Exemplo n.º 1
0
quantum_reg quantum_new_qureg( unsigned long long initval, int width )
{
  quantum_reg reg;
  char *c;
  reg.width = width;
  reg.size = 1;
  reg.hashw = width + 2;
  reg.node = calloc( 1, sizeof( quantum_reg_node ) );
  if ( reg.node == 0 )
    quantum_error( 2 );
  quantum_memman( 16 );
  reg.hash = calloc( 1 << reg.hashw, sizeof( int ) );
  if ( reg.hash == 0 )
    quantum_error( 2 );
  quantum_memman( 4 << reg.hashw );
  reg.node->state = initval;
  reg.node->amplitude = 1.000000000000;
  c = getenv( "QUOBFILE" );
  if ( c != 0 )
  {
    quantum_objcode_start( );
    quantum_objcode_file( c );
    atexit( &quantum_objcode_exit );
  }
  quantum_objcode_put( 0, initval );
  return reg;
}
MAX_UNSIGNED
quantum_measure(quantum_reg reg)
{
  double r;
  int i;

  if(quantum_objcode_put(MEASURE))
    return 0;

  /* Get a random number between 0 and 1 */
  
  r = quantum_frand();

  for (i=0; i<reg.size; i++)
    {
      /* If the random number is less than the probability of the
	 given base state - r, return the base state as the
	 result. Otherwise, continue with the next base state. */

      r -= quantum_prob_inline(reg.node[i].amplitude);
      if(0.0 >= r)
		return reg.node[i].state;
    }

  /* The sum of all probabilities is less than 1. Usually, the cause
     for this is the application of a non-normalized matrix, but there
     is a slim chance that rounding errors may lead to this as
     well. */

  return -1;
}
int
quantum_bmeasure(int pos, quantum_reg *reg)
{
  int i;
  int result=0;
  double pa=0, r;
  MAX_UNSIGNED pos2;
  quantum_reg out;
  
  if(quantum_objcode_put(BMEASURE, pos))
     return 0;

  pos2 = (MAX_UNSIGNED) 1 << pos;

  /* Sum up the probability for 0 being the result */

  for(i=0; i<reg->size; i++)
    {
      if(!(reg->node[i].state & pos2))
	pa += quantum_prob_inline(reg->node[i].amplitude);
    }

  /* Compare the probability for 0 with a random number and determine
     the result of the measurement */

  r = quantum_frand();
  
  if (r > pa)
    result = 1;

  out = quantum_state_collapse(pos, result, *reg);

  quantum_delete_qureg_hashpreserve(reg);
  *reg = out;

  return result;
}
int
quantum_bmeasure_bitpreserve(int pos, quantum_reg *reg)
{
  int i, j;
  int size=0, result=0;
  double d=0, pa=0, r;
  MAX_UNSIGNED pos2;
  quantum_reg out;

  if(quantum_objcode_put(BMEASURE_P, pos))
     return 0;

  pos2 = (MAX_UNSIGNED) 1 << pos;

  /* Sum up the probability for 0 being the result */

  for(i=0; i<reg->size; i++)
    {
      if(!(reg->node[i].state & pos2))
	pa += quantum_prob_inline(reg->node[i].amplitude);
    }

  /* Compare the probability for 0 with a random number and determine
     the result of the measurement */

  r = quantum_frand();
  
  if (r > pa)
    result = 1;

  /* Eradicate all amplitudes of base states which have been ruled out
     by the measurement and get the absolute of the new register */

  for(i=0;i<reg->size;i++)
    {
      if(reg->node[i].state & pos2)
	{
	  if(!result)
	    reg->node[i].amplitude = 0;
	  else
	    {
	      d += quantum_prob_inline(reg->node[i].amplitude);
	      size++;
	    }
	}
      else
	{
	  if(result)
	    reg->node[i].amplitude = 0;
	  else
	    {
	      d += quantum_prob_inline(reg->node[i].amplitude);
	      size++;
	    }
	}
    }

  /* Build the new quantum register */

  out.size = size;
  out.node = calloc(size, sizeof(quantum_reg_node));
  if(!out.node)
    {
      printf("Not enough memory for %i-sized qubit!\n", size);
      exit(1);
    }
  quantum_memman(size * sizeof(quantum_reg_node));
  out.hashw = reg->hashw;
  out.hash = reg->hash;
  out.width = reg->width;

  /* Determine the numbers of the new base states and norm the quantum
     register */
  
  for(i=0, j=0; i<reg->size; i++)
    {
      if(reg->node[i].amplitude)
	{
	  out.node[j].state = reg->node[i].state;
	  out.node[j].amplitude = reg->node[i].amplitude * 1 / (float) sqrt(d);
	
	  j++;
	}
    }

  quantum_delete_qureg_hashpreserve(reg);
  *reg = out;
  return result;
}