRAM EX1 */
/*           IMPLICIT NONE */
/*     C */
/*     C     Local constants */
/*     C */
/*     C     The meta-kernel name shown here refers to a file whose */
/*     C     contents are those shown above. This file and the kernels */
/*     C     it references must exist in your current working directory. */
/*     C */
/*     C */
/*           CHARACTER*(*)         META */
/*           PARAMETER           ( META   = 'example.mk' ) */
/*     C */
/*     C     Use a time step of 1 hour; look up 5 states. */
/*     C */
/*           DOUBLE PRECISION      STEP */
/*           PARAMETER           ( STEP   = 3600.0D0 ) */

/*           INTEGER               MAXITR */
/*           PARAMETER           ( MAXITR = 5 ) */
/*     C */
/*     C     Local variables */
/*     C */
/*           DOUBLE PRECISION      DLT */
/*           DOUBLE PRECISION      ET */
/*           DOUBLE PRECISION      ET0 */
/*           DOUBLE PRECISION      LT */
/*           DOUBLE PRECISION      STATE ( 6 ) */
/*           INTEGER               I */

/*     C */
/*     C     Load the SPK and LSK kernels via the meta-kernel. */
/*     C */
/*           CALL FURNSH ( META ) */
/*     C */
/*     C     Convert the start time to seconds past J2000 TDB. */
/*     C */
/*           CALL STR2ET ( '2000 JAN 1 12:00:00 TDB', ET0 ) */
/*     C */
/*     C     Step through a series of epochs, looking up a */
/*     C     state vector at each one. */
/*     C */
/*           DO I = 1, MAXITR */

/*              ET = ET0 + (I-1)*STEP */
/*     C */
/*     C        Look up a state vector at epoch ET using the */
/*     C        following inputs: */
/*     C */
/*     C           Target:                 Moon (NAIF ID code 301) */
/*     C           Reference frame:        J2000 */
/*     C           Aberration correction:  Light time and stellar */
/*     C                                   aberration ('LT+S') */
/*     C           Observer:               Earth (NAIF ID code 399) */
/*     C */

/*              CALL SPKACS ( 301, ET,    'J2000', 'LT+S', */
/*          .                 399, STATE, LT,      DLT     ) */

/*              WRITE (*,*) 'ET = ', ET */
/*              WRITE (*,*) 'J2000 x-position (km):   ', STATE(1) */
/*              WRITE (*,*) 'J2000 y-position (km):   ', STATE(2) */
/*              WRITE (*,*) 'J2000 z-position (km):   ', STATE(3) */
/*              WRITE (*,*) 'J2000 x-velocity (km/s): ', STATE(4) */
/*              WRITE (*,*) 'J2000 y-velocity (km/s): ', STATE(5) */
/*              WRITE (*,*) 'J2000 z-velocity (km/s): ', STATE(6) */
/*              WRITE (*,*) 'One-way light time (s):  ', LT */
/*              WRITE (*,*) 'Light time rate:         ', DLT */
/*              WRITE (*,*) ' ' */

/*           END DO */

/*           END */


/*     The output produced by this program will vary somewhat as */
/*     a function of the platform on which the program is built and */
/*     executed. On a PC/Linux/g77 platform, the following output */
/*     was produced: */

/*        ET =   0. */
/*        J2000 x-position (km):    -291584.614 */
/*        J2000 y-position (km):    -266693.406 */
/*        J2000 z-position (km):    -76095.6532 */
/*        J2000 x-velocity (km/s):   0.643439157 */
/*        J2000 y-velocity (km/s):  -0.666065874 */
/*        J2000 z-velocity (km/s):  -0.301310063 */
/*        One-way light time (s):    1.34231061 */
/*        Light time rate:           1.07316909E-07 */

/*        ET =   3600. */
/*        J2000 x-position (km):    -289256.459 */
/*        J2000 y-position (km):    -269080.605 */
/*        J2000 z-position (km):    -77177.3528 */
/*        J2000 x-velocity (km/s):   0.64997032 */
/*        J2000 y-velocity (km/s):  -0.660148253 */
/*        J2000 z-velocity (km/s):  -0.299630418 */
/*        One-way light time (s):    1.34269395 */
/*        Light time rate:           1.05652599E-07 */

/*        ET =   7200. */
/*        J2000 x-position (km):    -286904.897 */
/*        J2000 y-position (km):    -271446.417 */
/*        J2000 z-position (km):    -78252.9655 */
/*        J2000 x-velocity (km/s):   0.656443883 */
/*        J2000 y-velocity (km/s):  -0.654183552 */
/*        J2000 z-velocity (km/s):  -0.297928533 */
/*        One-way light time (s):    1.34307131 */
/*        Light time rate:           1.03990457E-07 */

/*        ET =   10800. */
/*        J2000 x-position (km):    -284530.133 */
/*        J2000 y-position (km):    -273790.671 */
/*        J2000 z-position (km):    -79322.4117 */
/*        J2000 x-velocity (km/s):   0.662859505 */
/*        J2000 y-velocity (km/s):  -0.648172247 */
/*        J2000 z-velocity (km/s):  -0.296204558 */
/*        One-way light time (s):    1.34344269 */
/*        Light time rate:           1.02330665E-07 */

/*        ET =   14400. */
/*        J2000 x-position (km):    -282132.378 */
/*        J2000 y-position (km):    -276113.202 */
/*        J2000 z-position (km):    -80385.612 */
/*        J2000 x-velocity (km/s):   0.669216846 */
/*        J2000 y-velocity (km/s):  -0.642114815 */
/*        J2000 z-velocity (km/s):  -0.294458645 */
/*        One-way light time (s):    1.3438081 */
/*        Light time rate:           1.00673404E-07 */


/* $ Restrictions */

/*     1) The kernel files to be used by SPKACS must be loaded */
/*        (normally by the SPICELIB kernel loader FURNSH) before */
/*        this routine is called. */

/*     2) Unlike most other SPK state computation routines, this */
/*        routine requires that the output state be relative to an */
/*        inertial reference frame. */

/* $ Literature_References */

/*     SPK Required Reading. */

/* $ Author_and_Institution */

/*     N.J. Bachman    (JPL) */

/* $ Version */

/* -    SPICELIB Version 1.0.1, 04-JUL-2014 (NJB) */

/*        Discussion of light time corrections was updated. Assertions */
/*        that converged light time corrections are unlikely to be */
/*        useful were removed. */

/* -    SPICELIB Version 1.0.0, 11-JAN-2008 (NJB) */

/* -& */
/* $ Index_Entries */

/*     low-level aberration correction */
/*     aberration-corrected state from spk file */
/*     get light time and stellar aberration-corrected state */

/* -& */
/* $ Revisions */

/*     None. */

/* -& */

/*     SPICELIB functions */


/*     Local parameters */


/*     Local variables */


/*     Saved variables */


/*     Initial values */


/*     Standard SPICE error handling. */

    if (return_()) {
	return 0;
    } else {
	chkin_("ZZSPKAC0", (ftnlen)8);
    }
    if (first || s_cmp(abcorr, prvcor, abcorr_len, (ftnlen)5) != 0) {

/*        The aberration correction flag differs from the value it */
/*        had on the previous call, if any.  Analyze the new flag. */

	zzprscor_(abcorr, attblk, abcorr_len);
	if (failed_()) {
	    chkout_("ZZSPKAC0", (ftnlen)8);
	    return 0;
	}

/*        The aberration correction flag is recognized; save it. */

	s_copy(prvcor, abcorr, (ftnlen)5, abcorr_len);

/*        Set logical flags indicating the attributes of the requested */
/*        correction: */

/*           USESTL is .TRUE. when stellar aberration correction is */
/*           specified. */

/*        The above definitions are consistent with those used by */
/*        ZZPRSCOR. */

	usestl = attblk[2];
	first = FALSE_;
    }

/*     See if the reference frame is a recognized inertial frame. */

    irfnum_(ref, &refid, ref_len);
    if (refid == 0) {
	setmsg_("The requested frame '#' is not a recognized inertial frame. "
		, (ftnlen)60);
	errch_("#", ref, (ftnlen)1, ref_len);
	sigerr_("SPICE(BADFRAME)", (ftnlen)15);
	chkout_("ZZSPKAC0", (ftnlen)8);
	return 0;
    }

/*     Prepare to look up the apparent state of the target */
/*     as seen by the observer. We'll need the geometric */
/*     state of the observer relative to the solar system */
/*     barycenter. If we're using stellar aberration */
/*     corrections, we'll need the observer's acceleration */
/*     as well. */

/*     Get the geometric state of the observer relative to the SSB, */
/*     which we'll call SSBOBS. */

    zzspkgo0_(obs, et, ref, &c__0, ssbobs, &ssblt, ref_len);
    if (usestl) {

/*        Numerically differentiate the observer velocity relative to */
/*        the SSB to obtain acceleration. We first evaluate the */
/*        geometric state of the observer relative to the solar system */
/*        barycenter at ET +/- DELTA. */
	for (i__ = 1; i__ <= 2; ++i__) {
	    t = *et + ((i__ << 1) - 3) * 1.;
	    zzspkgo0_(obs, &t, ref, &c__0, &stobs[(i__1 = i__ * 6 - 6) < 12 &&
		     0 <= i__1 ? i__1 : s_rnge("stobs", i__1, "zzspkac0_", (
		    ftnlen)632)], &ltssb, ref_len);
	}
	qderiv_(&c__3, &stobs[3], &stobs[9], &c_b13, acc);
    } else {
	cleard_(&c__3, acc);
    }

/*     Look up the apparent state. The light time and light */
/*     rate are returned as well. */

    zzspkas0_(targ, et, ref, abcorr, ssbobs, acc, starg, lt, dlt, ref_len, 
	    abcorr_len);
    chkout_("ZZSPKAC0", (ftnlen)8);
    return 0;
} /* zzspkac0_ */
Exemplo n.º 3
0
/* $Procedure ZZSTELAB ( Private --- stellar aberration correction ) */
/* Subroutine */ int zzstelab_(logical *xmit, doublereal *accobs, doublereal *
	vobs, doublereal *starg, doublereal *scorr, doublereal *dscorr)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);
    integer s_rnge(char *, integer, char *, integer);

    /* Local variables */
    extern /* Subroutine */ int vadd_(doublereal *, doublereal *, doublereal *
	    );
    doublereal dphi, rhat[3];
    extern /* Subroutine */ int vhat_(doublereal *, doublereal *);
    extern doublereal vdot_(doublereal *, doublereal *);
    extern /* Subroutine */ int vequ_(doublereal *, doublereal *);
    doublereal term1[3], term2[3], term3[3], c__, lcacc[3];
    integer i__;
    doublereal s;
    extern /* Subroutine */ int chkin_(char *, ftnlen);
    doublereal saoff[6]	/* was [3][2] */, drhat[3];
    extern /* Subroutine */ int dvhat_(doublereal *, doublereal *);
    doublereal ptarg[3], evobs[3], srhat[6], vphat[3], vtarg[3];
    extern /* Subroutine */ int vlcom_(doublereal *, doublereal *, doublereal 
	    *, doublereal *, doublereal *), vperp_(doublereal *, doublereal *,
	     doublereal *);
    extern doublereal vnorm_(doublereal *);
    extern logical vzero_(doublereal *);
    extern /* Subroutine */ int vlcom3_(doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *), cleard_(integer *, doublereal *);
    doublereal vp[3];
    extern doublereal clight_(void);
    doublereal dptmag, ptgmag, eptarg[3], dvphat[3], lcvobs[3];
    extern /* Subroutine */ int qderiv_(integer *, doublereal *, doublereal *,
	     doublereal *, doublereal *), sigerr_(char *, ftnlen), chkout_(
	    char *, ftnlen), setmsg_(char *, ftnlen);
    doublereal svphat[6];
    extern logical return_(void);
    extern /* Subroutine */ int vminus_(doublereal *, doublereal *);
    doublereal sgn, dvp[3], svp[6];

/* $ Abstract */

/*     SPICE Private routine intended solely for the support of SPICE */
/*     routines.  Users should not call this routine directly due */
/*     to the volatile nature of this routine. */

/*     Return the state (position and velocity) of a target body */
/*     relative to an observing body, optionally corrected for light */
/*     time (planetary aberration) and stellar aberration. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Required_Reading */

/*     SPK */

/* $ Keywords */

/*     EPHEMERIS */

/* $ Declarations */
/* $ Brief_I/O */

/*     Variable  I/O  Description */
/*     --------  ---  -------------------------------------------------- */
/*     XMIT       I   Reception/transmission flag. */
/*     ACCOBS     I   Observer acceleration relative to SSB. */
/*     VOBS       I   Observer velocity relative to to SSB. */
/*     STARG      I   State of target relative to observer. */
/*     SCORR      O   Stellar aberration correction for position. */
/*     DSCORR     O   Stellar aberration correction for velocity. */

/* $ Detailed_Input */

/*     XMIT        is a logical flag which is set to .TRUE. for the */
/*                 "transmission" case in which photons *depart* from */
/*                 the observer's location at an observation epoch ET */
/*                 and arrive at the target's location at the light-time */
/*                 corrected epoch ET+LT, where LT is the one-way light */
/*                 time between observer and target; XMIT is set to */
/*                 .FALSE. for "reception" case in which photons depart */
/*                 from the target's location at the light-time */
/*                 corrected epoch ET-LT and *arrive* at the observer's */
/*                 location at ET. */

/*                 Note that the observation epoch is not used in this */
/*                 routine. */

/*                 XMIT must be consistent with any light time */
/*                 corrections used for the input state STARG: if that */
/*                 state has been corrected for "reception" light time; */
/*                 XMIT must be .FALSE.; otherwise XMIT must be .TRUE. */

/*     ACCOBS      is the geometric acceleration of the observer */
/*                 relative to the solar system barycenter. Units are */
/*                 km/sec**2. ACCOBS must be expressed relative to */
/*                 an inertial reference frame. */

/*     VOBS        is the geometric velocity of the observer relative to */
/*                 the solar system barycenter. VOBS must be expressed */
/*                 relative to the same inertial reference frame as */
/*                 ACCOBS. Units are km/sec. */

/*     STARG       is the Cartesian state of the target relative to the */
/*                 observer. Normally STARG has been corrected for */
/*                 one-way light time, but this is not required. STARG */
/*                 must be expressed relative to the same inertial */
/*                 reference frame as ACCOBS. Components are */
/*                 (x, y, z, dx, dy, dz). Units are km and km/sec. */

/* $ Detailed_Output */

/*     SCORR       is the stellar aberration correction for the position */
/*                 component of STARG. Adding SCORR to this position */
/*                 vector produces the input observer-target position, */
/*                 corrected for stellar aberration. */

/*                 The reference frame of SCORR is the common frame */
/*                 relative to which the inputs ACCOBS, VOBS, and STARG */
/*                 are expressed. Units are km. */

/*     DSCORR      is the stellar aberration correction for the velocity */
/*                 component of STARG. Adding DSCORR to this velocity */
/*                 vector produces the input observer-target velocity, */
/*                 corrected for stellar aberration. */

/*                 The reference frame of DSCORR is the common frame */
/*                 relative to which the inputs ACCOBS, VOBS, and STARG */
/*                 are expressed. Units are km/s. */

/* $ Parameters */

/*     None. */

/* $ Exceptions */

/*     1) If attempt to divide by zero occurs, the error */
/*        SPICE(DIVIDEBYZERO) will be signaled. This case may occur */
/*        due to uninitialized inputs. */

/*     2) Loss of precision will occur for geometric cases in which */
/*        VOBS is nearly parallel to the position component of STARG. */

/* $ Files */

/*     None. */

/* $ Particulars */

/*     This routine computes a Newtonian estimate of the stellar */
/*     aberration correction of an input state. Normally the input state */
/*     has already been corrected for one-way light time. */

/*     Since stellar aberration corrections are typically "small" */
/*     relative to the magnitude of the input observer-target position */
/*     and velocity, this routine avoids loss of precision by returning */
/*     the corrections themselves rather than the corrected state */
/*     vector. This allows the caller to manipulate (for example, */
/*     interpolate) the corrections with greater accuracy. */

/* $ Examples */

/*     See SPICELIB routine SPKACS. */

/* $ Restrictions */

/*     None. */

/* $ Literature_References */

/*     SPK Required Reading. */

/* $ Author_and_Institution */

/*     N.J. Bachman    (JPL) */

/* $ Version */

/* -    SPICELIB Version 2.0.0, 15-APR-2014 (NJB) */

/*        Added RETURN test and discovery check-in. */
/*        Check for division by zero was added. This */
/*        case might occur due to uninitialized inputs. */

/* -    SPICELIB Version 1.0.1, 12-FEB-2009 (NJB) */

/*        Minor updates were made to the inline documentation. */

/* -    SPICELIB Version 1.0.0, 17-JAN-2008 (NJB) */

/* -& */

/*     Note for the maintenance programmer */
/*     =================================== */

/*     The source code of the test utility T_ZZSTLABN must be */
/*     kept in sync with the source code of this routine. That */
/*     routine uses a value of SEPLIM that forces the numeric */
/*     branch of the velocity computation to be taken in all */
/*     cases. See the documentation of that routine for details. */


/*     SPICELIB functions */


/*     Local parameters */


/*     Let PHI be the (non-negative) rotation angle of the stellar */
/*     aberration correction; then SEPLIM is a limit on how close PHI */
/*     may be to zero radians while stellar aberration velocity is */
/*     computed analytically. When sin(PHI) is less than SEPLIM, the */
/*     velocity must be computed numerically. */


/*     Let TDELTA be the time interval, measured in seconds, */
/*     used for numerical differentiation of the stellar */
/*     aberration correction, when this is necessary. */


/*     Local variables */


/*     Use discovery check-in. */

    if (return_()) {
	return 0;
    }

/*     In the discussion below, the dot product of vectors X and Y */
/*     is denoted by */

/*        <X,Y> */

/*     The speed of light is denoted by the lower case letter "c." BTW, */
/*     variable names used here are case-sensitive: upper case "C" */
/*     represents a different quantity which is unrelated to the speed */
/*     of light. */

/*     Variable names ending in "HAT" denote unit vectors. Variable */
/*     names starting with "D" denote derivatives with respect to time. */

/*     We'll compute the correction SCORR and its derivative with */
/*     respect to time DSCORR for the reception case. In the */
/*     transmission case, we perform the same computation with the */
/*     negatives of the observer velocity and acceleration. */

/*     In the code below, we'll store the position and velocity portions */
/*     of the input observer-target state STARG in the variables PTARG */
/*     and VTARG, respectively. */

/*     Let VP be the component of VOBS orthogonal to PTARG. VP */
/*     is defined as */

/*         VOBS - < VOBS, RHAT > RHAT                                 (1) */

/*     where RHAT is the unit vector */

/*         PTARG/||PTARG|| */

/*     Then */

/*        ||VP||/c                                                    (2) */

/*     is the magnitude of */

/*        s = sin( phi )                                              (3) */

/*     where phi is the stellar aberration correction angle. We'll */
/*     need the derivative with respect to time of (2). */

/*     Differentiating (1) with respect to time yields the */
/*     velocity DVP, where, letting */

/*        DRHAT  =  d(RHAT) / dt */
/*        VPHAT  =  VP      / ||VP|| */
/*        DVPMAG =  d( ||VP|| ) / dt */

/*     we have */

/*        DVP = d(VP)/dt */

/*            = ACCOBS - (  ( <VOBS,DRHAT> + <ACCOBS, RHAT> )*RHAT */
/*                        +   <VOBS,RHAT>  * DRHAT                 )  (4) */

/*     and */

/*        DVPMAG = < DVP, VPHAT >                                     (5) */

/*     Now we can find the derivative with respect to time of */
/*     the stellar aberration angle phi: */

/*        ds/dt = d(sin(phi))/dt = d(phi)/dt * cos(phi)               (6) */

/*     Using (2) and (5), we have for positive phi, */

/*        ds/dt = (1/c)*DVPMAG = (1/c)*<DVP, VPHAT>                   (7) */

/*     Then for positive phi */

/*        d(phi)/dt = (1/cos(phi)) * (1/c) * <DVP, VPHAT>             (8) */

/*     Equation (8) is well-defined as along as VP is non-zero: */
/*     if VP is the zero vector, VPHAT is undefined. We'll treat */
/*     the singular and near-singular cases separately. */

/*     The aberration correction itself is a rotation by angle phi */
/*     from RHAT towards VP, so the corrected vector is */

/*        ( sin(phi)*VPHAT + cos(phi)*RHAT ) * ||PTARG|| */

/*     and  we can express the offset of the corrected vector from */
/*     PTARG, which is the output SCORR, as */

/*        SCORR = */

/*        ( sin(phi)*VPHAT + (cos(phi)-1)*RHAT ) * ||PTARG||          (9) */

/*     Let DPTMAG be defined as */

/*        DPTMAG  =  d ( ||PTARG|| ) / dt                            (10) */

/*     Then the derivative with respect to time of SCORR is */

/*        DSCORR = */

/*             (      sin(phi)*DVPHAT */

/*                +   cos(phi)*d(phi)/dt * VPHAT */

/*                +  (cos(phi) - 1) * DRHAT */

/*                +  ( -sin(phi)*d(phi)/dt ) * RHAT   ) * ||PTARG|| */

/*           + ( sin(phi)*VPHAT + (cos(phi)-1)*RHAT ) * DPTMAG       (11) */


/*     Computations begin here: */

/*     Split STARG into position and velocity components. Compute */

/*        RHAT */
/*        DRHAT */
/*        VP */
/*        DPTMAG */

    if (*xmit) {
	vminus_(vobs, lcvobs);
	vminus_(accobs, lcacc);
    } else {
	vequ_(vobs, lcvobs);
	vequ_(accobs, lcacc);
    }
    vequ_(starg, ptarg);
    vequ_(&starg[3], vtarg);
    dvhat_(starg, srhat);
    vequ_(srhat, rhat);
    vequ_(&srhat[3], drhat);
    vperp_(lcvobs, rhat, vp);
    dptmag = vdot_(vtarg, rhat);

/*     Compute sin(phi) and cos(phi), which we'll call S and C */
/*     respectively. Note that phi is always close to zero for */
/*     realistic inputs (for which ||VOBS|| << CLIGHT), so the */
/*     cosine term is positive. */

    s = vnorm_(vp) / clight_();
/* Computing MAX */
    d__1 = 0., d__2 = 1 - s * s;
    c__ = sqrt((max(d__1,d__2)));
    if (c__ == 0.) {

/*        C will be used as a divisor later (in the computation */
/*        of DPHI), so we'll put a stop to the problem here. */

	chkin_("ZZSTELAB", (ftnlen)8);
	setmsg_("Cosine of the aberration angle is 0; this cannot occur for "
		"realistic observer velocities. This case can arise due to un"
		"initialized inputs. This cosine value is used as a divisor i"
		"n a later computation, so it must not be equal to zero.", (
		ftnlen)234);
	sigerr_("SPICE(DIVIDEBYZERO)", (ftnlen)19);
	chkout_("ZZSTELAB", (ftnlen)8);
	return 0;
    }

/*     Compute the unit vector VPHAT and the stellar */
/*     aberration correction. We avoid relying on */
/*     VHAT's exception handling for the zero vector. */

    if (vzero_(vp)) {
	cleard_(&c__3, vphat);
    } else {
	vhat_(vp, vphat);
    }

/*     Now we can use equation (9) to obtain the stellar */
/*     aberration correction SCORR: */

/*        SCORR = */

/*           ( sin(phi)*VPHAT + (cos(phi)-1)*RHAT ) * ||PTARG|| */


    ptgmag = vnorm_(ptarg);
    d__1 = ptgmag * s;
    d__2 = ptgmag * (c__ - 1.);
    vlcom_(&d__1, vphat, &d__2, rhat, scorr);

/*     Now we use S as an estimate of PHI to decide if we're */
/*     going to differentiate the stellar aberration correction */
/*     analytically or numerically. */

/*     Note that S is non-negative by construction, so we don't */
/*     need to use the absolute value of S here. */

    if (s >= 1e-6) {

/*        This is the analytic case. */

/*        Compute DVP---the derivative of VP with respect to time. */
/*        Recall equation (4): */

/*        DVP = d(VP)/dt */

/*            = ACCOBS - (  ( <VOBS,DRHAT> + <ACCOBS, RHAT> )*RHAT */
/*                        +   <VOBS,RHAT>  * DRHAT                 ) */

	d__1 = -vdot_(lcvobs, drhat) - vdot_(lcacc, rhat);
	d__2 = -vdot_(lcvobs, rhat);
	vlcom3_(&c_b7, lcacc, &d__1, rhat, &d__2, drhat, dvp);
	vhat_(vp, vphat);

/*        Now we can compute DVPHAT, the derivative of VPHAT: */

	vequ_(vp, svp);
	vequ_(dvp, &svp[3]);
	dvhat_(svp, svphat);
	vequ_(&svphat[3], dvphat);

/*        Compute the DPHI, the time derivative of PHI, using equation 8: */

/*           d(phi)/dt = (1/cos(phi)) * (1/c) * <DVP, VPHAT> */


	dphi = 1. / (c__ * clight_()) * vdot_(dvp, vphat);

/*        At long last we've assembled all of the "ingredients" required */
/*        to compute DSCORR: */

/*           DSCORR = */

/*             (     sin(phi)*DVPHAT */

/*                +  cos(phi)*d(phi)/dt * VPHAT */

/*                +  (cos(phi) - 1) * DRHAT */

/*                +  ( -sin(phi)*d(phi)/dt ) * RHAT   ) * ||PTARG|| */

/*                +  ( sin(phi)*VPHAT + (cos(phi)-1)*RHAT ) * DPTMAG */


	d__1 = c__ * dphi;
	vlcom_(&s, dvphat, &d__1, vphat, term1);
	d__1 = c__ - 1.;
	d__2 = -s * dphi;
	vlcom_(&d__1, drhat, &d__2, rhat, term2);
	vadd_(term1, term2, term3);
	d__1 = dptmag * s;
	d__2 = dptmag * (c__ - 1.);
	vlcom3_(&ptgmag, term3, &d__1, vphat, &d__2, rhat, dscorr);
    } else {

/*        This is the numeric case. We're going to differentiate */
/*        the stellar aberration correction offset vector using */
/*        a quadratic estimate. */

	for (i__ = 1; i__ <= 2; ++i__) {

/*           Set the sign of the time offset. */

	    if (i__ == 1) {
		sgn = -1.;
	    } else {
		sgn = 1.;
	    }

/*           Estimate the observer's velocity relative to the */
/*           solar system barycenter at the current epoch. We use */
/*           the local copies of the input velocity and acceleration */
/*           to make a linear estimate. */

	    d__1 = sgn * 1.;
	    vlcom_(&c_b7, lcvobs, &d__1, lcacc, evobs);

/*           Estimate the observer-target vector. We use the */
/*           observer-target state velocity to make a linear estimate. */

	    d__1 = sgn * 1.;
	    vlcom_(&c_b7, starg, &d__1, &starg[3], eptarg);

/*           Let RHAT be the unit observer-target position. */
/*           Compute the component of the observer's velocity */
/*           that is perpendicular to the target position; call */
/*           this vector VP. Also compute the unit vector in */
/*           the direction of VP. */

	    vhat_(eptarg, rhat);
	    vperp_(evobs, rhat, vp);
	    if (vzero_(vp)) {
		cleard_(&c__3, vphat);
	    } else {
		vhat_(vp, vphat);
	    }

/*           Compute the sine and cosine of the correction */
/*           angle. */

	    s = vnorm_(vp) / clight_();
/* Computing MAX */
	    d__1 = 0., d__2 = 1 - s * s;
	    c__ = sqrt((max(d__1,d__2)));

/*           Compute the vector offset of the correction. */

	    ptgmag = vnorm_(eptarg);
	    d__1 = ptgmag * s;
	    d__2 = ptgmag * (c__ - 1.);
	    vlcom_(&d__1, vphat, &d__2, rhat, &saoff[(i__1 = i__ * 3 - 3) < 6 
		    && 0 <= i__1 ? i__1 : s_rnge("saoff", i__1, "zzstelab_", (
		    ftnlen)597)]);
	}

/*        Now compute the derivative. */

	qderiv_(&c__3, saoff, &saoff[3], &c_b7, dscorr);
    }

/*     At this point the correction offset SCORR and its derivative */
/*     with respect to time DSCORR are both set. */

    return 0;
} /* zzstelab_ */