Exemplo n.º 1
0
int main(int argc,char *argv[]) {
 
  char spinorfilename[100];
  char * filename = NULL;
  int sample=0, ts=0, ss=1, typeflag = 1, t0=0, piononly = 0, ext_sourceflag = 0;
  int is, ic, j, filenameflag = 0, appendflag = 0;
  complex co;
  int c;
  int prec=32;

  verbose = 0;
  g_use_clover_flag = 0;
  nstore = 0;
  L=0;
  T=0;
  
#ifdef MPI
  MPI_Init(&argc, &argv);
#endif

#ifdef OMP
  /* FIXME: in principle this should not be set like this as it could result
    in thread oversubscription when more than one process is run locally
    unfortunately, there does not seem to be a standard way to determine
    the number of "local" MPI processes  */
  omp_num_threads = omp_get_max_threads();
  init_openmp();
#endif

  while ((c = getopt(argc, argv, "h?NCpOEdao:L:T:n:t:s:S:P:")) != -1) {
    switch (c) {
    case 'L':
      L = atoi(optarg);
      LX = L;
      LY = L;
      LZ = L;
      break;
    case 'T':
      T = atoi(optarg);
      T_global = T;
      break;
    case 'N':
      typeflag = 0;
      break;
    case 'd':
      prec = 64;
      break;
    case 'O':
      piononly = 1;
      break;
    case 'n':
      nstore = atoi(optarg);
      break;
    case 's':
      sample = atoi(optarg);
      break;
    case 't':
      t0 = atoi(optarg);
      break;
    case 'S':
      ss = atoi(optarg);
      break;
    case 'P':
      ts = atoi(optarg);
      break;
    case 'o':
      filename = calloc(200, sizeof(char));
      strcpy(filename,optarg);
      break;
    case 'E':
      ext_sourceflag = 1;
      break;
    case 'p':
      filenameflag = 1;
      break;
    case 'a':
      appendflag = 1;
      break;
    case 'h':
    case '?':
    default:
      usage();
      break;
    }
  }
  if(ts == 0) {
    ts = T;
  }
  if(filename == NULL){
    filename = "source";
  } 
  if(L==0 || T==0) {
    if(g_proc_id == 0) {
      fprintf(stderr, "L and T must be specified! Aborting...\n");
      fflush( stderr );
    }
    exit(1);
  }

  tmlqcd_mpi_init(argc, argv);

  j = init_geometry_indices(VOLUMEPLUSRAND);
  if ( j!= 0) {
    fprintf(stderr, "Not enough memory for geometry_indices! Aborting...\n");
    exit(0);
  }
  if(!ext_sourceflag) {
    j = init_spinor_field(VOLUMEPLUSRAND/2, 2);
  }
  else {
    j = init_spinor_field(VOLUMEPLUSRAND/2, 4);
  }
  if ( j!= 0) {
    fprintf(stderr, "Not enough memory for spinor fields! Aborting...\n");
    exit(0);
  }

  /* define the geometry */
  geometry();
  
  if(!piononly) {
    for(is = 0; is < 4; is ++) {
      for(ic = 0; ic < 3; ic++) {
	if(!filenameflag && !appendflag) {
	  sprintf(spinorfilename, "%s.%.4d.%.4d.%.2d.%.2d", filename, nstore, sample, t0, 3*is+ic); 
	}
	else if(!filenameflag && appendflag) {
	  sprintf(spinorfilename, "%s.%.4d.%.4d.%.2d", filename, nstore, sample, t0); 
	}
	else{
	  sprintf(spinorfilename, "%s.%.2d", filename, 3*is+ic); 
	}
	if(!appendflag || (is == 0 && ic ==0)) {
	  printf("Generating source %s!\n", spinorfilename);
	  fflush(stdout);
	}
	
	source_generation_nucleon(g_spinor_field[0], g_spinor_field[1], 
				  is, ic, t0, ts, ss, sample, nstore, typeflag);
	
	co = scalar_prod(g_spinor_field[1], g_spinor_field[1], VOLUME/2, 1);
	if((is == 0 && ic == 0) || appendflag == 0) {
	  write_source_type(0, spinorfilename);
	}
	write_source(g_spinor_field[0], g_spinor_field[1], spinorfilename, 1, prec);
      }
    }
  }
  else {
    if(!ext_sourceflag) {
      if(!filenameflag) {
	sprintf(spinorfilename, "%s.%.4d.%.4d.%.2d", filename, nstore, sample, t0); 
      }
      else {
	sprintf(spinorfilename, "%s", filename); 
      }
      printf("Generating source %s!\n", spinorfilename);
      fflush(stdout);
      source_generation_pion_only(g_spinor_field[0], g_spinor_field[1], 
				  t0, sample, nstore);
      
      co = scalar_prod(g_spinor_field[1], g_spinor_field[1], VOLUME/2, 1);
      write_source_type(0, spinorfilename);
      write_source(g_spinor_field[0], g_spinor_field[1], spinorfilename, 1, prec);
    }
    else {
      if(!filenameflag) {
        sprintf(spinorfilename, "%s.%.4d.%.4d.%.2d.inverted", filename, nstore, sample, t0);
      }
      else {
        sprintf(spinorfilename, "%s.inverted", filename);
      }
      read_lime_spinor(g_spinor_field[0], g_spinor_field[1], spinorfilename, 0);

      printf("Generating ext. pion source %s!\n", spinorfilename);
      extended_pion_source(g_spinor_field[2], g_spinor_field[3],
			   g_spinor_field[0], g_spinor_field[1],
			   t0, 0., 0., 0.);
      if(!filenameflag) {
	sprintf(spinorfilename, "g%s.%.4d.%.4d.%.2d", filename, nstore, sample, t0); 
      }
      else {
	sprintf(spinorfilename, "g%s", filename); 
      }
      write_source_type(0, spinorfilename);
      write_source(g_spinor_field[2], g_spinor_field[3], spinorfilename, 1, prec);
    }
  }

#ifdef MPI
  MPI_Finalize();
#endif
  free_geometry_indices();
  free_spinor_field();
  return(0);
}
Exemplo n.º 2
0
int main(int argc, char **argv) {
  
  const int n_c=3;
  const int n_s=4;
  const char outfile_prefix[] = "delta_pp_2pt_v3";

  int c, i, icomp;
  int filename_set = 0;
  int append, status;
  int l_LX_at, l_LXstart_at;
  int ix, it, iix, x1,x2,x3;
  int ir, ir2, is;
  int VOL3;
  int do_gt=0;
  int dims[3];
  double *connt=NULL;
  spinor_propagator_type *connq=NULL;
  int verbose = 0;
  int sx0, sx1, sx2, sx3;
  int write_ascii=0;
  int fermion_type = 1;  // Wilson fermion type
  int num_threads=1;
  int pos;
  char filename[200], contype[200], gauge_field_filename[200];
  double ratime, retime;
  //double plaq_m, plaq_r;
  double *work=NULL;
  fermion_propagator_type fp1=NULL, fp2=NULL, fp3=NULL, fp4=NULL, fpaux=NULL, uprop=NULL, dprop=NULL, *stochastic_fp=NULL;
  spinor_propagator_type sp1, sp2;
  double q[3], phase, *gauge_trafo=NULL;
  double *stochastic_source=NULL, *stochastic_prop=NULL;
  complex w, w1;
  size_t items, bytes;
  FILE *ofs;
  int timeslice;
  DML_Checksum ildg_gauge_field_checksum, *spinor_field_checksum=NULL, connq_checksum;
  uint32_t nersc_gauge_field_checksum;

/***********************************************************/
  int *qlatt_id=NULL, *qlatt_count=NULL, **qlatt_rep=NULL, **qlatt_map=NULL, qlatt_nclass=0;
  int use_lattice_momenta = 0;
  double **qlatt_list=NULL;
/***********************************************************/

/***********************************************************/
  int rel_momentum_filename_set = 0, rel_momentum_no=0;
  int **rel_momentum_list=NULL;
  char rel_momentum_filename[200];
/***********************************************************/

/***********************************************************/
  int snk_momentum_no = 1;
  int **snk_momentum_list = NULL;
  int snk_momentum_filename_set = 0;
  char snk_momentum_filename[200];
/***********************************************************/

/*******************************************************************
 * Gamma components for the Delta:
 */
  //const int num_component = 16;
  //int gamma_component[2][16] = { {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3}, \
  //                               {0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3}};
  //double gamma_component_sign[16] = {1., 1.,-1., 1., 1., 1.,-1., 1.,-1.,-1., 1.,-1., 1., 1.,-1., 1.};
  const int num_component = 4;
  int gamma_component[2][4] = { {0, 1, 2, 3},
                                {0, 1, 2, 3} };
  double gamma_component_sign[4] = {+1.,+1.,+1.,+1.};
/*
 *******************************************************************/
  fftw_complex *in=NULL;
#ifdef MPI
   fftwnd_mpi_plan plan_p;
#else
   fftwnd_plan plan_p;
#endif 

#ifdef MPI
  MPI_Status status;
#endif

#ifdef MPI
  MPI_Init(&argc, &argv);
#endif

  while ((c = getopt(argc, argv, "ah?vgf:t:F:p:P:")) != -1) {
    switch (c) {
    case 'v':
      verbose = 1;
      break;
    case 'f':
      strcpy(filename, optarg);
      filename_set=1;
      break;
    case 'a':
      write_ascii = 1;
      fprintf(stdout, "# [] will write in ascii format\n");
      break;
    case 'F':
      if(strcmp(optarg, "Wilson") == 0) {
        fermion_type = _WILSON_FERMION;
      } else if(strcmp(optarg, "tm") == 0) {
        fermion_type = _TM_FERMION;
      } else {
        fprintf(stderr, "[] Error, unrecognized fermion type\n");
        exit(145);
      }
      fprintf(stdout, "# [] will use fermion type %s ---> no. %d\n", optarg, fermion_type);
      break;
    case 't':
      num_threads = atoi(optarg);
      fprintf(stdout, "# [] number of threads set to %d\n", num_threads);
      break;
    case 's':
      use_lattice_momenta = 1;
      fprintf(stdout, "# [] will use lattice momenta\n");
      break;
    case 'p':
      rel_momentum_filename_set = 1;
      strcpy(rel_momentum_filename, optarg);
      fprintf(stdout, "# [] will use current momentum file %s\n", rel_momentum_filename);
      break;
    case 'P':
      snk_momentum_filename_set = 1;
      strcpy(snk_momentum_filename, optarg);
      fprintf(stdout, "# [] will use nucleon momentum file %s\n", snk_momentum_filename);
      break;
    case 'g':
      do_gt = 1;
      fprintf(stdout, "# [] will perform gauge transform\n");
      break;
    case 'h':
    case '?':
    default:
      usage();
      break;
    }
  }

#ifdef OPENMP
  omp_set_num_threads(num_threads);
#endif

  /* set the default values */
  if(filename_set==0) strcpy(filename, "cvc.input");
  fprintf(stdout, "# reading input from file %s\n", filename);
  read_input_parser(filename);

  /* some checks on the input data */
  if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
    if(g_proc_id==0) fprintf(stdout, "T and L's must be set\n");
    usage();
  }
  if(g_kappa == 0.) {
    if(g_proc_id==0) fprintf(stdout, "kappa should be > 0.n");
    usage();
  }

  /* initialize MPI parameters */
  mpi_init(argc, argv);

#ifdef OPENMP
  status = fftw_threads_init();
  if(status != 0) {
    fprintf(stderr, "\n[] Error from fftw_init_threads; status was %d\n", status);
    exit(120);
  }
#endif

  /******************************************************
   *
   ******************************************************/
  VOL3 = LX*LY*LZ;
  l_LX_at      = LX;
  l_LXstart_at = 0;
  FFTW_LOC_VOLUME = T*LX*LY*LZ;
  fprintf(stdout, "# [%2d] parameters:\n"\
		  "# [%2d] l_LX_at      = %3d\n"\
		  "# [%2d] l_LXstart_at = %3d\n"\
		  "# [%2d] FFTW_LOC_VOLUME = %3d\n", 
		  g_cart_id, g_cart_id, l_LX_at,
		  g_cart_id, l_LXstart_at, g_cart_id, FFTW_LOC_VOLUME);

  if(init_geometry() != 0) {
    fprintf(stderr, "ERROR from init_geometry\n");
    exit(1);
  }

  geometry();

  if(N_Jacobi>0) {

    // alloc the gauge field
    alloc_gauge_field(&g_gauge_field, VOL3);
    switch(g_gauge_file_format) {
      case 0:
        sprintf(gauge_field_filename, "%s.%.4d", gaugefilename_prefix, Nconf);
        break;
      case 1:
        sprintf(gauge_field_filename, "%s.%.5d", gaugefilename_prefix, Nconf);
        break;
    }
  } else {
    g_gauge_field = NULL;
  }


  /*********************************************************************
   * gauge transformation
   *********************************************************************/
  if(do_gt) { init_gauge_trafo(&gauge_trafo, 1.); }

  // determine the source location
  sx0 = g_source_location/(LX*LY*LZ)-Tstart;
  sx1 = (g_source_location%(LX*LY*LZ)) / (LY*LZ);
  sx2 = (g_source_location%(LY*LZ)) / LZ;
  sx3 = (g_source_location%LZ);
//  g_source_time_slice = sx0;
  fprintf(stdout, "# [] source location %d = (%d,%d,%d,%d)\n", g_source_location, sx0, sx1, sx2, sx3);
  source_timeslice = sx0;


  if(!use_lattice_momenta) {
    status = make_qcont_orbits_3d_parity_avg(&qlatt_id, &qlatt_count, &qlatt_list, &qlatt_nclass, &qlatt_rep, &qlatt_map);
  } else {
    status = make_qlatt_orbits_3d_parity_avg(&qlatt_id, &qlatt_count, &qlatt_list, &qlatt_nclass, &qlatt_rep, &qlatt_map);
  }
  if(status != 0) {
    fprintf(stderr, "\n[] Error while creating h4-lists\n");
    exit(4);
  }
  fprintf(stdout, "# [] number of classes = %d\n", qlatt_nclass);


  /***************************************************************************
   * read the relative momenta q to be used
   ***************************************************************************/
/*
  ofs = fopen(rel_momentum_filename, "r");
  if(ofs == NULL) {
    fprintf(stderr, "[] Error, could not open file %s for reading\n", rel_momentum_filename);
    exit(6);
  }
  rel_momentum_no = 0;
  while( fgets(line, 199, ofs) != NULL) {
    if(line[0] != '#') {
      rel_momentum_no++;
    }
  }
  if(rel_momentum_no == 0) {
    fprintf(stderr, "[] Error, number of momenta is zero\n");
    exit(7);
  } else {
    fprintf(stdout, "# [] number of current momenta = %d\n", rel_momentum_no);
  }
  rewind(ofs);
  rel_momentum_list = (int**)malloc(rel_momentum_no * sizeof(int*));
  rel_momentum_list[0] = (int*)malloc(3*rel_momentum_no * sizeof(int));
  for(i=1;i<rel_momentum_no;i++) { rel_momentum_list[i] = rel_momentum_list[i-1] + 3; }
  count=0;
  while( fgets(line, 199, ofs) != NULL) {
    if(line[0] != '#') {
      sscanf(line, "%d%d%d", rel_momentum_list[count], rel_momentum_list[count]+1, rel_momentum_list[count]+2);
      count++;
    }
  }
  fclose(ofs);
  fprintf(stdout, "# [] current momentum list:\n");
  for(i=0;i<rel_momentum_no;i++) {
    fprintf(stdout, "\t%3d%3d%3d%3d\n", i, rel_momentum_list[i][0], rel_momentum_list[i][1], rel_momentum_list[i][2]);
  }
*/

  /***************************************************************************
   * read the nucleon final momenta to be used
   ***************************************************************************/
  ofs = fopen(snk_momentum_filename, "r");
  if(ofs == NULL) {
    fprintf(stderr, "[] Error, could not open file %s for reading\n", snk_momentum_filename);
    exit(6);
  }
  snk_momentum_no = 0;
  while( fgets(line, 199, ofs) != NULL) {
    if(line[0] != '#') {
      snk_momentum_no++;
    }
  }
  if(snk_momentum_no == 0) {
    fprintf(stderr, "[] Error, number of momenta is zero\n");
    exit(7);
  } else {
    fprintf(stdout, "# [] number of nucleon final momenta = %d\n", snk_momentum_no);
  }
  rewind(ofs);
  snk_momentum_list = (int**)malloc(snk_momentum_no * sizeof(int*));
  snk_momentum_list[0] = (int*)malloc(3*snk_momentum_no * sizeof(int));
  for(i=1;i<snk_momentum_no;i++) { snk_momentum_list[i] = snk_momentum_list[i-1] + 3; }
  count=0;
  while( fgets(line, 199, ofs) != NULL) {
    if(line[0] != '#') {
      sscanf(line, "%d%d%d", snk_momentum_list[count], snk_momentum_list[count]+1, snk_momentum_list[count]+2);
      count++;
    }
  }
  fclose(ofs);
  fprintf(stdout, "# [] the nucleon final momentum list:\n");
  for(i=0;i<snk_momentum_no;i++) {
    fprintf(stdout, "\t%3d%3d%3d%3d\n", i, snk_momentum_list[i][0], snk_momentum_list[i][1], snk_momentum_list[i][1], snk_momentum_list[i][2]);
  }



  /***********************************************************
   * allocate memory for the spinor fields
   ***********************************************************/
  g_spinor_field = NULL;
  if(fermion_type == _TM_FERMION) {
    no_fields = 2*n_s*n_c+3;
  } else {
    no_fields =   n_s*n_c+3;
  }
  if(N_Jacobi>0) no_fields++;

  g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
  for(i=0; i<no_fields-2; i++) alloc_spinor_field(&g_spinor_field[i], VOL3);
  // work
  if(N_Jacobi>0) work = g_spinor_field[no_fields-4];
  // stochastic_fv
  stochastic_fv = g_spinor_field[no_fields-3];
  // stochastic source and propagator
  alloc_spinor_field(&g_spinor_field[no_fields-2], VOLUME);
  stochastic_source = g_spinor_field[no_fields-2];
  alloc_spinor_field(&g_spinor_field[no_fields-1], VOLUME);
  stochastic_prop   = g_spinor_field[no_fields-1];


  spinor_field_checksum = (DML_Checksum*)malloc(no_fields * sizeof(DML_Checksum) );
  if(spinor_field_checksum == NULL ) {
    fprintf(stderr, "[] Error, could not alloc checksums for spinor fields\n");
    exit(73);
  }
  
  /*************************************************
   * allocate memory for the contractions
   *************************************************/
  items = 4* num_component*T;
  bytes = sizeof(double);
  connt = (double*)malloc(items*bytes);
  if(connt == NULL) {
    fprintf(stderr, "\n[] Error, could not alloc connt\n");
    exit(2);
  }
  for(ix=0; ix<items; ix++) connt[ix] = 0.;

  items = num_component * (size_t)VOL3;
  connq = create_sp_field( items );
  if(connq == NULL) {
    fprintf(stderr, "\n[] Error, could not alloc connq\n");
    exit(2);
  }

  items = (size_t)VOL3;
  stochastic_fp = create_sp_field( items );
  if(stochastic_fp== NULL) {
    fprintf(stderr, "\n[] Error, could not alloc stochastic_fp\n");
    exit(22);
  }

  /******************************************************
   * initialize FFTW
   ******************************************************/
  items = g_fv_dim * (size_t)VOL3;
  bytes = sizeof(fftw_complex);
  in  = (fftw_complex*)malloc( items * bytes );
  if(in == NULL) {
    fprintf(stderr, "[] Error, could not malloc in for FFTW\n");
    exit(155);
  }
  dims[0]=LX; dims[1]=LY; dims[2]=LZ;
  //plan_p = fftwnd_create_plan(3, dims, FFTW_FORWARD, FFTW_MEASURE | FFTW_IN_PLACE);
  plan_p = fftwnd_create_plan_specific(3, dims, FFTW_FORWARD, FFTW_MEASURE, in, g_fv_dim, (fftw_complex*)( stochastic_fv ), g_fv_dim);

  // create the fermion propagator points
  create_fp(&uprop);
  create_fp(&dprop);
  create_fp(&fp1);
  create_fp(&fp2);
  create_fp(&fp3);
  create_fp(&stochastic_fp);
  create_sp(&sp1);
  create_sp(&sp2);


  // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  // !! implement twisting for _TM_FERMION
  // !!
  // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#ifdef OPENMP
#pragma omp parallel for private(ix) shared(stochastic_prop)
#endif
  for(ix=0;ix<VOLUME;ix++) { _fv_eq_zero(stochastic_prop+_GSI(ix)); }

  for(sid=g_sourceid; sid<=g_sourceid2;sid+=g_sourceid_step) {
    switch(g_soruce_type) {
      case 2:  // timeslice source
        sprintf(filename, "%s.%.4d.%.2d.%.5d.inverted", filename_prefix, Nconf, source_timeslice, sid);
        break;
      default:
        fprintf(stderr, "# [] source type %d not implented; exit\n", g_source_type);
        exit(100);
    }
    fprintf(stdout, "# [] trying to read sample up-prop. from file %s\n", filename);
    read_lime_spinor(stochastic_source, filename, 0);
#ifdef OPENMP
#pragma omp parallel for private(ix) shared(stochastic_prop, stochastic_source)
#endif
    for(ix=0;ix<VOLUME;ix++) { _fv_pl_eq_fv(stochastic_prop+_GSI(ix), stochastic_source+_GSI(ix)); }
  }
#ifdef OPENMP
#pragma omp parallel for private(ix) shared(stochastic_prop, stochastic_source)
#endif
  fnorm = 1. / ( (double)(g_sourceid2 - g_sourceid + 1) * g_prop_normsqr );
  for(ix=0;ix<VOLUME;ix++) { _fv_ti_eq_re(stochastic_prop+_GSI(ix), fnorm); }
  //  calculate the source
  if(fermion_type && g_propagator_bc_type == 1) {
    Q_Wilson_phi(stochastic_source, stochastic_prop);
  } else {
    Q_phi_tbc(stochastic_source, stochastic_prop);
  }

  /******************************************************
   * prepare the stochastic fermion field
   ******************************************************/
  // read timeslice of the gauge field
  if( N_Jacobi>0) {
    switch(g_gauge_file_format) {
      case 0:
        status = read_lime_gauge_field_doubleprec_timeslice(g_gauge_field, gauge_field_filename, source_timeslice, &ildg_gauge_field_checksum);
        break;
      case 1:
        status = read_nersc_gauge_field_timeslice(g_gauge_field, gauge_field_filename, source_timeslice, &nersc_gauge_field_checksum);
        break;
    }
    if(status != 0) {
      fprintf(stderr, "[] Error, could not read gauge field\n");
      exit(21);
    }
    for(i=0; i<N_ape; i++) {
#ifdef OPENMP
      status = APE_Smearing_Step_Timeslice_threads(g_gauge_field, alpha_ape);
#else
      status = APE_Smearing_Step_Timeslice(g_gauge_field, alpha_ape);
#endif
    }
  }
  // read timeslice of the 12 up-type propagators and smear them
  //
  // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  // !! implement twisting for _TM_FERMION
  // !!
  // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  for(is=0;is<n_s*n_c;is++) {
    if(fermion_type != _TM_FERMION) {
      sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d.inverted", filename_prefix, Nconf, sx0, sx1, sx2, sx3, is);
    } else {
      sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d.inverted", filename_prefix2, Nconf, sx0, sx1, sx2, sx3, is);
    }
    status = read_lime_spinor_timeslice(g_spinor_field[is], source_timeslice, filename, 0, spinor_field_checksum+is);
    if(status != 0) {
      fprintf(stderr, "[] Error, could not read propagator from file %s\n", filename);
      exit(102);
    }
    if(N_Jacobi > 0) {
      fprintf(stdout, "# [] Jacobi smearing propagator no. %d with paramters N_Jacobi=%d, kappa_Jacobi=%f\n",
          is, N_Jacobi, kappa_Jacobi);
      for(c=0; c<N_Jacobi; c++) {
#ifdef OPENMP
        Jacobi_Smearing_Step_one_Timeslice_threads(g_gauge_field, g_spinor_field[is], work, kappa_Jacobi);
#else
        Jacobi_Smearing_Step_one_Timeslice(g_gauge_field, g_spinor_field[is], work, kappa_Jacobi);
#endif
      }
    }
  }
  for(is=0;is<g_fv_dim;is++) {
    for(ix=0;ix<VOL3;ix++) {
      iix = source_timeslice * VOL3 + ix;
      _fv_eq_gamma_ti_fv(spinor1, 5, g_spinor_field[is]+_GSI(iix));
      _co_eq_fv_dagger_ti_fv(&w, stochastic_source+_GSI(ix), spinor1);
      stochastic_fv[_GSI(ix)+2*is  ] = w.re;
      stochastic_fv[_GSI(ix)+2*is+1] = w.im;
    }
  }
  // Fourier transform
  items = g_fv_dim * (size_t)VOL3;
  bytes = sizeof(double);
  memcpy(in, stochastic_fv, items*bytes );
#ifdef OPENMP
  fftwnd_threads(num_threads, plan_p, g_fv_dim, in, g_fv_dim, 1, (fftw_complex*)(stochastic_fv), g_fv_dim, 1);
#else
  fftwnd(plan_p, g_fv_dim, in, g_fv_dim, 1, (fftw_complex*)(stochastic_fv), g_fv_dim, 1);
#endif


  /******************************************************
   * loop on sink momenta (most likely only one: Q=(0,0,0))
   ******************************************************/
  for(imom_snk=0;imom_snk<snk_momentum_no; imom_snk++) {

    // create Phi_tilde
    _fv_eq_zero( spinor2 );
    for(ix=0;ix<LX;ix++) {
    for(iy=0;iy<LY;iy++) {
    for(iz=0;iz<LZ;iz++) {
      iix = timeslice * VOL3 + ix;
      phase = -2.*M_PI*( (ix-sx1) * snk_momentum_list[imom_snk][0] / (double)LX 
                       + (iy-sx2) * snk_momentum_list[imom_snk][1] / (double)LY 
                       + (iz-sx3) * snk_momentum_list[imom_snk][2] / (double)LZ);
      w.re = cos(phase);
      w.im = sin(phase);
      _fv_eq_fv_ti_co(spinor1, stochastic_prop + _GSI(iix), &w);
      _fv_pl_eq_fv(spinor2, spinor);
    }}}
    // create Theta
    for(ir=0;ir<g_fv_dim;ir++) {
    for(is=0;is<g_fv_dim;is++) {
      _co_eq_co_ti_co( &(stochastic_fp[ix][ir][2*is]), &(spinor2[2*ir]), &(stochastic_fv[_GSI(ix)+2*is]) );
    }}

    /******************************************************
     * loop on timeslices
     ******************************************************/
    for(timeslice=0; timeslice<T; timeslice++) {
      append = (int)( timeslice != 0 );

      // read timeslice of the gauge field
      if( N_Jacobi>0) {
        switch(g_gauge_file_format) {
          case 0:
            status = read_lime_gauge_field_doubleprec_timeslice(g_gauge_field, gauge_field_filename, timeslice, &ildg_gauge_field_checksum);
            break;
          case 1:
            status = read_nersc_gauge_field_timeslice(g_gauge_field, gauge_field_filename, timeslice, &nersc_gauge_field_checksum);
            break;
        }
        if(status != 0) {
          fprintf(stderr, "[] Error, could not read gauge field\n");
          exit(21);
        }

        for(i=0; i<N_ape; i++) {
#ifdef OPENMP
          status = APE_Smearing_Step_Timeslice_threads(g_gauge_field, alpha_ape);
#else
          status = APE_Smearing_Step_Timeslice(g_gauge_field, alpha_ape);
#endif
        }

      }

      // read timeslice of the 12 up-type propagators and smear them
      for(is=0;is<n_s*n_c;is++) {
          sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d.inverted", filename_prefix, Nconf, sx0, sx1, sx2, sx3, is);
          status = read_lime_spinor_timeslice(g_spinor_field[is], timeslice, filename, 0, spinor_field_checksum+is);
          if(status != 0) {
            fprintf(stderr, "[] Error, could not read propagator from file %s\n", filename);
            exit(102);
          }
          if(N_Jacobi > 0) {
            fprintf(stdout, "# [] Jacobi smearing propagator no. %d with paramters N_Jacobi=%d, kappa_Jacobi=%f\n",
                is, N_Jacobi, kappa_Jacobi);
            for(c=0; c<N_Jacobi; c++) {
#ifdef OPENMP
              Jacobi_Smearing_Step_one_Timeslice_threads(g_gauge_field, g_spinor_field[is], work, kappa_Jacobi);
#else
              Jacobi_Smearing_Step_one_Timeslice(g_gauge_field, g_spinor_field[is], work, kappa_Jacobi);
#endif
            }
          }
      }

      if(fermion_type == _TM_FERMION) {
        // read timeslice of the 12 down-type propagators, smear them
        for(is=0;is<n_s*n_c;is++) {
          if(do_gt == 0) {
            sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d.inverted", filename_prefix2, Nconf, sx0, sx1, sx2, sx3, is);
            status = read_lime_spinor_timeslice(g_spinor_field[n_s*n_c+is], timeslice, filename, 0, spinor_field_checksum+n_s*n_c+is);
            if(status != 0) {
              fprintf(stderr, "[] Error, could not read propagator from file %s\n", filename);
              exit(102);
            }
            if(N_Jacobi > 0) {
              fprintf(stdout, "# [] Jacobi smearing propagator no. %d with paramters N_Jacobi=%d, kappa_Jacobi=%f\n",
                   is, N_Jacobi, kappa_Jacobi);
              for(c=0; c<N_Jacobi; c++) {
#ifdef OPENMP
                Jacobi_Smearing_Step_one_Timeslice_threads(g_gauge_field, g_spinor_field[n_s*n_c+is], work, kappa_Jacobi);
#else
                Jacobi_Smearing_Step_one_Timeslice(g_gauge_field, g_spinor_field[n_s*n_c+is], work, kappa_Jacobi);
#endif
              }
            }
        }
      }

  
      /******************************************************
       * contractions
       ******************************************************/
      for(ix=0;ix<VOL3;ix++) 
      //for(ix=0;ix<1;ix++) 
      {
  
        // assign the propagators
        _assign_fp_point_from_field(uprop, g_spinor_field, ix);
        if(fermion_type==_TM_FERMION) {
          _assign_fp_point_from_field(dprop, g_spinor_field+n_s*n_c, ix);
        } else {
          _fp_eq_fp(dprop, uprop);
        }
        flavor rotation for twisted mass fermions
        if(fermion_type == _TM_FERMION) {
          _fp_eq_rot_ti_fp(fp1, uprop, +1, fermion_type, fp2);
          _fp_eq_fp_ti_rot(uprop, fp1, +1, fermion_type, fp2);
  //        _fp_eq_rot_ti_fp(fp1, dprop, -1, fermion_type, fp2);
  //        _fp_eq_fp_ti_rot(dprop, fp1, -1, fermion_type, fp2);
        }
  
        // test: print fermion propagator point
        //printf_fp(uprop, stdout);
  
  
        for(icomp=0; icomp<num_component; icomp++) {
  
          _sp_eq_zero( connq[ix*num_component+icomp]);
  
          /******************************************************
           * first contribution
           ******************************************************/
          _fp_eq_zero(fp1);
          _fp_eq_zero(fp2);
          _fp_eq_zero(fp3);
          // C Gamma_1 x S_u = g0 g2 Gamma_1 S_u
          _fp_eq_gamma_ti_fp(fp1, gamma_component[0][icomp], uprop);
          _fp_eq_gamma_ti_fp(fp3, 2, fp1);
          _fp_eq_gamma_ti_fp(fp1, 0, fp3);
  
          // S_u x C Gamma_2 = S_u x g0 g2 Gamma_2
          _fp_eq_fp_ti_gamma(fp2, 0, uprop);
          _fp_eq_fp_ti_gamma(fp3, 2, fp2);
          _fp_eq_fp_ti_gamma(fp2, gamma_component[1][icomp], fp3);
    
          // first part
          // reduce
          _fp_eq_zero(fp3);
          _fp_eq_fp_eps_contract13_fp(fp3, fp1, uprop);
          // reduce to spin propagator
          _sp_eq_zero( sp1 );
          _sp_eq_fp_del_contract23_fp(sp1, fp2, fp3);
          // second part
          // reduce to spin propagator
          _sp_eq_zero( sp2 );
          _sp_eq_fp_del_contract24_fp(sp2, fp2, fp3);
          // add and assign
          _sp_pl_eq_sp(sp1, sp2);
          _sp_eq_sp_ti_re(sp2, sp1, -gamma_component_sign[icomp]);
          _sp_eq_sp( connq[ix*num_component+icomp], sp2);
  
          /******************************************************
           * second contribution
           ******************************************************/
          _fp_eq_zero(fp1);
          _fp_eq_zero(fp2);
          _fp_eq_zero(fp3);
          // first part
          // C Gamma_1 x S_u = g0 g2 Gamma_1 S_u 
          _fp_eq_gamma_ti_fp(fp1, gamma_component[0][icomp], uprop);
          _fp_eq_gamma_ti_fp(fp3, 2, fp1);
          _fp_eq_gamma_ti_fp(fp1, 0, fp3);
          // S_u x C Gamma_2 = S_u g0 g2 Gamma_2 (same S_u as above)
          _fp_eq_fp_ti_gamma(fp2, 0, fp1);
          _fp_eq_fp_ti_gamma(fp3, 2, fp2);
          _fp_eq_fp_ti_gamma(fp1, gamma_component[1][icomp], fp3);
          // reduce
          _fp_eq_zero(fp3);
          _fp_eq_fp_eps_contract13_fp(fp3, fp1, uprop);
          // reduce to spin propagator
          _sp_eq_zero( sp1 );
          _sp_eq_fp_del_contract23_fp(sp1, uprop, fp3);
          // second part
          // C Gamma_1 x S_u = g0 g2 Gamma_1 S_u
          _fp_eq_gamma_ti_fp(fp1, gamma_component[0][icomp], uprop);
          _fp_eq_gamma_ti_fp(fp3, 2, fp1);
          _fp_eq_gamma_ti_fp(fp1, 0, fp3);
          // S_u x C Gamma_2 = S_u g0 g2 Gamma_2
          _fp_eq_fp_ti_gamma(fp2, 0, uprop);
          _fp_eq_fp_ti_gamma(fp3, 2, fp2);
          _fp_eq_fp_ti_gamma(fp2, gamma_component[1][icomp], fp3);
          // reduce
          _fp_eq_zero(fp3);
          _fp_eq_fp_eps_contract13_fp(fp3, fp1, fp2);
          // reduce to spin propagator
          _sp_eq_zero( sp2 );
          _sp_eq_fp_del_contract24_fp(sp2, uprop, fp3);
          // add and assign
          _sp_pl_eq_sp(sp1, sp2);
          _sp_eq_sp_ti_re(sp2, sp1, -gamma_component_sign[icomp]);
          _sp_pl_eq_sp( connq[ix*num_component+icomp], sp2);
  
          /******************************************************
           * third contribution
           ******************************************************/
          _fp_eq_zero(fp1);
          _fp_eq_zero(fp2);
          _fp_eq_zero(fp3);
          // first part
          // C Gamma_1 x S_u = g0 g2 Gamma_1 S_u
          _fp_eq_gamma_ti_fp(fp1, gamma_component[0][icomp], uprop);
          _fp_eq_gamma_ti_fp(fp3, 2, fp1);
          _fp_eq_gamma_ti_fp(fp1, 0, fp3);
          // S_u x C Gamma_2 = S_u g0 g2 Gamma_2
          _fp_eq_fp_ti_gamma(fp2, 0, fp1);
          _fp_eq_fp_ti_gamma(fp3, 2, fp2);
          _fp_eq_fp_ti_gamma(fp1, gamma_component[1][icomp], fp3);
          // reduce
          _fp_eq_zero(fp3);
          _fp_eq_fp_eps_contract13_fp(fp3, fp1, uprop);
          // reduce to spin propagator
          _sp_eq_zero( sp1 );
          _sp_eq_fp_del_contract34_fp(sp1, uprop, fp3);
          // second part
          // C Gamma_1 x S_u = g0 g2 Gamma_1 S_u
          _fp_eq_gamma_ti_fp(fp1, gamma_component[0][icomp], uprop);
          _fp_eq_gamma_ti_fp(fp3, 2, fp1);
          _fp_eq_gamma_ti_fp(fp1, 0, fp3);
          // S_u x C Gamma_2 = S_u g0 g2 Gamma_2
          _fp_eq_fp_ti_gamma(fp2, 0, uprop);
          _fp_eq_fp_ti_gamma(fp3, 2, fp2);
          _fp_eq_fp_ti_gamma(fp2, gamma_component[1][icomp], fp3);
          // reduce
          _fp_eq_zero(fp3);
          _fp_eq_fp_eps_contract13_fp(fp3, fp1, fp2);
          // reduce to spin propagator
          _sp_eq_zero( sp2 );
          _sp_eq_fp_del_contract34_fp(sp2, uprop, fp3);
          // add and assign
          _sp_pl_eq_sp(sp1, sp2);
          _sp_eq_sp_ti_re(sp2, sp1, -gamma_component_sign[icomp]);
          _sp_pl_eq_sp( connq[ix*num_component+icomp], sp2);
  
        }  // of icomp
  
      }    // of ix
  
      /***********************************************
       * finish calculation of connq
       ***********************************************/
      if(g_propagator_bc_type == 0) {
        // multiply with phase factor
        fprintf(stdout, "# [] multiplying timeslice %d with boundary phase factor\n", timeslice);
        ir = (timeslice - sx0 + T_global) % T_global;
        w1.re = cos( 3. * M_PI*(double)ir / (double)T_global );
        w1.im = sin( 3. * M_PI*(double)ir / (double)T_global );
        for(ix=0;ix<num_component*VOL3;ix++) {
          _sp_eq_sp(sp1, connq[ix] );
          _sp_eq_sp_ti_co( connq[ix], sp1, w1);
        }
      } else if (g_propagator_bc_type == 1) {
        // multiply with step function
        if(timeslice < sx0) {
          fprintf(stdout, "# [] multiplying timeslice %d with boundary step function\n", timeslice);
          for(ix=0;ix<num_component*VOL3;ix++) {
            _sp_eq_sp(sp1, connq[ix] );
            _sp_eq_sp_ti_re( connq[ix], sp1, -1.);
          }
        }
      }
    
      if(write_ascii) {
        sprintf(filename, "%s_x.%.4d.t%.2dx%.2dy%.2dz%.2d.ascii", outfile_prefix, Nconf, sx0, sx1, sx2, sx3);
        write_contraction2( connq[0][0], filename, num_component*g_sv_dim*g_sv_dim, VOL3, 1, append);
      }
  
      /******************************************************************
       * Fourier transform
       ******************************************************************/
      items =  2 * num_component * g_sv_dim * g_sv_dim * VOL3;
      bytes = sizeof(double);
  
      memcpy(in, connq[0][0], items * bytes);
      ir = num_component * g_sv_dim * g_sv_dim;
  #ifdef OPENMP
      fftwnd_threads(num_threads, plan_p, ir, in, ir, 1, (fftw_complex*)(connq[0][0]), ir, 1);
  #else
      fftwnd(plan_p, ir, in, ir, 1, (fftw_complex*)(connq[0][0]), ir, 1);
  #endif
  
      // add phase factor from the source location
      iix = 0;
      for(x1=0;x1<LX;x1++) {
        q[0] = (double)x1 / (double)LX;
      for(x2=0;x2<LY;x2++) {
        q[1] = (double)x2 / (double)LY;
      for(x3=0;x3<LZ;x3++) {
        q[2] = (double)x3 / (double)LZ;
        phase = 2. * M_PI * ( q[0]*sx1 + q[1]*sx2 + q[2]*sx3 );
        w1.re = cos(phase);
        w1.im = sin(phase);
  
        for(icomp=0; icomp<num_component; icomp++) {
          _sp_eq_sp(sp1, connq[iix] );
          _sp_eq_sp_ti_co( connq[iix], sp1, w1) ;
          iix++; 
        }
      }}}  // of x3, x2, x1
  
      // write to file
      sprintf(filename, "%s_q.%.4d.t%.2dx%.2dy%.2dz%.2d.Qx%.2dQy%.2dQz%.2d.%.5d", outfile_prefix, Nconf, sx0, sx1, sx2, sx3,
         qlatt_rep[snk_momentum_list[imom_snk]][1],qlatt_rep[snk_momentum_list[imom_snk]][2],qlatt_rep[snk_momentum_list[imom_snk]][3],
         g_sourceid2-g_sourceid+1);
      sprintf(contype, "2-pt. function, (t,q_1,q_2,q_3)-dependent, source_timeslice = %d", sx0);
      write_lime_contraction_timeslice(connq[0][0], filename, 64, num_component*g_sv_dim*g_sv_dim, contype, Nconf, 0, &connq_checksum, timeslice);
  
      if(write_ascii) {
        strcat(filename, ".ascii");
        write_contraction2(connq[0][0],filename, num_component*g_sv_dim*g_sv_dim, VOL3, 1, append);
      }
  
  
      /***********************************************
       * calculate connt
       ***********************************************/
      for(icomp=0;icomp<num_component; icomp++) {
        // fwd
        _sp_eq_sp(sp1, connq[icomp]);
        _sp_eq_gamma_ti_sp(sp2, 0, sp1);
        _sp_pl_eq_sp(sp1, sp2);
        _co_eq_tr_sp(&w, sp1);
        connt[2*(icomp*T + timeslice)  ] = w.re * 0.25;
        connt[2*(icomp*T + timeslice)+1] = w.im * 0.25;
        // bwd
        _sp_eq_sp(sp1, connq[icomp]);
        _sp_eq_gamma_ti_sp(sp2, 0, sp1);
        _sp_mi_eq_sp(sp1, sp2);
        _co_eq_tr_sp(&w, sp1);
        connt[2*(icomp*T+timeslice + num_component*T)  ] = w.re * 0.25;
        connt[2*(icomp*T+timeslice + num_component*T)+1] = w.im * 0.25;
      }
  
    }  // of loop on timeslice

    // write connt
    sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.fw", outfile_prefix, Nconf, sx0, sx1, sx2, sx3);
    ofs = fopen(filename, "w");
    if(ofs == NULL) {
      fprintf(stderr, "[] Error, could not open file %s for writing\n", filename);
      exit(3);
    }
    fprintf(ofs, "#%12.8f%3d%3d%3d%3d%8.4f%6d\n", g_kappa, T_global, LX, LY, LZ, g_mu, Nconf);
  
    for(icomp=0; icomp<num_component; icomp++) {
      ir = sx0;
      fprintf(ofs, "%3d%3d%3d%16.7e%16.7e%6d\n", gamma_component[0][icomp], gamma_component[1][icomp], 0, connt[2*(icomp*T+ir)], 0., Nconf);
      for(it=1;it<T/2;it++) {
        ir  = ( it + sx0 ) % T_global;
        ir2 = ( (T_global - it) + sx0 ) % T_global;
        fprintf(ofs, "%3d%3d%3d%16.7e%16.7e%6d\n", gamma_component[0][icomp], gamma_component[1][icomp], it, connt[2*(icomp*T+ir)], connt[2*(icomp*T+ir2)], Nconf);
      }
      ir = ( it + sx0 ) % T_global;
      fprintf(ofs, "%3d%3d%3d%16.7e%16.7e%6d\n", gamma_component[0][icomp], gamma_component[1][icomp], it, connt[2*(icomp*T+ir)], 0., Nconf);
    }
    fclose(ofs);
  
    sprintf(filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.bw", outfile_prefix, Nconf, sx0, sx1, sx2, sx3);
    ofs = fopen(filename, "w");
    if(ofs == NULL) {
      fprintf(stderr, "[] Error, could not open file %s for writing\n", filename);
      exit(3);
    }
    fprintf(ofs, "#%12.8f%3d%3d%3d%3d%8.4f%6d\n", g_kappa, T_global, LX, LY, LZ, g_mu, Nconf);
  
    for(icomp=0; icomp<num_component; icomp++) {
      ir = sx0;
      fprintf(ofs, "%3d%3d%3d%16.7e%16.7e%6d\n", gamma_component[0][icomp], gamma_component[1][icomp], 0, connt[2*(num_component*T+icomp*T+ir)], 0., Nconf);
      for(it=1;it<T/2;it++) {
        ir  = ( it + sx0 ) % T_global;
        ir2 = ( (T_global - it) + sx0 ) % T_global;
        fprintf(ofs, "%3d%3d%3d%16.7e%16.7e%6d\n", gamma_component[0][icomp], gamma_component[1][icomp], it, connt[2*(num_component*T+icomp*T+ir)], connt[2*(num_component*T+icomp*T+ir2)], Nconf);
      }
      ir = ( it + sx0 ) % T_global;
      fprintf(ofs, "%3d%3d%3d%16.7e%16.7e%6d\n", gamma_component[0][icomp], gamma_component[1][icomp], it, connt[2*(num_component*T+icomp*T+ir)], 0., Nconf);
    }
    fclose(ofs);

  }  // of loop on sink momentum ( = Delta^++ momentum, Qvec)

  /***********************************************
   * free the allocated memory, finalize
   ***********************************************/
  free_geometry();
  if(connt!= NULL) free(connt);
  if(connq!= NULL) free(connq);
  if(gauge_trafo != NULL) free(gauge_trafo);

  if(g_spinor_field!=NULL) {
    for(i=0; i<no_fields; i++) free(g_spinor_field[i]);
    free(g_spinor_field); g_spinor_field=(double**)NULL;
  }
  if(spinor_field_checksum !=NULL) free(spinor_field_checksum);
  if(g_gauge_field != NULL) free(g_gauge_field);

  if(snk_momemtum_list != NULL) {
    if(snk_momentum_list[0] != NULL) free(snk_momentum_list[0]);
    free(snk_momentum_list);
  }
  if(rel_momemtum_list != NULL) {
    if(rel_momentum_list[0] != NULL) free(rel_momentum_list[0]);
    free(rel_momentum_list);
  }

  // free the fermion propagator points
  free_fp( &uprop );
  free_fp( &dprop );
  free_fp( &fp1 );
  free_fp( &fp2 );
  free_fp( &fp3 );
  free_sp( &sp1 );
  free_sp( &sp2 );

  free(in);
  fftwnd_destroy_plan(plan_p);

  g_the_time = time(NULL);
  fprintf(stdout, "# [] %s# [] end fo run\n", ctime(&g_the_time));
  fflush(stdout);
  fprintf(stderr, "# [] %s# [] end fo run\n", ctime(&g_the_time));
  fflush(stderr);

#ifdef MPI
  MPI_Finalize();
#endif
  return(0);
}
Exemplo n.º 3
0
int main(int argc, char **argv) {
  
  int c, i, mu, nu;
  int count        = 0;
  int filename_set = 0;
  int dims[4]      = {0,0,0,0};
  int l_LX_at, l_LXstart_at;
  int x0, x1, x2, x3, ix, iix;
  int dxm[4], dxn[4], ixpm, ixpn;
  int sid;
  double *disc  = (double*)NULL;
  double *disc2 = (double*)NULL;
  double *work = (double*)NULL;
  double q[4], fnorm;
  int verbose = 0;
  int do_gt   = 0;
  char filename[100], contype[200];
  double ratime, retime;
  double plaq, _2kappamu, hpe3_coeff, onepmutilde2, mutilde2;
  double spinor1[24], spinor2[24], U_[18], U1_[18], U2_[18];
  double *gauge_trafo=(double*)NULL;
  complex w, w1, w2, *cp1, *cp2, *cp3;
  FILE *ofs;

  fftw_complex *in=(fftw_complex*)NULL;

#ifdef MPI
  fftwnd_mpi_plan plan_p, plan_m;
#else
  fftwnd_plan plan_p, plan_m;
#endif

#ifdef MPI
  MPI_Init(&argc, &argv);
#endif

  while ((c = getopt(argc, argv, "h?vgf:")) != -1) {
    switch (c) {
    case 'v':
      verbose = 1;
      break;
    case 'g':
      do_gt = 1;
      break;
    case 'f':
      strcpy(filename, optarg);
      filename_set=1;
      break;
    case 'h':
    case '?':
    default:
      usage();
      break;
    }
  }

  /* set the default values */
  if(filename_set==0) strcpy(filename, "cvc.input");
  fprintf(stdout, "# Reading input from file %s\n", filename);
  read_input_parser(filename);

  /* some checks on the input data */
  if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
    if(g_proc_id==0) fprintf(stdout, "T and L's must be set\n");
    usage();
  }
  if(g_kappa == 0.) {
    if(g_proc_id==0) fprintf(stdout, "kappa should be > 0.n");
    usage();
  }

  /* initialize MPI parameters */
  mpi_init(argc, argv);

  /* initialize fftw */
  dims[0]=T_global; dims[1]=LX; dims[2]=LY; dims[3]=LZ;
#ifdef MPI
  plan_p = fftwnd_mpi_create_plan(g_cart_grid, 4, dims, FFTW_BACKWARD, FFTW_MEASURE);
  plan_m = fftwnd_mpi_create_plan(g_cart_grid, 4, dims, FFTW_FORWARD, FFTW_MEASURE);
  fftwnd_mpi_local_sizes(plan_p, &T, &Tstart, &l_LX_at, &l_LXstart_at, &FFTW_LOC_VOLUME);
#else
  plan_p = fftwnd_create_plan(4, dims, FFTW_BACKWARD, FFTW_MEASURE | FFTW_IN_PLACE);
  plan_m = fftwnd_create_plan(4, dims, FFTW_FORWARD,  FFTW_MEASURE | FFTW_IN_PLACE);
  T            = T_global;
  Tstart       = 0;
  l_LX_at      = LX;
  l_LXstart_at = 0;
  FFTW_LOC_VOLUME = T*LX*LY*LZ;
#endif
  fprintf(stdout, "# [%2d] fftw parameters:\n"\
                  "# [%2d] T            = %3d\n"\
		  "# [%2d] Tstart       = %3d\n"\
		  "# [%2d] l_LX_at      = %3d\n"\
		  "# [%2d] l_LXstart_at = %3d\n"\
		  "# [%2d] FFTW_LOC_VOLUME = %3d\n", 
		  g_cart_id, g_cart_id, T, g_cart_id, Tstart, g_cart_id, l_LX_at,
		  g_cart_id, l_LXstart_at, g_cart_id, FFTW_LOC_VOLUME);

#ifdef MPI
  if(T==0) {
    fprintf(stderr, "[%2d] local T is zero; exit\n", g_cart_id);
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
    exit(2);
  }
#endif

  if(init_geometry() != 0) {
    fprintf(stderr, "ERROR from init_geometry\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(1);
  }

  geometry();

  /* read the gauge field */
  alloc_gauge_field(&g_gauge_field, VOLUMEPLUSRAND);
  sprintf(filename, "%s.%.4d", gaugefilename_prefix, Nconf);
  if(g_cart_id==0) fprintf(stdout, "reading gauge field from file %s\n", filename);
  read_lime_gauge_field_doubleprec(filename);
#ifdef MPI
  xchange_gauge();
#endif

  /* measure the plaquette */
  plaquette(&plaq);
  if(g_cart_id==0) fprintf(stdout, "measured plaquette value: %25.16e\n", plaq);

  if(do_gt==1) {
    /***********************************
     * initialize gauge transformation
     ***********************************/
    init_gauge_trafo(&gauge_trafo, 1.);
    apply_gt_gauge(gauge_trafo);
    plaquette(&plaq);
    if(g_cart_id==0) fprintf(stdout, "measured plaquette value after gauge trafo: %25.16e\n", plaq);
  }

  /****************************************
   * allocate memory for the spinor fields
   ****************************************/
  no_fields = 3;
  g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
  for(i=0; i<no_fields; i++) alloc_spinor_field(&g_spinor_field[i], VOLUMEPLUSRAND);

  /****************************************
   * allocate memory for the contractions
   ****************************************/
  disc  = (double*)calloc( 8*VOLUME, sizeof(double));
  if( disc == (double*)NULL ) { 
    fprintf(stderr, "could not allocate memory for disc\n");
#  ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#  endif
    exit(3);
  }
  for(ix=0; ix<8*VOLUME; ix++) disc[ix] = 0.;

  disc2 = (double*)calloc( 8*VOLUME, sizeof(double));
  if( disc2 == (double*)NULL ) { 
    fprintf(stderr, "could not allocate memory for disc2\n");
#  ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#  endif
    exit(3);
  }
  for(ix=0; ix<8*VOLUME; ix++) disc2[ix] = 0.;

  work  = (double*)calloc(48*VOLUME, sizeof(double));
  if( work == (double*)NULL ) { 
    fprintf(stderr, "could not allocate memory for work\n");
#  ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#  endif
    exit(3);
  }

  /****************************************
   * prepare Fourier transformation arrays
   ****************************************/
  in  = (fftw_complex*)malloc(FFTW_LOC_VOLUME*sizeof(fftw_complex));
  if(in==(fftw_complex*)NULL) {    
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(4);
  }

  /************************************************
   * HPE: calculate coeff. of 3rd order term
   ************************************************/
  _2kappamu    = 2. * g_kappa * g_mu;
  onepmutilde2 = 1. + _2kappamu * _2kappamu;
  mutilde2     = _2kappamu * _2kappamu;

  hpe3_coeff   = 16. * g_kappa*g_kappa*g_kappa*g_kappa * (1. + 6. * mutilde2 + mutilde2*mutilde2) / onepmutilde2 / onepmutilde2 / onepmutilde2 / onepmutilde2;

/*
  hpe3_coeff = 8. * g_kappa*g_kappa*g_kappa * \
        (1. + 6.*_2kappamu*_2kappamu + _2kappamu*_2kappamu*_2kappamu*_2kappamu) / (1. + _2kappamu*_2kappamu) / (1. + _2kappamu*_2kappamu) / (1. + _2kappamu*_2kappamu) / (1. + _2kappamu*_2kappamu);
*/
  fprintf(stdout, "hpe3_coeff = %25.16e\n", hpe3_coeff);

  /************************************************
   * HPE: calculate the plaquette terms 
   ************************************************/

  for(ix=0; ix<VOLUME; ix++) {
    for(mu=0; mu<4; mu++) { 
      for(i=1; i<4; i++) {
        nu = (mu+i)%4;
        _cm_eq_cm_ti_cm(U1_, g_gauge_field+_GGI(ix,mu), g_gauge_field+_GGI(g_iup[ix][mu],nu) );
        _cm_eq_cm_ti_cm(U2_, g_gauge_field+_GGI(ix,nu), g_gauge_field+_GGI(g_iup[ix][nu],mu) );
        _cm_eq_cm_ti_cm_dag(U_, U1_, U2_);
        _co_eq_tr_cm(&w1, U_);

        iix = g_idn[ix][nu];
        _cm_eq_cm_ti_cm(U1_, g_gauge_field+_GGI(iix,mu), g_gauge_field+_GGI(g_iup[iix][mu],nu) );
        _cm_eq_cm_ti_cm(U2_, g_gauge_field+_GGI(iix,nu), g_gauge_field+_GGI(g_iup[iix][nu],mu) );
        _cm_eq_cm_ti_cm_dag(U_, U1_, U2_);
        _co_eq_tr_cm(&w2, U_);
        disc2[_GWI(mu,ix,VOLUME)+1] += hpe3_coeff * (w1.im - w2.im);

/*
        _cm_eq_cm_ti_cm(U1_, g_gauge_field+_GGI(g_idn[ix][nu],nu), g_gauge_field+_GGI(ix,mu) );
        _cm_eq_cm_ti_cm(U2_, g_gauge_field+_GGI(g_idn[ix][nu],mu), g_gauge_field+_GGI(g_iup[g_idn[ix][nu]][mu], nu) );
        _cm_eq_cm_ti_cm_dag(U_, U1_, U2_);
        _co_eq_tr_cm(&w2, U_);
        disc2[_GWI(mu,ix,VOLUME)+1] += hpe3_coeff * (w1.im + w2.im);
*/


/*        fprintf(stdout, "mu=%1d, ix=%5d, nu=%1d, w1=%25.16e +i %25.16e; w2=%25.16e +i %25.16e\n", 
            mu, ix, nu, w1.re, w1.im, w2.re, w2.im); */
      }  /* of nu */

      /****************************************
       * - in case lattice size equals 4 
       *   calculate additional loop term
       * - _NOTE_ the possible minus sign from
       *   the fermionic boundary conditions
       ****************************************/
      if(dims[mu]==4) {
        wilson_loop(&w, ix, mu, dims[mu]);
        fnorm = -64. * g_kappa*g_kappa*g_kappa*g_kappa / onepmutilde2 / onepmutilde2 / onepmutilde2 / onepmutilde2; 
        disc2[_GWI(mu,ix,VOLUME)+1] += fnorm * w.im;
/*        fprintf(stdout, "loop contribution: ix=%5d, mu=%2d, fnorm=%25.16e, w=%25.16e\n", ix, mu, fnorm, w.im); */
      }
/*
      fprintf(stdout, "-------------------------------------------\n");
      fprintf(stdout, "disc2[ix=%d,mu=%d] = %25.16e +i %25.16e\n", ix, mu, disc2[_GWI(mu,ix,VOLUME)], disc2[_GWI(mu,ix,VOLUME)+1]);
      fprintf(stdout, "-------------------------------------------\n");
*/
    }
  }
/*
  sprintf(filename, "avc_disc_hpe5_3rd.%.4d", Nconf);
  ofs = fopen(filename, "w");
  for(ix=0; ix<VOLUME; ix++) {
    for(mu=0; mu<4; mu++) { 
      fprintf(ofs, "%6d%3d%25.16e\t%25.16e\n", ix, mu, disc[_GWI(mu,ix,VOLUME)], disc[_GWI(mu,ix,VOLUME)+1]);
    }
  }
  fclose(ofs);
  for(ix=0; ix<8*VOLUME; ix++) disc[ix] = 0.;
*/
/*
  for(x0=0; x0<T; x0++) {
  for(x1=0; x1<LX; x1++) {
  for(x2=0; x2<LY; x2++) {
  for(x3=0; x3<LZ; x3++) {
    ix = g_ipt[x0][x1][x2][x3];
    for(mu=0; mu<4; mu++) {
      dxm[0]=0; dxm[1]=0; dxm[2]=0; dxm[3]=0; dxm[mu]=1;

      for(i=1; i<4; i++) {
        nu = (mu+i)%4;
        dxn[0]=0; dxn[1]=0; dxn[2]=0; dxn[3]=0; dxn[nu]=1;

        ixpm = g_ipt[(x0+dxm[0]+T)%T][(x1+dxm[1]+LX)%LX][(x2+dxm[2]+LY)%LY][(x3+dxm[3]+LZ)%LZ];
        ixpn = g_ipt[(x0+dxn[0]+T)%T][(x1+dxn[1]+LX)%LX][(x2+dxn[2]+LY)%LY][(x3+dxn[3]+LZ)%LZ];

        _cm_eq_cm_ti_cm(U1_, g_gauge_field + 72*ix+18*mu, g_gauge_field + 72*ixpm+18*nu );
        _cm_eq_cm_ti_cm(U2_, g_gauge_field + 72*ix+18*nu, g_gauge_field + 72*ixpn+18*mu );
        _cm_eq_cm_ti_cm_dag(U_, U1_, U2_);
        _co_eq_tr_cm(&w1, U_);

        ixpm = g_ipt[(x0+dxm[0]-dxn[0]+T)%T][(x1+dxm[1]-dxn[1]+LX)%LX][(x2+dxm[2]-dxn[2]+LY)%LY][(x3+dxm[3]-dxn[3]+LZ)%LZ];
        ixpn = g_ipt[(x0-dxn[0]+T)%T][(x1-dxn[1]+LX)%LX][(x2-dxn[2]+LY)%LY][(x3-dxn[3]+LZ)%LZ];

        _cm_eq_cm_ti_cm(U1_, g_gauge_field + 72*ixpn+18*nu, g_gauge_field + 72*ix+18*mu);
        _cm_eq_cm_ti_cm(U2_, g_gauge_field + 72*ixpn+18*mu, g_gauge_field + 72*ixpm+18*nu);
        _cm_eq_cm_ti_cm_dag(U_, U1_, U2_);
        _co_eq_tr_cm(&w2, U_);

        disc2[_GWI(mu,ix,VOLUME)+1] += hpe3_coeff * (w1.im + w2.im);
        fprintf(stdout, "mu=%1d, ix=%5d, nu=%1d, w1=%25.16e; w2=%25.16e\n", mu, ix, nu, w1.im, w2.im); 
      }
      fprintf(stdout, "-------------------------------------------\n");
      fprintf(stdout, "disc2[ix=%d,mu=%d] = %25.16e +i %25.16e\n", ix, mu, disc2[_GWI(mu,ix,VOLUME)], disc2[_GWI(mu,ix,VOLUME)+1]);
      fprintf(stdout, "-------------------------------------------\n");
    }
  }
  }
  }
  }
*/

  /***********************************************
   * start loop on source id.s 
   ***********************************************/
  for(sid=g_sourceid; sid<=g_sourceid2; sid+=g_sourceid_step) {

    /* read the new propagator */
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(format==0) {
      sprintf(filename, "%s.%.4d.%.2d.inverted", filename_prefix, Nconf, sid);
      if(read_lime_spinor(g_spinor_field[2], filename, 0) != 0) break;
    }
    else if(format==1) {
      sprintf(filename, "%s.%.4d.%.5d.inverted", filename_prefix, Nconf, sid);
      if(read_cmi(g_spinor_field[2], filename) != 0) break;
    }
    xchange_field(g_spinor_field[2]);
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    fprintf(stdout, "time to read prop.: %e seconds\n", retime-ratime);

    if(do_gt==1) {
      /******************************************
       * gauge transform the propagators for sid
       ******************************************/
      for(ix=0; ix<VOLUME; ix++) {
        _fv_eq_cm_ti_fv(spinor1, gauge_trafo+18*ix, g_spinor_field[2]+_GSI(ix));
        _fv_eq_fv(g_spinor_field[2]+_GSI(ix), spinor1);
      }
      xchange_field(g_spinor_field[2]);
    }

    count++;

    /************************************************
     * calculate the source: apply Q_phi_tbc 
     ************************************************/
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    Q_phi_tbc(g_spinor_field[0], g_spinor_field[2]);
    xchange_field(g_spinor_field[0]); 
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "time to calculate source: %e seconds\n", retime-ratime);


    /************************************************
     * HPE: apply BH5 
     ************************************************/
    BH5(g_spinor_field[1], g_spinor_field[2]);

    /* add new contractions to (existing) disc */
#  ifdef MPI
    ratime = MPI_Wtime();
#  else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#  endif
    for(mu=0; mu<4; mu++) { /* loop on Lorentz index of the current */
      iix = _GWI(mu,0,VOLUME);
      for(ix=0; ix<VOLUME; ix++) {    /* loop on lattice sites */
        _cm_eq_cm_ti_co(U_, &g_gauge_field[_GGI(ix, mu)], &co_phase_up[mu]);

        /* first contribution */
        _fv_eq_cm_ti_fv(spinor1, U_, &g_spinor_field[1][_GSI(g_iup[ix][mu])]);
	_fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
	_fv_mi_eq_fv(spinor2, spinor1);
	_co_eq_fv_dag_ti_fv(&w, &g_spinor_field[0][_GSI(ix)], spinor2);
	disc[iix  ] -= 0.5 * w.re;
	disc[iix+1] -= 0.5 * w.im;

        /* second contribution */
	_fv_eq_cm_dag_ti_fv(spinor1, U_, &g_spinor_field[1][_GSI(ix)]);
	_fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
	_fv_pl_eq_fv(spinor2, spinor1);
	_co_eq_fv_dag_ti_fv(&w, &g_spinor_field[0][_GSI(g_iup[ix][mu])], spinor2);
	disc[iix  ] -= 0.5 * w.re;
	disc[iix+1] -= 0.5 * w.im;

	iix += 2;
      }  /* of ix */
    }    /* of mu */

#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "# time to contract cvc: %e seconds\n", retime-ratime);


    /************************************************
     * save results for count = multiple of Nsave 
     ************************************************/
    if(count%Nsave == 0) {

      if(g_cart_id == 0) fprintf(stdout, "save results for count = %d\n", count);

      fnorm = 1. / ( (double)count * g_prop_normsqr );
      if(g_cart_id==0) fprintf(stdout, "# X-fnorm = %e\n", fnorm);
      for(mu=0; mu<4; mu++) {
        for(ix=0; ix<VOLUME; ix++) {
          work[_GWI(mu,ix,VOLUME)  ] = disc[_GWI(mu,ix,VOLUME)  ] * fnorm + disc2[_GWI(mu,ix,VOLUME)  ];
          work[_GWI(mu,ix,VOLUME)+1] = disc[_GWI(mu,ix,VOLUME)+1] * fnorm + disc2[_GWI(mu,ix,VOLUME)+1];
        }
      }

      /* save the result in position space */
      sprintf(filename, "cvc_hpe5_X.%.4d.%.4d", Nconf, count);
      sprintf(contype, "cvc-disc-all-hpe-05-X");
      write_lime_contraction(work, filename, 64, 4, contype, Nconf, count);

/*
      sprintf(filename, "cvc_hpe5_Xascii.%.4d.%.4d", Nconf, count);
      write_contraction(work, NULL, filename, 4, 2, 0);
*/

#ifdef MPI
      ratime = MPI_Wtime();
#else
      ratime = (double)clock() / CLOCKS_PER_SEC;
#endif

      /* Fourier transform data, copy to work */
      for(mu=0; mu<4; mu++) {
        memcpy((void*)in, (void*)(work+_GWI(mu,0,VOLUME)), 2*VOLUME*sizeof(double));
#ifdef MPI
        fftwnd_mpi(plan_m, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
        fftwnd_one(plan_m, in, NULL);
#endif
        memcpy((void*)(work+_GWI(4+mu,0,VOLUME)), (void*)in, 2*VOLUME*sizeof(double));


        memcpy((void*)in, (void*)(work+_GWI(mu,0,VOLUME)), 2*VOLUME*sizeof(double));
#ifdef MPI
        fftwnd_mpi(plan_p, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
        fftwnd_one(plan_p, in, NULL);
#endif
        memcpy((void*)(work+_GWI(mu,0,VOLUME)), (void*)in, 2*VOLUME*sizeof(double));
      }  /* of mu =0 ,..., 3*/

      fnorm = 1. / (double)(T_global*LX*LY*LZ);
      if(g_cart_id==0) fprintf(stdout, "# P-fnorm = %e\n", fnorm);
      for(mu=0; mu<4; mu++) {
      for(nu=0; nu<4; nu++) {
        cp1 = (complex*)(work+_GWI(mu,0,VOLUME));
        cp2 = (complex*)(work+_GWI(4+nu,0,VOLUME));
        cp3 = (complex*)(work+_GWI(8+4*mu+nu,0,VOLUME));
     
        for(x0=0; x0<T; x0++) {
	  q[0] = (double)(x0+Tstart) / (double)T_global;
        for(x1=0; x1<LX; x1++) {
	  q[1] = (double)(x1) / (double)LX;
        for(x2=0; x2<LY; x2++) {
	  q[2] = (double)(x2) / (double)LY;
        for(x3=0; x3<LZ; x3++) {
	  q[3] = (double)(x3) / (double)LZ;
	  ix = g_ipt[x0][x1][x2][x3];
	  w.re = cos( M_PI * (q[mu]-q[nu]) );
	  w.im = sin( M_PI * (q[mu]-q[nu]) );
	  _co_eq_co_ti_co(&w1, cp1, cp2);
	  _co_eq_co_ti_co(cp3, &w1, &w);
	  _co_ti_eq_re(cp3, fnorm);
	  cp1++; cp2++; cp3++;
	}
	}
	}
	}

      }
      }
  
      /* save the result in momentum space */
      sprintf(filename, "cvc_hpe5_P.%.4d.%.4d", Nconf, count);
      sprintf(contype, "cvc-disc-all-hpe-05-P");
      write_lime_contraction(work+_GWI(8,0,VOLUME), filename, 64, 16, contype, Nconf, count);
/*
      sprintf(filename, "cvc_hpe5_Pascii.%.4d.%.4d", Nconf, count);
      write_contraction(work+_GWI(8,0,VOLUME), NULL, filename, 16, 2, 0);
*/
#ifdef MPI
      retime = MPI_Wtime();
#else
      retime = (double)clock() / CLOCKS_PER_SEC;
#endif
      if(g_cart_id==0) fprintf(stdout, "# time to save cvc results: %e seconds\n", retime-ratime);

    }  /* of count % Nsave == 0 */

  }  /* of loop on sid */

  /***********************************************
   * free the allocated memory, finalize 
   ***********************************************/
  free(g_gauge_field);
  for(i=0; i<no_fields; i++) free(g_spinor_field[i]);
  free(g_spinor_field);
  free_geometry();
  fftw_free(in);
  free(disc);

  free(work);

#ifdef MPI
  fftwnd_mpi_destroy_plan(plan_p);
  fftwnd_mpi_destroy_plan(plan_m);
  MPI_Finalize();
#else
  fftwnd_destroy_plan(plan_p);
  fftwnd_destroy_plan(plan_m);
#endif

  return(0);

}
Exemplo n.º 4
0
Arquivo: jc_ud_x.c Projeto: etmc/cvc
int main(int argc, char **argv) {
  
  int c, i, mu, nu;
  int count        = 0;
  int filename_set = 0;
  int dims[4]      = {0,0,0,0};
  int l_LX_at, l_LXstart_at;
  int x0, x1, x2, x3, ix, iix;
  int sid, status, gid;
  double *disc  = (double*)NULL;
  double *work = (double*)NULL;
  double q[4], fnorm;
  int verbose = 0;
  int do_gt   = 0;
  char filename[100], contype[200];
  double ratime, retime;
  double plaq; 
  double spinor1[24], spinor2[24], U_[18];
  double *gauge_trafo=(double*)NULL;
  complex w, w1, *cp1, *cp2, *cp3;
  FILE *ofs; 


#ifdef MPI
//  MPI_Init(&argc, &argv);
  fprintf(stderr, "[jc_ud_x] Error, only non-mpi version implemented\n");
  exit(1);
#endif

  while ((c = getopt(argc, argv, "h?f:")) != -1) {
    switch (c) {
    case 'f':
      strcpy(filename, optarg);
      filename_set=1;
      break;
    case 'h':
    case '?':
    default:
      usage();
      break;
    }
  }

  /* set the default values */
  if(filename_set==0) strcpy(filename, "cvc.input");
  fprintf(stdout, "# Reading input from file %s\n", filename);
  read_input_parser(filename);

  /* some checks on the input data */
  if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
    if(g_proc_id==0) fprintf(stdout, "T and L's must be set\n");
    usage();
  }
  if(g_kappa == 0.) {
    if(g_proc_id==0) fprintf(stdout, "kappa should be > 0.n");
    usage();
  }

  fprintf(stdout, "\n**************************************************\n");
  fprintf(stdout, "* jc_ud_x\n");
  fprintf(stdout, "**************************************************\n\n");

  /*********************************
   * initialize MPI parameters 
   *********************************/
  // mpi_init(argc, argv);

  /* initialize fftw */
  dims[0]=T_global; dims[1]=LX; dims[2]=LY; dims[3]=LZ;
  T            = T_global;
  Tstart       = 0;
  l_LX_at      = LX;
  l_LXstart_at = 0;
  FFTW_LOC_VOLUME = T*LX*LY*LZ;
  fprintf(stdout, "# [%2d] parameters:\n"\
                  "# [%2d] T            = %3d\n"\
		  "# [%2d] Tstart       = %3d\n"\
		  "# [%2d] l_LX_at      = %3d\n"\
		  "# [%2d] l_LXstart_at = %3d\n"\
		  "# [%2d] FFTW_LOC_VOLUME = %3d\n", 
		  g_cart_id, g_cart_id, T, g_cart_id, Tstart, g_cart_id, l_LX_at,
		  g_cart_id, l_LXstart_at, g_cart_id, FFTW_LOC_VOLUME);

  if(init_geometry() != 0) {
    fprintf(stderr, "ERROR from init_geometry\n");
    exit(1);
  }

  geometry();

  /*************************************************
   * allocate mem for gauge field and spinor fields
   *************************************************/
  alloc_gauge_field(&g_gauge_field, VOLUMEPLUSRAND);

  no_fields = 2;
  g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
  for(i=0; i<no_fields; i++) alloc_spinor_field(&g_spinor_field[i], VOLUMEPLUSRAND);

  /****************************************
   * allocate memory for the contractions
   ****************************************/
  disc  = (double*)calloc( 8*VOLUME, sizeof(double));
  if( disc == (double*)NULL ) { 
    fprintf(stderr, "could not allocate memory for disc\n");
    exit(3);
  }

  /***********************************************
   * start loop on gauge id.s 
   ***********************************************/
  for(gid=g_gaugeid; gid<=g_gaugeid2; gid++) {

    for(ix=0; ix<8*VOLUME; ix++) disc[ix] = 0.;

    sprintf(filename, "%s.%.4d", gaugefilename_prefix, gid);
    if(g_cart_id==0) fprintf(stdout, "# reading gauge field from file %s\n", filename);
    read_lime_gauge_field_doubleprec(filename);
    xchange_gauge();
    plaquette(&plaq);
    if(g_cart_id==0) fprintf(stdout, "# measured plaquette value: %25.16e\n", plaq);

    /***********************************************
     * start loop on source id.s 
     ***********************************************/
    for(sid=g_sourceid; sid<=g_sourceid2; sid+=g_sourceid_step) {
      /* reset disc to zero */
      for(ix=0; ix<8*VOLUME; ix++) disc[ix] = 0.;

      /* read the new propagator to g_spinor_field[0] */
      ratime = (double)clock() / CLOCKS_PER_SEC;
      if(format==0) {
        sprintf(filename, "%s.%.4d.%.2d.inverted", filename_prefix, gid, sid);
        if(read_lime_spinor(g_spinor_field[0], filename, 0) != 0) break;
      }
      else if(format==1) {
        sprintf(filename, "%s.%.4d.%.5d.inverted", filename_prefix, gid, sid);
        if(read_cmi(g_spinor_field[0], filename) != 0) break;
      }
      xchange_field(g_spinor_field[0]);
      retime = (double)clock() / CLOCKS_PER_SEC;
      if(g_cart_id==0) fprintf(stdout, "# time to read prop.: %e seconds\n", retime-ratime);

      ratime = (double)clock() / CLOCKS_PER_SEC;

      /* apply D_W once, save in g_spinor_field[1] */
      Hopping(g_spinor_field[1], g_spinor_field[0]);
      for(ix=0; ix<VOLUME; ix++) {
        _fv_pl_eq_fv(g_spinor_field[1]+_GSI(ix), g_spinor_field[0]+_GSI(ix));
        _fv_ti_eq_re(g_spinor_field[1]+_GSI(ix),  1./(2.*g_kappa));
      }
      xchange_field(g_spinor_field[1]);

      retime = (double)clock() / CLOCKS_PER_SEC;
      if(g_cart_id==0) fprintf(stdout, "# time to apply D_W: %e seconds\n", retime-ratime);

      ratime = (double)clock() / CLOCKS_PER_SEC;
      /* calculate real and imaginary part */
      for(mu=0; mu<4; mu++) {
        for(ix=0; ix<VOLUME; ix++) {
          _cm_eq_cm_ti_co(U_, g_gauge_field+_GGI(ix,mu), &(co_phase_up[mu]));
          _fv_eq_gamma_ti_fv(spinor1, 5, g_spinor_field[0]+_GSI(g_iup[ix][mu]));
          _fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
          _fv_pl_eq_fv(spinor2, spinor1);
          _fv_eq_cm_ti_fv(spinor1, U_, spinor2);
          _co_eq_fv_dag_ti_fv(&w, g_spinor_field[0]+_GSI(ix), spinor1);
          disc[_GWI(mu,ix,VOLUME)  ] = g_mu * w.im;

          _fv_eq_gamma_ti_fv(spinor1, mu, g_spinor_field[1]+_GSI(g_iup[ix][mu]));
          _fv_pl_eq_fv(spinor1, g_spinor_field[1]+_GSI(g_iup[ix][mu]));
          _fv_eq_cm_ti_fv(spinor2, U_, spinor1);
          _co_eq_fv_dag_ti_fv(&w, g_spinor_field[0]+_GSI(ix), spinor2);
          disc[_GWI(mu,ix,VOLUME)+1] = w.im / 3.;
        }
      }
      retime = (double)clock() / CLOCKS_PER_SEC;
      if(g_cart_id==0) fprintf(stdout, "# time to calculate contractions: %e seconds\n", retime-ratime);

      /************************************************
       * save results
       ************************************************/
      if(g_cart_id == 0) fprintf(stdout, "# save results for gauge id %d and sid %d\n", gid, sid);

      /* save the result in position space */
      fnorm = 1. / g_prop_normsqr;
      if(g_cart_id==0) fprintf(stdout, "X-fnorm = %e\n", fnorm);
      for(mu=0; mu<4; mu++) {
        for(ix=0; ix<VOLUME; ix++) {
          disc[_GWI(mu,ix,VOLUME)  ] *= fnorm;
          disc[_GWI(mu,ix,VOLUME)+1] *= fnorm;
        }
      }
      sprintf(filename, "jc_ud_x.%.4d.%.4d", gid, sid);
      sprintf(contype, "jc-u_and_d-X");
      write_lime_contraction(disc, filename, 64, 4, contype, gid, sid);

      //sprintf(filename, "jc_ud_x.%.4d.%.4d.ascii", gid, sid);
      //write_contraction (disc, NULL, filename, 4, 2, 0);
 
    }  /* of loop on sid */
  }  /* of loop on gid */

  /***********************************************
   * free the allocated memory, finalize 
   ***********************************************/
  free(g_gauge_field);
  for(i=0; i<no_fields; i++) free(g_spinor_field[i]);
  free(g_spinor_field);
  free_geometry();
  free(disc);

  return(0);

}
Exemplo n.º 5
0
int main(int argc, char **argv) {
  
  int c, i, mu, nu;
  int count        = 0;
  int filename_set = 0;
  int dims[4]      = {0,0,0,0};
  int l_LX_at, l_LXstart_at;
  int x0, x1, x2, x3, ix, iix;
  int dxm[4], dxn[4], ixpm, ixpn;
  int sid;
  double *disc  = (double*)NULL;
  double *work = (double*)NULL;
  double q[4], fnorm;
  int verbose = 0;
  int do_gt   = 0;
  char filename[100];
  double ratime, retime;
  double plaq, _2kappamu, hpe3_coeff, onepmutilde2, mutilde2;
  double spinor1[24], spinor2[24], U_[18], U1_[18], U2_[18];
  double *gauge_trafo=(double*)NULL;
  complex w, w1, w2, *cp1, *cp2, *cp3;
  FILE *ofs;

  fftw_complex *in=(fftw_complex*)NULL;

#ifdef MPI
  fftwnd_mpi_plan plan_p, plan_m;
  int *status;
#else
  fftwnd_plan plan_p, plan_m;
#endif

#ifdef MPI
  MPI_Init(&argc, &argv);
#endif

  while ((c = getopt(argc, argv, "h?vgf:")) != -1) {
    switch (c) {
    case 'v':
      verbose = 1;
      break;
    case 'g':
      do_gt = 1;
      break;
    case 'f':
      strcpy(filename, optarg);
      filename_set=1;
      break;
    case 'h':
    case '?':
    default:
      usage();
      break;
    }
  }

  /* set the default values */
  set_default_input_values();
  if(filename_set==0) strcpy(filename, "cvc.input");

  /* read the input file */
  read_input(filename);

  /* some checks on the input data */
  if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
    if(g_proc_id==0) fprintf(stdout, "T and L's must be set\n");
    usage();
  }
  if(g_kappa == 0.) {
    if(g_proc_id==0) fprintf(stdout, "kappa should be > 0.n");
    usage();
  }

  /* initialize MPI parameters */
  mpi_init(argc, argv);
#ifdef MPI
  if((status = (int*)calloc(g_nproc, sizeof(int))) == (int*)NULL) {
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
    exit(7);
  }
#endif

  /* initialize fftw */
  dims[0]=T_global; dims[1]=LX; dims[2]=LY; dims[3]=LZ;
#ifdef MPI
  plan_p = fftwnd_mpi_create_plan(g_cart_grid, 4, dims, FFTW_BACKWARD, FFTW_MEASURE);
  plan_m = fftwnd_mpi_create_plan(g_cart_grid, 4, dims, FFTW_FORWARD, FFTW_MEASURE);
  fftwnd_mpi_local_sizes(plan_p, &T, &Tstart, &l_LX_at, &l_LXstart_at, &FFTW_LOC_VOLUME);
#else
  plan_p = fftwnd_create_plan(4, dims, FFTW_BACKWARD, FFTW_MEASURE | FFTW_IN_PLACE);
  plan_m = fftwnd_create_plan(4, dims, FFTW_FORWARD,  FFTW_MEASURE | FFTW_IN_PLACE);
  T            = T_global;
  Tstart       = 0;
  l_LX_at      = LX;
  l_LXstart_at = 0;
  FFTW_LOC_VOLUME = T*LX*LY*LZ;
#endif
  fprintf(stdout, "# [%2d] fftw parameters:\n"\
                  "# [%2d] T            = %3d\n"\
		  "# [%2d] Tstart       = %3d\n"\
		  "# [%2d] l_LX_at      = %3d\n"\
		  "# [%2d] l_LXstart_at = %3d\n"\
		  "# [%2d] FFTW_LOC_VOLUME = %3d\n", 
		  g_cart_id, g_cart_id, T, g_cart_id, Tstart, g_cart_id, l_LX_at,
		  g_cart_id, l_LXstart_at, g_cart_id, FFTW_LOC_VOLUME);

#ifdef MPI
  if(T==0) {
    fprintf(stderr, "[%2d] local T is zero; exit\n", g_cart_id);
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
    exit(2);
  }
#endif

  if(init_geometry() != 0) {
    fprintf(stderr, "ERROR from init_geometry\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(1);
  }

  geometry();

  /* read the gauge field */
  alloc_gauge_field(&g_gauge_field, VOLUMEPLUSRAND);
  sprintf(filename, "%s.%.4d", gaugefilename_prefix, Nconf);
  if(g_cart_id==0) fprintf(stdout, "reading gauge field from file %s\n", filename);
  read_lime_gauge_field_doubleprec(filename);
  xchange_gauge();

  /* measure the plaquette */
  plaquette(&plaq);
  if(g_cart_id==0) fprintf(stdout, "measured plaquette value: %25.16e\n", plaq);

  if(do_gt==1) {
    /***********************************
     * initialize gauge transformation
     ***********************************/
    init_gauge_trafo(&gauge_trafo, 1.);
    apply_gt_gauge(gauge_trafo);
    plaquette(&plaq);
    if(g_cart_id==0) fprintf(stdout, "measured plaquette value after gauge trafo: %25.16e\n", plaq);
  }

  /****************************************
   * allocate memory for the spinor fields
   ****************************************/
  no_fields = 3;
  g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
  for(i=0; i<no_fields; i++) alloc_spinor_field(&g_spinor_field[i], VOLUMEPLUSRAND);

  /****************************************
   * allocate memory for the contractions
   ****************************************/
  disc  = (double*)calloc( 8*VOLUME, sizeof(double));
  if( disc == (double*)NULL ) { 
    fprintf(stderr, "could not allocate memory for disc\n");
#  ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#  endif
    exit(3);
  }
  for(ix=0; ix<8*VOLUME; ix++) disc[ix] = 0.;

  work  = (double*)calloc(48*VOLUME, sizeof(double));
  if( work == (double*)NULL ) { 
    fprintf(stderr, "could not allocate memory for work\n");
#  ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#  endif
    exit(3);
  }

  /****************************************
   * prepare Fourier transformation arrays
   ****************************************/
  in  = (fftw_complex*)malloc(FFTW_LOC_VOLUME*sizeof(fftw_complex));
  if(in==(fftw_complex*)NULL) {    
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(4);
  }

  /***********************************************
   * start loop on source id.s 
   ***********************************************/
  for(sid=g_sourceid; sid<=g_sourceid2; sid++) {

    /********************************
     * read the first propagator
     ********************************/
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(format==0) {
      sprintf(filename, "%s.%.4d.%.2d.inverted", filename_prefix, Nconf, sid);
      if(read_lime_spinor(g_spinor_field[2], filename, 0) != 0) break;
    }
    else if(format==1) {
      sprintf(filename, "%s.%.4d.%.5d.inverted", filename_prefix, Nconf, sid);
      if(read_cmi(g_spinor_field[2], filename) != 0) break;
    }
    xchange_field(g_spinor_field[2]);
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    fprintf(stdout, "time to read prop.: %e seconds\n", retime-ratime);

    if(do_gt==1) {
      /******************************************
       * gauge transform the propagators for sid
       ******************************************/
      for(ix=0; ix<VOLUME; ix++) {
        _fv_eq_cm_ti_fv(spinor1, gauge_trafo+18*ix, g_spinor_field[2]+_GSI(ix));
        _fv_eq_fv(g_spinor_field[2]+_GSI(ix), spinor1);
      }
      xchange_field(g_spinor_field[2]);
    }

    /************************************************
     * calculate the source: apply Q_phi_tbc 
     ************************************************/
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    Q_phi_tbc(g_spinor_field[0], g_spinor_field[2]);
    xchange_field(g_spinor_field[0]); 
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "time to calculate source: %e seconds\n", retime-ratime);


    /************************************************
     * HPE: apply BH5 
     ************************************************/
    BH5(g_spinor_field[1], g_spinor_field[2]);

    for(ix=0; ix<8*VOLUME; ix++) {disc[ix] = 0.;}

    /* add new contractions to (existing) disc */
#  ifdef MPI
    ratime = MPI_Wtime();
#  else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#  endif
    for(mu=0; mu<4; mu++) { /* loop on Lorentz index of the current */
      iix = _GWI(mu,0,VOLUME);
      for(ix=0; ix<VOLUME; ix++) {    /* loop on lattice sites */
        _cm_eq_cm_ti_co(U_, &g_gauge_field[_GGI(ix, mu)], &co_phase_up[mu]);

        /* first contribution */
        _fv_eq_cm_ti_fv(spinor1, U_, &g_spinor_field[1][_GSI(g_iup[ix][mu])]);
	_fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
	_fv_mi_eq_fv(spinor2, spinor1);
	_co_eq_fv_dag_ti_fv(&w, &g_spinor_field[0][_GSI(ix)], spinor2);
	disc[iix  ] -= 0.5 * w.re;
	disc[iix+1] -= 0.5 * w.im;

        /* second contribution */
	_fv_eq_cm_dag_ti_fv(spinor1, U_, &g_spinor_field[1][_GSI(ix)]);
	_fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
	_fv_pl_eq_fv(spinor2, spinor1);
	_co_eq_fv_dag_ti_fv(&w, &g_spinor_field[0][_GSI(g_iup[ix][mu])], spinor2);
	disc[iix  ] -= 0.5 * w.re;
	disc[iix+1] -= 0.5 * w.im;

	iix += 2;
      }  /* of ix */
    }    /* of mu */

#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "[%2d] time to contract cvc: %e seconds\n", g_cart_id, retime-ratime);

#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif

    /* Fourier transform data, copy to work */
    for(mu=0; mu<4; mu++) {
      memcpy((void*)in, (void*)(disc+_GWI(mu,0,VOLUME)), 2*VOLUME*sizeof(double));
#ifdef MPI
      fftwnd_mpi(plan_p, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
      fftwnd_one(plan_p, in, NULL);
#endif
      memcpy((void*)(work+_GWI(mu,0,VOLUME)), (void*)in, 2*VOLUME*sizeof(double));
    }

    /********************************
     * read the second propagator
     ********************************/
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(format==0) {
      sprintf(filename, "%s.%.4d.%.2d.inverted", filename_prefix, Nconf, sid+g_resume);
      if(read_lime_spinor(g_spinor_field[2], filename, 0) != 0) break;
    }
    else if(format==1) {
      sprintf(filename, "%s.%.4d.%.5d.inverted", filename_prefix, Nconf, sid+g_resume);
      if(read_cmi(g_spinor_field[2], filename) != 0) break;
    }
    xchange_field(g_spinor_field[2]);
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    fprintf(stdout, "time to read prop.: %e seconds\n", retime-ratime);

    if(do_gt==1) {
      /******************************************
       * gauge transform the propagators for sid
       ******************************************/
      for(ix=0; ix<VOLUME; ix++) {
        _fv_eq_cm_ti_fv(spinor1, gauge_trafo+18*ix, g_spinor_field[2]+_GSI(ix));
        _fv_eq_fv(g_spinor_field[2]+_GSI(ix), spinor1);
      }
      xchange_field(g_spinor_field[2]);
    }

    /************************************************
     * calculate the source: apply Q_phi_tbc 
     ************************************************/
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    Q_phi_tbc(g_spinor_field[0], g_spinor_field[2]);
    xchange_field(g_spinor_field[0]); 
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "time to calculate source: %e seconds\n", retime-ratime);


    /************************************************
     * HPE: apply BH5 
     ************************************************/
    BH5(g_spinor_field[1], g_spinor_field[2]);

    for(ix=0; ix<8*VOLUME; ix++) disc[ix] = 0.;

    /* add new contractions to (existing) disc */
#  ifdef MPI
    ratime = MPI_Wtime();
#  else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#  endif
    for(mu=0; mu<4; mu++) { /* loop on Lorentz index of the current */
      iix = _GWI(mu,0,VOLUME);
      for(ix=0; ix<VOLUME; ix++) {    /* loop on lattice sites */
        _cm_eq_cm_ti_co(U_, &g_gauge_field[_GGI(ix, mu)], &co_phase_up[mu]);

        /* first contribution */
        _fv_eq_cm_ti_fv(spinor1, U_, &g_spinor_field[1][_GSI(g_iup[ix][mu])]);
	_fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
	_fv_mi_eq_fv(spinor2, spinor1);
	_co_eq_fv_dag_ti_fv(&w, &g_spinor_field[0][_GSI(ix)], spinor2);
	disc[iix  ] -= 0.5 * w.re;
	disc[iix+1] -= 0.5 * w.im;

        /* second contribution */
	_fv_eq_cm_dag_ti_fv(spinor1, U_, &g_spinor_field[1][_GSI(ix)]);
	_fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
	_fv_pl_eq_fv(spinor2, spinor1);
	_co_eq_fv_dag_ti_fv(&w, &g_spinor_field[0][_GSI(g_iup[ix][mu])], spinor2);
	disc[iix  ] -= 0.5 * w.re;
	disc[iix+1] -= 0.5 * w.im;

	iix += 2;
      }  /* of ix */
    }    /* of mu */

#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "[%2d] time to contract cvc: %e seconds\n", g_cart_id, retime-ratime);

#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif

    /* Fourier transform data, copy to work */
    for(mu=0; mu<4; mu++) {
      memcpy((void*)in, (void*)(disc+_GWI(mu,0,VOLUME)), 2*VOLUME*sizeof(double));
#ifdef MPI
      fftwnd_mpi(plan_m, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
      fftwnd_one(plan_m, in, NULL);
#endif
      memcpy((void*)(work+_GWI(4+mu,0,VOLUME)), (void*)in, 2*VOLUME*sizeof(double));
    }

    fnorm = 1. / ((double)(T_global*LX*LY*LZ));
    fprintf(stdout, "fnorm = %e\n", fnorm);
    for(mu=0; mu<4; mu++) {
    for(nu=0; nu<4; nu++) {
      cp1 = (complex*)(work+_GWI(mu,0,VOLUME));
      cp2 = (complex*)(work+_GWI(4+nu,0,VOLUME));
      cp3 = (complex*)(work+_GWI(8+4*mu+nu,0,VOLUME));
     
      for(x0=0; x0<T; x0++) {
        q[0] = (double)(x0+Tstart) / (double)T_global;
      for(x1=0; x1<LX; x1++) {
        q[1] = (double)(x1) / (double)LX;
      for(x2=0; x2<LY; x2++) {
        q[2] = (double)(x2) / (double)LY;
      for(x3=0; x3<LZ; x3++) {
        q[3] = (double)(x3) / (double)LZ;
        ix = g_ipt[x0][x1][x2][x3];
        w.re = cos( M_PI * (q[mu]-q[nu]) );
	w.im = sin( M_PI * (q[mu]-q[nu]) );
	_co_eq_co_ti_co(&w1, cp1, cp2);
	_co_eq_co_ti_co(cp3, &w1, &w);
	_co_ti_eq_re(cp3, fnorm);
	cp1++; cp2++; cp3++;
      }
      }
      }
      }

    }
    }
  
    /* save the result in momentum space */
    sprintf(filename, "cvc_hpe5_ft.%.4d.%.2d", Nconf, sid);
    write_contraction(work+_GWI(8,0,VOLUME), NULL, filename, 16, 0, 0);

#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "time to save cvc results: %e seconds\n", retime-ratime);

  }  /* of loop on sid */

  /***********************************************
   * free the allocated memory, finalize 
   ***********************************************/
  free(g_gauge_field);
  for(i=0; i<no_fields; i++) free(g_spinor_field[i]);
  free(g_spinor_field);
  free_geometry();
  fftw_free(in);
  free(disc);

  free(work);

#ifdef MPI
  fftwnd_mpi_destroy_plan(plan_p);
  fftwnd_mpi_destroy_plan(plan_m);
  free(status);
  MPI_Finalize();
#else
  fftwnd_destroy_plan(plan_p);
  fftwnd_destroy_plan(plan_m);
#endif

  return(0);

}
Exemplo n.º 6
0
Arquivo: cvc_2pt.c Projeto: etmc/cvc
int main(int argc, char **argv) {
  
  int c, i, mu;
  int count        = 0;
  int filename_set = 0;
  int l_LX_at, l_LXstart_at;
  int x0, x1, ix, idx;
  int VOL3;
  int sid;
  double *disc = (double*)NULL;
  int verbose = 0;
  char filename[100];
  double ratime, retime;
  double plaq;
  double spinor1[24], spinor2[24];
  double _2kappamu;
  double *gauge_field_f=NULL, *gauge_field_timeslice=NULL;
  double v4norm = 0., vvnorm = 0.;
  complex w;
  FILE *ofs1, *ofs2;
/*  double sign_adj5[] = {-1., -1., -1., -1., +1., +1., +1., +1., +1., +1., -1., -1., -1., 1., -1., -1.}; */
  double hopexp_coeff[8], addreal, addimag;
  int gindex[]    = { 5 , 1 , 2 , 3 ,  6 ,10 ,11 ,12 , 4 , 7 , 8 , 9 , 0 ,15 , 14 ,13 };
  int isimag[]    = { 0 , 0 , 0 , 0 ,  1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 0 , 1 ,  1 , 1 };
  double gsign[]  = {-1., 1., 1., 1., -1., 1., 1., 1., 1., 1., 1., 1., 1., 1., -1., 1.};


#ifdef MPI
  MPI_Status status;
#endif

#ifdef MPI
  MPI_Init(&argc, &argv);
#endif

  while ((c = getopt(argc, argv, "h?vgf:")) != -1) {
    switch (c) {
    case 'v':
      verbose = 1;
      break;
    case 'f':
      strcpy(filename, optarg);
      filename_set=1;
      break;
    case 'h':
    case '?':
    default:
      usage();
      break;
    }
  }

  /* set the default values */
  if(filename_set==0) strcpy(filename, "cvc.input");
  fprintf(stdout, "# reading input from file %s\n", filename);
  read_input_parser(filename);

  /* some checks on the input data */
  if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
    if(g_proc_id==0) fprintf(stdout, "T and L's must be set\n");
    usage();
  }
  if(g_kappa == 0.) {
    if(g_proc_id==0) fprintf(stdout, "kappa should be > 0.n");
    usage();
  }

  /* initialize MPI parameters */
  mpi_init(argc, argv);

#ifdef MPI
  T = T_global / g_nproc;
  Tstart = g_cart_id * T;
  l_LX_at      = LX;
  l_LXstart_at = 0;
  FFTW_LOC_VOLUME = T*LX*LY*LZ;
  VOL3 = LX*LY*LZ;
#else
  T            = T_global;
  Tstart       = 0;
  l_LX_at      = LX;
  l_LXstart_at = 0;
  FFTW_LOC_VOLUME = T*LX*LY*LZ;
  VOL3 = LX*LY*LZ;
#endif
  fprintf(stdout, "# [%2d] parameters:\n"\
                  "# [%2d] T            = %3d\n"\
		  "# [%2d] Tstart       = %3d\n"\
		  "# [%2d] l_LX_at      = %3d\n"\
		  "# [%2d] l_LXstart_at = %3d\n"\
		  "# [%2d] FFTW_LOC_VOLUME = %3d\n", 
		  g_cart_id, g_cart_id, T, g_cart_id, Tstart, g_cart_id, l_LX_at,
		  g_cart_id, l_LXstart_at, g_cart_id, FFTW_LOC_VOLUME);

  if(init_geometry() != 0) {
    fprintf(stderr, "ERROR from init_geometry\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(1);
  }

  geometry();

  /* read the gauge field */
  alloc_gauge_field(&g_gauge_field, VOLUMEPLUSRAND);
  sprintf(filename, "%s.%.4d", gaugefilename_prefix, Nconf);
  if(g_cart_id==0) fprintf(stdout, "reading gauge field from file %s\n", filename);
  read_lime_gauge_field_doubleprec(filename);
  xchange_gauge();

  /* measure the plaquette */
  plaquette(&plaq);
  if(g_cart_id==0) fprintf(stdout, "# measured plaquette value: %25.16e\n", plaq);

  if(Nlong > -1) {
/*    N_ape     = 5; */
    alpha_ape = 0.4;
    if(g_cart_id==0) fprintf(stdout, "# apply fuzzing of gauge field and propagators with parameters:\n"\
                                     "# Nlong = %d\n# N_ape = %d\n# alpha_ape = %f\n", Nlong, N_ape, alpha_ape);
    alloc_gauge_field(&gauge_field_f, VOLUMEPLUSRAND);
    if( (gauge_field_timeslice = (double*)malloc(72*VOL3*sizeof(double))) == (double*)NULL  ) {
      fprintf(stderr, "Error, could not allocate mem for gauge_field_timeslice\n");
#ifdef MPI
      MPI_Abort(MPI_COMM_WORLD, 1);
      MPI_Finalize();
#endif
      exit(2);
    }
    for(x0=0; x0<T; x0++) {
      memcpy((void*)gauge_field_timeslice, (void*)(g_gauge_field+_GGI(g_ipt[x0][0][0][0],0)), 72*VOL3*sizeof(double));
      for(i=0; i<N_ape; i++) {
        APE_Smearing_Step_Timeslice(gauge_field_timeslice, alpha_ape);
      }
      fuzzed_links_Timeslice(gauge_field_f, gauge_field_timeslice, Nlong, x0);
    }
    free(gauge_field_timeslice);
  }

  /* test: print the fuzzed APE smeared gauge field to stdout */
/*
  for(ix=0; ix<36*VOLUME; ix++) {
    fprintf(stdout, "%6d%25.16e%25.16e%25.16e%25.16e\n", ix, gauge_field_f[2*ix], gauge_field_f[2*ix+1], g_gauge_field[2*ix], g_gauge_field[2*ix+1]);
  }
*/

  /* allocate memory for the spinor fields */
  no_fields = 4;
  g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
  for(i=0; i<no_fields; i++) alloc_spinor_field(&g_spinor_field[i], VOLUMEPLUSRAND);

  /* allocate memory for the contractions */
  disc = (double*)calloc(4*16*T*2, sizeof(double));
  if( disc==(double*)NULL ) {
    fprintf(stderr, "could not allocate memory for disc\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(3);
  }
  for(ix=0; ix<4*32*T; ix++) disc[ix] = 0.;

  if(g_cart_id==0) {
    sprintf(filename, "cvc_2pt_disc_vv.%.4d", Nconf);
    ofs1 = fopen(filename, "w");
    sprintf(filename, "cvc_2pt_disc_v4.%.4d", Nconf);
    ofs2 = fopen(filename, "w");
    if(ofs1==(FILE*)NULL || ofs2==(FILE*)NULL) {
#ifdef MPI
        MPI_Abort(MPI_COMM_WORLD, 1);
        MPI_Finalize();
#endif
        exit(5);
    }
  }

  /* add the HPE coefficients */
  if(format==1) {
    addimag = 2*g_kappa*g_mu/sqrt(1 + 4*g_kappa*g_kappa*g_mu*g_mu)* LX*LY*LZ*3*4*2.*g_kappa*g_kappa*4;
    addreal = 1./sqrt(1 + 4*g_kappa*g_kappa*g_mu*g_mu)*LX*LY*LZ*3*4*2.*g_kappa*g_kappa*4;
    v4norm = 1. / ( 8. * g_kappa * g_kappa );
    vvnorm = g_mu / ( 4. * g_kappa );
  } else {
    addimag = 2*g_kappa*g_mu/sqrt(1 + 4*g_kappa*g_kappa*g_mu*g_mu)* LX*LY*LZ*3*4*2.*g_kappa*2;
    addreal = 1./sqrt(1 + 4*g_kappa*g_kappa*g_mu*g_mu)*LX*LY*LZ*3*4*2.*g_kappa*2;
    v4norm = 1. / ( 4. * g_kappa  );
    vvnorm = g_mu / ( 4. * g_kappa );
  }

  /* calculate additional contributions for 1 and gamma_5 */
  _2kappamu = 2.*g_kappa*g_mu;
  hopexp_coeff[0] = 24. * g_kappa * LX*LY*LZ / (1. + _2kappamu*_2kappamu);
  hopexp_coeff[1] = 0.;
  
  hopexp_coeff[2] = -768. * g_kappa*g_kappa*g_kappa * LX*LY*LZ * _2kappamu*_2kappamu /
   ( (1.+_2kappamu*_2kappamu)*(1.+_2kappamu*_2kappamu)*(1.+_2kappamu*_2kappamu) );
  hopexp_coeff[3] = 0.;

  hopexp_coeff[4] = 0.;
  hopexp_coeff[5] = -24.*g_kappa * LX*LY*LZ * _2kappamu / (1. + _2kappamu*_2kappamu);

  hopexp_coeff[6] = 0.;
  hopexp_coeff[7] = -384. * g_kappa*g_kappa*g_kappa * LX*LY*LZ * 
    (1.-_2kappamu*_2kappamu)*_2kappamu /
   ( (1.+_2kappamu*_2kappamu)*(1.+_2kappamu*_2kappamu)*(1.+_2kappamu*_2kappamu) );

  /* start loop on source id.s */
  for(sid=g_sourceid; sid<=g_sourceid2; sid+=g_sourceid_step) {
    for(ix=0; ix<4*32*T; ix++) disc[ix] = 0.;

    /* read the new propagator */
    sprintf(filename, "%s.%.4d.%.5d.inverted", filename_prefix, Nconf, sid); 
/*    sprintf(filename, "%s.%.4d.%.2d.inverted", filename_prefix, Nconf, sid); */
    if(read_lime_spinor(g_spinor_field[1], filename, 0) != 0) {
      fprintf(stderr, "[%2d] Error, could not read from file %s\n", g_cart_id, filename);
#ifdef MPI
      MPI_Abort(MPI_COMM_WORLD, 1);
      MPI_Finalize();
#endif
      exit(4);
    }
    count++;
    xchange_field(g_spinor_field[1]);

    /* calculate the source: apply Q_phi_tbc */
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    Q_phi_tbc(g_spinor_field[0], g_spinor_field[1]);
    xchange_field(g_spinor_field[0]); 
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "# time to apply Q_tm %e seconds\n", retime-ratime);


    /* apply gamma5_BdagH4_gamma5 */
    gamma5_BdagH4_gamma5(g_spinor_field[2], g_spinor_field[0], g_spinor_field[3]);

    /* attention: additional factor 2kappa because of CMI format */
/*
    if(format==1) {
      for(ix=0; ix<VOLUME; ix++) {
        _fv_ti_eq_re(&g_spinor_field[2][_GSI(ix)], 2.*g_kappa);
      }
    }
*/

    if(Nlong>-1) {
      if(g_cart_id==0) fprintf(stdout, "# fuzzing propagator with Nlong = %d\n", Nlong);
      memcpy((void*)g_spinor_field[3], (void*)g_spinor_field[1], 24*VOLUMEPLUSRAND*sizeof(double));
      Fuzz_prop(gauge_field_f, g_spinor_field[3], Nlong);
    }

    /* add new contractions to disc */
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    for(x0=0; x0<T; x0++) {             /* loop on time */
      for(x1=0; x1<VOL3; x1++) {    /* loop on sites in timeslice */
        ix = x0*VOL3 + x1;
        for(mu=0; mu<16; mu++) { /* loop on index of gamma matrix */

          _fv_eq_gamma_ti_fv(spinor1, mu, &g_spinor_field[1][_GSI(ix)]);
  	  _co_eq_fv_dag_ti_fv(&w, &g_spinor_field[2][_GSI(ix)], spinor1);
	  disc[2*(       x0*16+mu)  ] += w.re;
	  disc[2*(       x0*16+mu)+1] += w.im;
     
          _fv_eq_gamma_ti_fv(spinor1, 5, &g_spinor_field[1][_GSI(ix)]);
          _fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
  	  _co_eq_fv_dag_ti_fv(&w, &g_spinor_field[1][_GSI(ix)], spinor2);
	  disc[2*(16*T + x0*16+mu)  ] += w.re;
	  disc[2*(16*T + x0*16+mu)+1] += w.im;
        
          if(Nlong>-1) {
            _fv_eq_gamma_ti_fv(spinor1, mu, &g_spinor_field[3][_GSI(ix)]);
    	    _co_eq_fv_dag_ti_fv(&w, &g_spinor_field[2][_GSI(ix)], spinor1);
	    disc[2*(32*T + x0*16+mu)  ] += w.re;
	    disc[2*(32*T + x0*16+mu)+1] += w.im;
          
            _fv_eq_gamma_ti_fv(spinor1, 5, &g_spinor_field[3][_GSI(ix)]);
            _fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
  	    _co_eq_fv_dag_ti_fv(&w, &g_spinor_field[1][_GSI(ix)], spinor2);
	    disc[2*(48*T + x0*16+mu)  ] += w.re;
	    disc[2*(48*T + x0*16+mu)+1] += w.im;
          }
        }
      }
    }

    if(g_cart_id==0) fprintf(stdout, "# addimag = %25.16e\n", addimag);
    if(g_cart_id==0) fprintf(stdout, "# addreal = %25.16e\n", addreal);
    for(x0=0; x0<T; x0++) {   
      disc[2*(       x0*16+4)  ] += addreal;
      disc[2*(       x0*16+5)+1] -= addimag;
/* 
      if(Nlong>-1) {
        disc[2*(32*T + x0*16+4)  ] += addreal;
        disc[2*(32*T + x0*16+5)+1] -= addimag; 
      }
*/
    }
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "# contractions in %e seconds\n", retime-ratime);

    /* write current disc to file */

    if(g_cart_id==0) {
      if(sid==g_sourceid) fprintf(ofs1, "#%6d%3d%3d%3d%3d\t%f\t%f\n", Nconf, T, LX, LY, LZ, g_kappa, g_mu);
      if(sid==g_sourceid) fprintf(ofs2, "#%6d%3d%3d%3d%3d\t%f\t%f\n", Nconf, T, LX, LY, LZ, g_kappa, g_mu);
      for(x0=0; x0<T; x0++) {
        for(mu=0; mu<16; mu++) {
          idx = gindex[mu];
          ix = 16*x0 + idx;
          if(isimag[mu]==0) {
            fprintf(ofs2, "%6d%3d%4d%4d%25.16e%25.16e%25.16e%25.16e\n",
              Nconf, mu, x0, sid,
              gsign[mu]*disc[2*      ix ]*v4norm, gsign[mu]*disc[2*      ix +1]*v4norm,
              gsign[mu]*disc[2*(32*T+ix)]*v4norm, gsign[mu]*disc[2*(32*T+ix)+1]*v4norm);
          } else {
            fprintf(ofs2, "%6d%3d%4d%4d%25.16e%25.16e%25.16e%25.16e\n",
              Nconf, mu, x0, sid,
              gsign[mu]*disc[2*(     ix)+1]*v4norm, -gsign[mu]*disc[2*      ix ]*v4norm,
              gsign[mu]*disc[2*(32*T+ix)+1]*v4norm, -gsign[mu]*disc[2*(32*T+ix)]*v4norm);
          }
        }
      }
      for(x0=0; x0<T; x0++) {
        for(mu=0; mu<16; mu++) {
          idx = gindex[mu];
          ix = 16*x0 + idx;
          if(isimag[mu]==0) {
            fprintf(ofs1, "%6d%3d%4d%4d%25.16e%25.16e%25.16e%25.16e\n",
              Nconf, mu, x0, sid,
              gsign[mu]*disc[2*(16*T+ix)+1]*vvnorm, -gsign[mu]*disc[2*(16*T+ix)]*vvnorm,
              gsign[mu]*disc[2*(48*T+ix)+1]*vvnorm, -gsign[mu]*disc[2*(48*T+ix)]*vvnorm);
          } else {
            fprintf(ofs1, "%6d%3d%4d%4d%25.16e%25.16e%25.16e%25.16e\n",
              Nconf, mu, x0, sid,
              -gsign[mu]*disc[2*(16*T+ix)]*vvnorm, -gsign[mu]*disc[2*(16*T+ix)+1]*vvnorm,
              -gsign[mu]*disc[2*(48*T+ix)]*vvnorm, -gsign[mu]*disc[2*(48*T+ix)+1]*vvnorm);
          }
        }
      }
#ifdef MPI
      for(c=1; c<g_nproc; c++) {
        MPI_Recv(disc, 128*T, MPI_DOUBLE, c, 100+c, g_cart_grid, &status);
        for(x0=0; x0<T; x0++) {
          for(mu=0; mu<16; mu++) {
            idx=gindex[mu];
            ix = 16*x0 + idx;
            if(isimag[mu]==0) {
              fprintf(ofs2, "%6d%3d%4d%4d%25.16e%25.16e%25.16e%25.16e\n",
                Nconf, mu, c*T+x0, sid,
                gsign[mu]*disc[2*      ix ]*v4norm, gsign[mu]*disc[2*      ix +1]*v4norm,
                gsign[mu]*disc[2*(32*T+ix)]*v4norm, gsign[mu]*disc[2*(32*T+ix)+1]*v4norm);
            } else {
              fprintf(ofs2, "%6d%3d%4d%4d%25.16e%25.16e%25.16e%25.16e\n",
                Nconf, mu, c*T+x0, sid,
                gsign[mu]*disc[2*(     ix)+1]*v4norm, -gsign[mu]*disc[2*      ix ]*v4norm,
                gsign[mu]*disc[2*(32*T+ix)+1]*v4norm, -gsign[mu]*disc[2*(32*T+ix)]*v4norm);
            }
          }
        }
        for(x0=0; x0<T; x0++) {
          for(mu=0; mu<16; mu++) {
            idx = gindex[mu];
            ix = 16*x0 + idx;
            if(isimag[mu]==0) {
              fprintf(ofs1, "%6d%3d%4d%4d%25.16e%25.16e%25.16e%25.16e\n",
                Nconf, mu, c*T+x0, sid,
                gsign[mu]*disc[2*(16*T+ix)+1]*vvnorm, -gsign[mu]*disc[2*(16*T+ix)]*vvnorm,
                gsign[mu]*disc[2*(48*T+ix)+1]*vvnorm, -gsign[mu]*disc[2*(48*T+ix)]*vvnorm);
            } else {
              fprintf(ofs1, "%6d%3d%4d%4d%25.16e%25.16e%25.16e%25.16e\n",
                Nconf, mu, c*T+x0, sid,
                -gsign[mu]*disc[2*(16*T+ix)]*vvnorm, -gsign[mu]*disc[2*(16*T+ix)+1]*vvnorm,
                -gsign[mu]*disc[2*(48*T+ix)]*vvnorm, -gsign[mu]*disc[2*(48*T+ix)+1]*vvnorm);
            }
          }
        }
      }
#endif
    }
#ifdef MPI
    else {
      for(c=1; c<g_nproc; c++) {
        if(g_cart_id==c) {
          MPI_Send(disc, 128*T, MPI_DOUBLE, 0, 100+c, g_cart_grid);
        }
      }
    }
#endif
  }  /* of loop on sid */

  if(g_cart_id==0) { fclose(ofs1); fclose(ofs2); }

  if(g_cart_id==0) {
    fprintf(stdout, "# contributions from HPE:\n");
    fprintf(stdout, "(1) X = id\t%25.16e%25.16e\n"\
                    "          \t%25.16e%25.16e\n"\
    		    "(2) X =  5\t%25.16e%25.16e\n"\
                    "          \t%25.16e%25.16e\n",
		    hopexp_coeff[0], hopexp_coeff[1], hopexp_coeff[2], hopexp_coeff[3],
		    hopexp_coeff[4], hopexp_coeff[5], hopexp_coeff[6], hopexp_coeff[7]);
  }

  /* free the allocated memory, finalize */
  free(g_gauge_field); g_gauge_field=(double*)NULL;
  for(i=0; i<no_fields; i++) free(g_spinor_field[i]);
  free(g_spinor_field); g_spinor_field=(double**)NULL;
  free_geometry();
  free(disc);
  if(Nlong>-1) free(gauge_field_f);
#ifdef MPI
  MPI_Finalize();
#endif

  return(0);

}
Exemplo n.º 7
0
Arquivo: jc_u_tp0.c Projeto: etmc/cvc
int main(int argc, char **argv) {
  
  int c, i, j, mu, nu;
  int count        = 0;
  int filename_set = 0;
  int dims[4]      = {0,0,0,0};
  int l_LX_at, l_LXstart_at;
  int x0, x1, x2, x3, ix, iix, it;
  int sid, status, gid;
  double **corr=NULL, **corr2=NULL;
  double *tcorr=NULL, *tcorr2=NULL;
  double *work = (double*)NULL;
  double q[4], fnorm;
  int verbose = 0;
  int do_gt   = 0;
  int nsource=0;
  char filename[100], contype[200];
  double ratime, retime;
  double plaq; 
  double spinor1[24], spinor2[24], U_[18];
  double *gauge_trafo=(double*)NULL;
  double mom2, mom4;
  complex w, w1, *cp1, *cp2, *cp3;
  FILE *ofs; 


#ifdef MPI
//  MPI_Init(&argc, &argv);
  fprintf(stderr, "[jc_ud_x] Error, only non-mpi version implemented\n");
  exit(1);
#endif

  while ((c = getopt(argc, argv, "h?f:")) != -1) {
    switch (c) {
    case 'f':
      strcpy(filename, optarg);
      filename_set=1;
      break;
    case 'h':
    case '?':
    default:
      usage();
      break;
    }
  }

  /* set the default values */
  if(filename_set==0) strcpy(filename, "cvc.input");
  fprintf(stdout, "# Reading input from file %s\n", filename);
  read_input_parser(filename);

  /* some checks on the input data */
  if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
    if(g_proc_id==0) fprintf(stdout, "T and L's must be set\n");
    usage();
  }
  if(g_kappa == 0.) {
    if(g_proc_id==0) fprintf(stdout, "kappa should be > 0.n");
    usage();
  }

  fprintf(stdout, "\n**************************************************\n");
  fprintf(stdout, "* jc_ud_x\n");
  fprintf(stdout, "**************************************************\n\n");

  /*********************************
   * initialize MPI parameters 
   *********************************/
  // mpi_init(argc, argv);

  /* initialize */
  dims[0]=T_global; dims[1]=LX; dims[2]=LY; dims[3]=LZ;
  T            = T_global;
  Tstart       = 0;
  l_LX_at      = LX;
  l_LXstart_at = 0;
  FFTW_LOC_VOLUME = T*LX*LY*LZ;
  fprintf(stdout, "# [%2d] parameters:\n"\
                  "# [%2d] T            = %3d\n"\
		  "# [%2d] Tstart       = %3d\n"\
		  "# [%2d] l_LX_at      = %3d\n"\
		  "# [%2d] l_LXstart_at = %3d\n"\
		  "# [%2d] FFTW_LOC_VOLUME = %3d\n", 
		  g_cart_id, g_cart_id, T, g_cart_id, Tstart, g_cart_id, l_LX_at,
		  g_cart_id, l_LXstart_at, g_cart_id, FFTW_LOC_VOLUME);

  if(init_geometry() != 0) {
    fprintf(stderr, "ERROR from init_geometry\n");
    exit(1);
  }

  geometry();

  /*************************************************
   * allocate mem for gauge field and spinor fields
   *************************************************/
  alloc_gauge_field(&g_gauge_field, VOLUMEPLUSRAND);

  no_fields = 2;
  g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
  for(i=0; i<no_fields; i++) alloc_spinor_field(&g_spinor_field[i], VOLUMEPLUSRAND);

  /****************************************
   * allocate memory for the contractions
   ****************************************/
  nsource = (g_sourceid2 - g_sourceid + 1) / g_sourceid_step;
  if(g_cart_id==0) fprintf(stdout, "# nsource = %d\n", nsource);

  corr     = (double**)calloc( nsource, sizeof(double*));
  corr[0]  = (double*)calloc( nsource*T*8, sizeof(double));
  for(i=1;i<nsource;i++) corr[i] = corr[i-1] + 8*T;

  corr2    = (double**)calloc( nsource, sizeof(double*));
  corr2[0] = (double*)calloc( nsource*8*T, sizeof(double));
  for(i=1;i<nsource;i++) corr2[i] = corr2[i-1] + 8*T;

  tcorr  = (double*)calloc(T*8, sizeof(double));
  tcorr2 = (double*)calloc(T*8, sizeof(double));

  /***********************************************
   * start loop on gauge id.s 
   ***********************************************/
  for(gid=g_gaugeid; gid<=g_gaugeid2; gid++) {

    sprintf(filename, "%s.%.4d", gaugefilename_prefix, gid);
    if(g_cart_id==0) fprintf(stdout, "# reading gauge field from file %s\n", filename);
    read_lime_gauge_field_doubleprec(filename);
    xchange_gauge();
    plaquette(&plaq);
    if(g_cart_id==0) fprintf(stdout, "# measured plaquette value: %25.16e\n", plaq);

    /* reset disc to zero */
    for(ix=0; ix<nsource*8*T; ix++) corr[0][ix]  = 0.;
    for(ix=0; ix<nsource*8*T; ix++) corr2[0][ix] = 0.;

    count=0;
    /***********************************************
     * start loop on source id.s 
     ***********************************************/
    for(sid=g_sourceid; sid<=g_sourceid2; sid+=g_sourceid_step) {

      /* read the new propagator to g_spinor_field[0] */
      ratime = (double)clock() / CLOCKS_PER_SEC;
      if(format==0) {
        sprintf(filename, "%s.%.4d.%.2d.inverted", filename_prefix, gid, sid);
        if(read_lime_spinor(g_spinor_field[0], filename, 0) != 0) break;
      }
      else if(format==1) {
        sprintf(filename, "%s.%.4d.%.5d.inverted", filename_prefix, gid, sid);
        if(read_cmi(g_spinor_field[0], filename) != 0) {
          fprintf(stderr, "\nError from read_cmi\n");
          break;
        }
      }
      xchange_field(g_spinor_field[0]);
      retime = (double)clock() / CLOCKS_PER_SEC;
      if(g_cart_id==0) fprintf(stdout, "# time to read prop.: %e seconds\n", retime-ratime);

      ratime = (double)clock() / CLOCKS_PER_SEC;

      /* apply [1] = D_tm [0] */
      Q_phi_tbc(g_spinor_field[1], g_spinor_field[0]);
      xchange_field(g_spinor_field[1]);

      retime = (double)clock() / CLOCKS_PER_SEC;
      if(g_cart_id==0) fprintf(stdout, "# time to apply D_W: %e seconds\n", retime-ratime);

      ratime = (double)clock() / CLOCKS_PER_SEC;
      /* calculate real and imaginary part */
      for(mu=0; mu<4; mu++) {
        for(x0=0; x0<T; x0++) {
          for(x1=0; x1<LX; x1++) {
          for(x2=0; x2<LY; x2++) {
          for(x3=0; x3<LZ; x3++) {
            ix = g_ipt[x0][x1][x2][x3];
            _cm_eq_cm_ti_co(U_, g_gauge_field+_GGI(ix,mu), &(co_phase_up[mu]));
            _fv_eq_cm_ti_fv(spinor1, U_, &g_spinor_field[0][_GSI(g_iup[ix][mu])]);
            _fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
            _fv_mi_eq_fv(spinor2, spinor1);
            _co_eq_fv_dag_ti_fv(&w, &g_spinor_field[1][_GSI(ix)], spinor2);

            corr[count][2*(mu*T+x0)  ] -= 0.5*w.re;
            corr[count][2*(mu*T+x0)+1] -= 0.5*w.im;

            _fv_eq_cm_dag_ti_fv(spinor1, U_, &g_spinor_field[0][_GSI(ix)]);
            _fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
            _fv_pl_eq_fv(spinor2, spinor1);
            _co_eq_fv_dag_ti_fv(&w, &g_spinor_field[1][_GSI(g_iup[ix][mu])], spinor2);

            corr[count][2*(mu*T+x0)  ] -= 0.5*w.re;
            corr[count][2*(mu*T+x0)+1] -= 0.5*w.im;

            _fv_eq_gamma_ti_fv(spinor1, mu, &g_spinor_field[0][_GSI(ix)]);
            _co_eq_fv_dag_ti_fv(&w, &g_spinor_field[1][_GSI(ix)], spinor1);
            corr2[count][2*(mu*T+x0)  ] -= w.re;
            corr2[count][2*(mu*T+x0)+1] -= w.im;
            
          }}}
        }
      }  // of mu

      count++;
    }  // of sid
    retime = (double)clock() / CLOCKS_PER_SEC;
    if(g_cart_id==0) fprintf(stdout, "# time to calculate contractions: %e seconds\n", retime-ratime);

    for(ix=0;ix<8*T;ix++) tcorr[ix] = 0.;
    for(ix=0;ix<8*T;ix++) tcorr2[ix] = 0.;
    
    for(i=0;i<nsource-1;i++) {
    for(j=i+1;j<nsource;j++)   {
      for(mu=0;mu<4;mu++) {
        for(x0=0;x0<T;x0++) {  // times at source
        for(x1=0;x1<T;x1++) {  // times at sink
          it = (x1 - x0 + T) % T;
          // conserved current
          tcorr[2*(mu*T+it)  ] += corr[i][2*(mu*T+x1)] * corr[j][2*(mu*T+x0)  ] - corr[i][2*(mu*T+x1)+1] * corr[j][2*(mu*T+x0)+1];
          tcorr[2*(mu*T+it)+1] += corr[i][2*(mu*T+x1)] * corr[j][2*(mu*T+x0)+1] + corr[i][2*(mu*T+x1)+1] * corr[j][2*(mu*T+x0)  ];
          tcorr[2*(mu*T+it)  ] += corr[j][2*(mu*T+x1)] * corr[i][2*(mu*T+x0)  ] - corr[j][2*(mu*T+x1)+1] * corr[i][2*(mu*T+x0)+1];
          tcorr[2*(mu*T+it)+1] += corr[j][2*(mu*T+x1)] * corr[i][2*(mu*T+x0)+1] + corr[j][2*(mu*T+x1)+1] * corr[i][2*(mu*T+x0)  ];

          // local current
          tcorr2[2*(mu*T+it)  ] += corr2[i][2*(mu*T+x1)] * corr2[j][2*(mu*T+x0)  ] - corr2[i][2*(mu*T+x1)+1] * corr2[j][2*(mu*T+x0)+1];
          tcorr2[2*(mu*T+it)+1] += corr2[i][2*(mu*T+x1)] * corr2[j][2*(mu*T+x0)+1] + corr2[i][2*(mu*T+x1)+1] * corr2[j][2*(mu*T+x0)  ];
          tcorr2[2*(mu*T+it)  ] += corr2[j][2*(mu*T+x1)] * corr2[i][2*(mu*T+x0)  ] - corr2[j][2*(mu*T+x1)+1] * corr2[i][2*(mu*T+x0)+1];
          tcorr2[2*(mu*T+it)+1] += corr2[j][2*(mu*T+x1)] * corr2[i][2*(mu*T+x0)+1] + corr2[j][2*(mu*T+x1)+1] * corr2[i][2*(mu*T+x0)  ];
        }}
      }
    }}

    fnorm = 1. / ( g_prop_normsqr * g_prop_normsqr * (double)(LX*LY*LZ) * (double)(LX*LY*LZ) * nsource * (nsource-1));
    if(g_cart_id==0) fprintf(stdout, "X-fnorm = %e\n", fnorm);
    for(ix=0;ix<8*T;ix++) tcorr[ix]  *= fnorm;
    for(ix=0;ix<8*T;ix++) tcorr2[ix] *= fnorm;

    /************************************************
     * save results
     ************************************************/
    if(g_cart_id == 0) fprintf(stdout, "# save results for gauge id %d and sid %d\n", gid, sid);

    /* save the result in position space */
    sprintf(filename, "jc_u_tp0.%.4d.%.4d", gid, sid);
    ofs = fopen(filename, "w");
    for(x0=0;x0<T;x0++) fprintf(ofs, "%d%25.16e%25.16e%25.16e%25.16e%25.16e%25.16e%25.16e%25.16e\n", x0,
       tcorr[2*(0*T+x0)], tcorr[2*(0*T+x0)+1],
       tcorr[2*(1*T+x0)], tcorr[2*(1*T+x0)+1],
       tcorr[2*(2*T+x0)], tcorr[2*(2*T+x0)+1],
       tcorr[2*(3*T+x0)], tcorr[2*(3*T+x0)+1]);
    
    fclose(ofs);

  }  /* of loop on gid */

  /***********************************************
   * free the allocated memory, finalize 
   ***********************************************/
  free(g_gauge_field);
  for(i=0; i<no_fields; i++) free(g_spinor_field[i]);
  free(g_spinor_field);
  free_geometry();
  free(corr);
  free(corr2);
  free(tcorr);
  free(tcorr2);

  return(0);

}
Exemplo n.º 8
0
int main(int argc, char **argv) {
  
  int c, i, mu, status;
  int ispin, icol, isc;
  int n_c = 3;
  int n_s = 4;
  int count        = 0;
  int filename_set = 0;
  int dims[4]      = {0,0,0,0};
  int grid_size[4];
  int l_LX_at, l_LXstart_at;
  int x0, x1, x2, x3, ix, iix, iy, is, it, i3;
  int sl0, sl1, sl2, sl3, have_source_flag=0;
  int source_proc_coords[4], lsl0, lsl1, lsl2, lsl3;
  int check_residuum = 0;
  unsigned int VOL3, V5;
  int do_gt   = 0;
  int full_orbit = 0;
  int smear_source = 0;
  char filename[200], source_filename[200], source_filename_write[200];
  double ratime, retime;
  double plaq_r=0., plaq_m=0., norm, norm2;
  double spinor1[24];
  double *gauge_qdp[4], *gauge_field_timeslice=NULL, *gauge_field_smeared=NULL;
  double _1_2_kappa, _2_kappa, phase;
  FILE *ofs;
  int mu_trans[4] = {3, 0, 1, 2};
  int threadid, nthreads;
  int timeslice, source_timeslice;
  char rng_file_in[100], rng_file_out[100];
  int *source_momentum=NULL;
  int source_momentum_class = -1;
  int source_momentum_no = 0;
  int source_momentum_runs = 1;
  int imom;
  int num_gpu_on_node=0, rank;
  int source_location_5d_iseven;
  int convert_sign=0;
#ifdef HAVE_QUDA
  int rotate_gamma_basis = 1;
#else
  int rotate_gamma_basis = 0;
#endif
  omp_lock_t *lck = NULL, gen_lck[1];
  int key = 0;


  /****************************************************************************/
  /* for smearing parallel to inversion                                       */
  double *smearing_spinor_field[] = {NULL,NULL};
  int dummy_flag = 0;
  /****************************************************************************/


  /****************************************************************************/
#if (defined HAVE_QUDA) && (defined MULTI_GPU)
  int x_face_size, y_face_size, z_face_size, t_face_size, pad_size;
#endif
  /****************************************************************************/

  /************************************************/
  int qlatt_nclass;
  int *qlatt_id=NULL, *qlatt_count=NULL, **qlatt_rep=NULL, **qlatt_map=NULL;
  double **qlatt_list=NULL;
  /************************************************/

  /************************************************/
  double boundary_condition_factor;
  int boundary_condition_factor_set = 0;
  /************************************************/

//#ifdef MPI       
//  kernelPackT = true;
//#endif

  /***********************************************
   * QUDA parameters
   ***********************************************/
#ifdef HAVE_QUDA
  QudaPrecision cpu_prec         = QUDA_DOUBLE_PRECISION;
  QudaPrecision cuda_prec        = QUDA_DOUBLE_PRECISION;
  QudaPrecision cuda_prec_sloppy = QUDA_SINGLE_PRECISION;

  QudaGaugeParam gauge_param = newQudaGaugeParam();
  QudaInvertParam inv_param = newQudaInvertParam();
#endif

  while ((c = getopt(argc, argv, "soch?vgf:p:b:S:R:")) != -1) {
    switch (c) {
    case 'v':
      g_verbose = 1;
      break;
    case 'g':
      do_gt = 1;
      break;
    case 'f':
      strcpy(filename, optarg);
      filename_set=1;
      break;
    case 'c':
      check_residuum = 1;
      fprintf(stdout, "# [invert_dw_quda] will check residuum again\n");
      break;
    case 'p':
      n_c = atoi(optarg);
      fprintf(stdout, "# [invert_dw_quda] will use number of colors = %d\n", n_c);
      break;
    case 'o':
      full_orbit = 1;
      fprintf(stdout, "# [invert_dw_quda] will invert for full orbit, if source momentum set\n");
    case 's':
      smear_source = 1;
      fprintf(stdout, "# [invert_dw_quda] will smear the sources if they are read from file\n");
      break;
    case 'b':
      boundary_condition_factor = atof(optarg);
      boundary_condition_factor_set = 1;
      fprintf(stdout, "# [invert_dw_quda] const. boundary condition factor set to %e\n", boundary_condition_factor);
      break;
    case 'S':
      convert_sign = atoi(optarg);
      fprintf(stdout, "# [invert_dw_quda] using convert sign %d\n", convert_sign);
      break;
    case 'R':
      rotate_gamma_basis = atoi(optarg);
      fprintf(stdout, "# [invert_dw_quda] rotate gamma basis %d\n", rotate_gamma_basis);
      break;
    case 'h':
    case '?':
    default:
      usage();
      break;
    }
  }

  // get the time stamp
  g_the_time = time(NULL);

  /**************************************
   * set the default values, read input
   **************************************/
  if(filename_set==0) strcpy(filename, "cvc.input");
  if(g_proc_id==0) fprintf(stdout, "# Reading input from file %s\n", filename);
  read_input_parser(filename);

#ifdef MPI
#ifdef HAVE_QUDA
  grid_size[0] = g_nproc_x;
  grid_size[1] = g_nproc_y;
  grid_size[2] = g_nproc_z;
  grid_size[3] = g_nproc_t;
  fprintf(stdout, "# [] g_nproc = (%d,%d,%d,%d)\n", g_nproc_x, g_nproc_y, g_nproc_z, g_nproc_t);
  initCommsQuda(argc, argv, grid_size, 4);
#else
  MPI_Init(&argc, &argv);
#endif
#endif

#if (defined PARALLELTX) || (defined PARALLELTXY)
  EXIT_WITH_MSG(1, "[] Error, 2-dim./3-dim. MPI-Version not yet implemented");
#endif


  // some checks on the input data
  if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
    if(g_proc_id==0) fprintf(stderr, "[invert_dw_quda] Error, T and L's must be set\n");
    usage();
  }

  // set number of openmp threads

  // initialize MPI parameters
  mpi_init(argc, argv);
  
  // the volume of a timeslice
  VOL3 = LX*LY*LZ;
  V5   = T*LX*LY*LZ*L5;
  g_kappa5d = 0.5 / (5. + g_m5);
  if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] kappa5d = %e\n", g_kappa5d);

  fprintf(stdout, "# [%2d] parameters:\n"\
                  "# [%2d] T            = %3d\n"\
		  "# [%2d] Tstart       = %3d\n"\
		  "# [%2d] L5           = %3d\n",\
                  g_cart_id, g_cart_id, T, g_cart_id, Tstart, g_cart_id, L5);


#ifdef MPI
  if(T==0) {
    fprintf(stderr, "[%2d] local T is zero; exit\n", g_cart_id);
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
    exit(2);
  }
#endif

  if(init_geometry() != 0) {
    fprintf(stderr, "[invert_dw_quda] Error from init_geometry\n");
    EXIT(1);
  }
  geometry();

  if( init_geometry_5d() != 0 ) {
    fprintf(stderr, "[invert_dw_quda] Error from init_geometry_5d\n");
    EXIT(2);
  }
  geometry_5d();

  /**************************************
   * initialize the QUDA library
   **************************************/
  if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] initializing quda\n");
#ifdef HAVE_QUDA
  // cudaGetDeviceCount(&num_gpu_on_node);
  if(g_gpu_per_node<0) {
    if(g_cart_id==0) fprintf(stderr, "[] Error, number of GPUs per node not set\n");
    EXIT(106);
  } else {
    num_gpu_on_node = g_gpu_per_node;
  }
#ifdef MPI
  rank = comm_rank();
#else
  rank = 0;
#endif
  g_gpu_device_number = rank % num_gpu_on_node;
  fprintf(stdout, "# [] process %d/%d uses device %d\n", rank, g_cart_id, g_gpu_device_number);

  initQuda(g_gpu_device_number);

#endif
 
  /**************************************
   * prepare the gauge field
   **************************************/
  // read the gauge field from file
  alloc_gauge_field(&g_gauge_field, VOLUMEPLUSRAND);
  if(strcmp( gaugefilename_prefix, "identity")==0 ) {
    if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] Setting up unit gauge field\n");
    for(ix=0;ix<VOLUME; ix++) {
      for(mu=0;mu<4;mu++) {
        _cm_eq_id(g_gauge_field+_GGI(ix,mu));
      }
    }
  } else if(strcmp( gaugefilename_prefix, "random")==0 ) {
    if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] Setting up random gauge field with seed = %d\n", g_seed);
    init_rng_state(g_seed, &g_rng_state);
    random_gauge_field(g_gauge_field, 1.);
    plaquette(&plaq_m);
    sprintf(filename, "%s.%.4d", gaugefilename_prefix, Nconf);
    check_error(write_lime_gauge_field(filename, plaq_m, Nconf, 64), "write_lime_gauge_field", NULL, 12);
  } else {
    if(g_gauge_file_format == 0) {
      // ILDG
      sprintf(filename, "%s.%.4d", gaugefilename_prefix, Nconf);
      if(g_cart_id==0) fprintf(stdout, "# Reading gauge field from file %s\n", filename);
      status = read_lime_gauge_field_doubleprec(filename);
    } else if(g_gauge_file_format == 1) {
      // NERSC
      sprintf(filename, "%s.%.5d", gaugefilename_prefix, Nconf);
      if(g_cart_id==0) fprintf(stdout, "# Reading gauge field from file %s\n", filename);
      status = read_nersc_gauge_field(g_gauge_field, filename, &plaq_r);
      //status = read_nersc_gauge_field_3x3(g_gauge_field, filename, &plaq_r);

    }
    if(status != 0) {
      fprintf(stderr, "[invert_dw_quda] Error, could not read gauge field");
      EXIT(12);
    }
  }
#ifdef MPI
  xchange_gauge();
#endif

  // measure the plaquette
  plaquette(&plaq_m);
  if(g_cart_id==0) fprintf(stdout, "# Measured plaquette value: %25.16e\n", plaq_m);
  if(g_cart_id==0) fprintf(stdout, "# Read plaquette value    : %25.16e\n", plaq_r);

#ifndef HAVE_QUDA
  if(N_Jacobi>0) {
#endif
    // allocate the smeared / qdp ordered gauge field
    alloc_gauge_field(&gauge_field_smeared, VOLUMEPLUSRAND);
    for(i=0;i<4;i++) {
      gauge_qdp[i] = gauge_field_smeared + i*18*VOLUME;
    }
#ifndef HAVE_QUDA
  }
#endif

#ifdef HAVE_QUDA
  // transcribe the gauge field

  omp_set_num_threads(g_num_threads);
#pragma omp parallel for private(ix,iy,mu)
  for(ix=0;ix<VOLUME;ix++) {
    iy = g_lexic2eot[ix];
    for(mu=0;mu<4;mu++) {
      _cm_eq_cm(gauge_qdp[mu_trans[mu]]+18*iy, g_gauge_field+_GGI(ix,mu));
    }
  }
  // multiply timeslice T-1 with factor of -1 (antiperiodic boundary condition)
  if(g_proc_coords[0]==g_nproc_t-1) {
    if(!boundary_condition_factor_set) boundary_condition_factor = -1.;
    fprintf(stdout, "# [] process %d multiplies gauge-field timeslice T_global-1 with boundary condition factor %e\n", g_cart_id,
      boundary_condition_factor);

  omp_set_num_threads(g_num_threads);
#pragma omp parallel for private(ix,iy)
    for(ix=0;ix<VOL3;ix++) {
      iix = (T-1)*VOL3 + ix;
      iy = g_lexic2eot[iix];
      _cm_ti_eq_re(gauge_qdp[mu_trans[0]]+18*iy, -1.);
    }
  }

  // QUDA precision parameters
  switch(g_cpu_prec) {
    case 0: cpu_prec = QUDA_HALF_PRECISION; if(g_cart_id==0) fprintf(stdout, "# [] CPU prec = half\n"); break;
    case 1: cpu_prec = QUDA_SINGLE_PRECISION; if(g_cart_id==0) fprintf(stdout, "# [] CPU prec = single\n"); break;
    case 2: cpu_prec = QUDA_DOUBLE_PRECISION; if(g_cart_id==0) fprintf(stdout, "# [] CPU prec = double\n"); break;
    default: cpu_prec = QUDA_DOUBLE_PRECISION; break;
  }
  switch(g_gpu_prec) {
    case 0: cuda_prec = QUDA_HALF_PRECISION; if(g_cart_id==0) fprintf(stdout, "# [] GPU prec = half\n"); break;
    case 1: cuda_prec = QUDA_SINGLE_PRECISION; if(g_cart_id==0) fprintf(stdout, "# [] GPU prec = single\n"); break;
    case 2: cuda_prec = QUDA_DOUBLE_PRECISION; if(g_cart_id==0) fprintf(stdout, "# [] GPU prec = double\n"); break;
    default: cuda_prec = QUDA_DOUBLE_PRECISION; break;
  }
  switch(g_gpu_prec_sloppy) {
    case 0: cuda_prec_sloppy = QUDA_HALF_PRECISION; if(g_cart_id==0) fprintf(stdout, "# [] GPU sloppy prec = half\n"); break;
    case 1: cuda_prec_sloppy = QUDA_SINGLE_PRECISION; if(g_cart_id==0) fprintf(stdout, "# [] GPU sloppy prec = single\n"); break;
    case 2: cuda_prec_sloppy = QUDA_DOUBLE_PRECISION; if(g_cart_id==0) fprintf(stdout, "# [] GPU sloppy prec = double\n"); break;
    default: cuda_prec_sloppy = QUDA_SINGLE_PRECISION; break;
  }

  // QUDA gauge parameters
  gauge_param.X[0] = LX;
  gauge_param.X[1] = LY;
  gauge_param.X[2] = LZ;
  gauge_param.X[3] = T;
  inv_param.Ls = L5;

  gauge_param.anisotropy  = 1.0;
  gauge_param.type        = QUDA_WILSON_LINKS;
  gauge_param.gauge_order = QUDA_QDP_GAUGE_ORDER;
  gauge_param.t_boundary  = QUDA_ANTI_PERIODIC_T;

  gauge_param.cpu_prec           = cpu_prec;
  gauge_param.cuda_prec          = cuda_prec;
  gauge_param.reconstruct        = QUDA_RECONSTRUCT_12;
  gauge_param.cuda_prec_sloppy   = cuda_prec_sloppy;
  gauge_param.reconstruct_sloppy = QUDA_RECONSTRUCT_12;
  gauge_param.gauge_fix          = QUDA_GAUGE_FIXED_NO;

  gauge_param.ga_pad = 0;
  inv_param.sp_pad = 0;
  inv_param.cl_pad = 0;

  // For multi-GPU, ga_pad must be large enough to store a time-slice
#ifdef MULTI_GPU
  x_face_size = inv_param.Ls * gauge_param.X[1]*gauge_param.X[2]*gauge_param.X[3]/2;
  y_face_size = inv_param.Ls * gauge_param.X[0]*gauge_param.X[2]*gauge_param.X[3]/2;
  z_face_size = inv_param.Ls * gauge_param.X[0]*gauge_param.X[1]*gauge_param.X[3]/2;
  t_face_size = inv_param.Ls * gauge_param.X[0]*gauge_param.X[1]*gauge_param.X[2]/2;
  pad_size = _MAX(x_face_size, y_face_size);
  pad_size = _MAX(pad_size, z_face_size);
  pad_size = _MAX(pad_size, t_face_size);
  gauge_param.ga_pad = pad_size;
  if(g_cart_id==0) printf("# [invert_dw_quda] pad_size = %d\n", pad_size);
#endif

  // load the gauge field
  if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] loading gauge field\n");
  loadGaugeQuda((void*)gauge_qdp, &gauge_param);
  gauge_qdp[0] = NULL; 
  gauge_qdp[1] = NULL; 
  gauge_qdp[2] = NULL; 
  gauge_qdp[3] = NULL; 

#endif

  /*********************************************
   * APE smear the gauge field
   *********************************************/
  if(N_Jacobi>0) {
    memcpy(gauge_field_smeared, g_gauge_field, 72*VOLUMEPLUSRAND*sizeof(double));
    fprintf(stdout, "# [invert_dw_quda] APE smearing gauge field with paramters N_APE=%d, alpha_APE=%e\n", N_ape, alpha_ape);
    APE_Smearing_Step_threads(gauge_field_smeared, N_ape, alpha_ape);
    xchange_gauge_field(gauge_field_smeared);
  }

  // allocate memory for the spinor fields
#ifdef HAVE_QUDA
  no_fields = 3+2;
#else
  no_fields = 6+2;
#endif
  g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
  for(i=0; i<no_fields; i++) alloc_spinor_field(&g_spinor_field[i], VOLUMEPLUSRAND*L5);
  smearing_spinor_field[0] = g_spinor_field[no_fields-2];
  smearing_spinor_field[1] = g_spinor_field[no_fields-1];

  switch(g_source_type) {
    case 0:
    case 5:
      // the source locaton
      sl0 =   g_source_location                              / (LX_global*LY_global*LZ);
      sl1 = ( g_source_location % (LX_global*LY_global*LZ) ) / (          LY_global*LZ);
      sl2 = ( g_source_location % (          LY_global*LZ) ) / (                    LZ);
      sl3 =   g_source_location %                      LZ;
      if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] global sl = (%d, %d, %d, %d)\n", sl0, sl1, sl2, sl3);
      source_proc_coords[0] = sl0 / T;
      source_proc_coords[1] = sl1 / LX;
      source_proc_coords[2] = sl2 / LY;
      source_proc_coords[3] = sl3 / LZ;
    #ifdef MPI
      MPI_Cart_rank(g_cart_grid, source_proc_coords, &g_source_proc_id);
    #else
      g_source_proc_id = 0;
    #endif
      have_source_flag = g_source_proc_id == g_cart_id;
    
      lsl0 = sl0 % T;
      lsl1 = sl1 % LX;
      lsl2 = sl2 % LY;
      lsl3 = sl3 % LZ;
      if(have_source_flag) {
        fprintf(stdout, "# [invert_dw_quda] process %d has the source at (%d, %d, %d, %d)\n", g_cart_id, lsl0, lsl1, lsl2, lsl3);
      }
      break;
    case 2:
    case 3:
    case 4:
      // the source timeslice
#ifdef MPI
      source_proc_coords[0] = g_source_timeslice / T;
      source_proc_coords[1] = 0;
      source_proc_coords[2] = 0;
      source_proc_coords[3] = 0;
      MPI_Cart_rank(g_cart_grid, source_proc_coords, &g_source_proc_id);
      have_source_flag = ( g_source_proc_id == g_cart_id );
      source_timeslice = have_source_flag ? g_source_timeslice % T : -1;
#else
      g_source_proc_id = 0;
      have_source_flag = 1;
      source_timeslice = g_source_timeslice;
#endif
      break;
  }

#ifdef HAVE_QUDA
  /*************************************************************
   * QUDA inverter parameters
   *************************************************************/
  inv_param.dslash_type    = QUDA_DOMAIN_WALL_DSLASH;

  if(strcmp(g_inverter_type_name, "cg") == 0) {
    inv_param.inv_type       = QUDA_CG_INVERTER;
    if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] using cg inverter\n"); 
  } else if(strcmp(g_inverter_type_name, "bicgstab") == 0) {
    inv_param.inv_type       = QUDA_BICGSTAB_INVERTER;
    if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] using bicgstab inverter\n");
#ifdef MULTI_GPU    
  } else if(strcmp(g_inverter_type_name, "gcr") == 0) {
    inv_param.inv_type       = QUDA_GCR_INVERTER;
    if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] using gcr inverter\n"); 
#endif
  } else {
    if(g_cart_id==0) fprintf(stderr, "[invert_dw_quda] Error, unrecognized inverter type %s\n", g_inverter_type_name);
    EXIT(123);
  }


  if(inv_param.inv_type == QUDA_CG_INVERTER) {
    inv_param.solution_type = QUDA_MAT_SOLUTION;
    inv_param.solve_type    = QUDA_NORMEQ_PC_SOLVE;
  } else if(inv_param.inv_type == QUDA_BICGSTAB_INVERTER) {
    inv_param.solution_type = QUDA_MAT_SOLUTION;
    inv_param.solve_type    = QUDA_DIRECT_PC_SOLVE;
  } else {
    inv_param.solution_type = QUDA_MATPC_SOLUTION;
    inv_param.solve_type    = QUDA_DIRECT_PC_SOLVE;
  }

  inv_param.m5             = g_m5;
  inv_param.kappa          = 0.5 / (5. + inv_param.m5);
  inv_param.mass           = g_m0;

  inv_param.tol            = solver_precision;
  inv_param.maxiter        = niter_max;
  inv_param.reliable_delta = reliable_delta;

#ifdef MPI
  // domain decomposition preconditioner parameters
  if(inv_param.inv_type == QUDA_GCR_INVERTER) {
    if(g_cart_id == 0) printf("# [] settup DD parameters\n");
    inv_param.gcrNkrylov     = 15;
    inv_param.inv_type_precondition = QUDA_MR_INVERTER;
    inv_param.tol_precondition = 1e-6;
    inv_param.maxiter_precondition = 200;
    inv_param.verbosity_precondition = QUDA_VERBOSE;
    inv_param.prec_precondition = cuda_prec_sloppy;
    inv_param.omega = 0.7;
  }
#endif

  inv_param.matpc_type         = QUDA_MATPC_EVEN_EVEN;
  inv_param.dagger             = QUDA_DAG_NO;
  inv_param.mass_normalization = QUDA_KAPPA_NORMALIZATION; //;QUDA_MASS_NORMALIZATION;

  inv_param.cpu_prec         = cpu_prec;
  inv_param.cuda_prec        = cuda_prec;
  inv_param.cuda_prec_sloppy = cuda_prec_sloppy;

  inv_param.verbosity = QUDA_VERBOSE;

  inv_param.preserve_source = QUDA_PRESERVE_SOURCE_NO;
  inv_param.dirac_order = QUDA_DIRAC_ORDER;
#ifdef MPI
  inv_param.preserve_dirac = QUDA_PRESERVE_DIRAC_YES;
  inv_param.prec_precondition = cuda_prec_sloppy;
  inv_param.gamma_basis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS;
  inv_param.dirac_tune = QUDA_TUNE_NO;
#endif
#endif

  /*******************************************
   * write initial rng state to file
   *******************************************/
  if( g_source_type==2 && g_coherent_source==2 ) {
    sprintf(rng_file_out, "%s.0", g_rng_filename);
    status = init_rng_stat_file (g_seed, rng_file_out);
    if( status != 0 ) {
      fprintf(stderr, "[invert_dw_quda] Error, could not write rng status\n");
      EXIT(210);
    }
  } else if( (g_source_type==2 /*&& g_coherent_source==1*/) || g_source_type==3 || g_source_type==4) {
    if( init_rng_state(g_seed, &g_rng_state) != 0 ) {
      fprintf(stderr, "[invert_dw_quda] Error, could initialize rng state\n");
      EXIT(211);
    }
  }

  /*******************************************
   * prepare locks for openmp
   *******************************************/
  nthreads = g_num_threads - 1;
  lck = (omp_lock_t*)malloc(nthreads * sizeof(omp_lock_t));
  if(lck == NULL) {
      EXIT_WITH_MSG(97, "[invert_dw_quda] Error, could not allocate lck\n");
  }
  // init locks
  for(i=0;i<nthreads;i++) {
    omp_init_lock(lck+i);
  }
  omp_init_lock(gen_lck);

  // check the source momenta
  if(g_source_momentum_set) {
    source_momentum = (int*)malloc(3*sizeof(int));

    if(g_source_momentum[0]<0) g_source_momentum[0] += LX_global;
    if(g_source_momentum[1]<0) g_source_momentum[1] += LY_global;
    if(g_source_momentum[2]<0) g_source_momentum[2] += LZ_global;
    fprintf(stdout, "# [invert_dw_quda] using final source momentum ( %d, %d, %d )\n", g_source_momentum[0], g_source_momentum[1], g_source_momentum[2]);


    if(full_orbit) {
      status = make_qcont_orbits_3d_parity_avg( &qlatt_id, &qlatt_count, &qlatt_list, &qlatt_nclass, &qlatt_rep, &qlatt_map);
      if(status != 0) {
        if(g_cart_id==0) fprintf(stderr, "\n[invert_dw_quda] Error while creating O_3-lists\n");
        EXIT(4);
      }
      source_momentum_class = qlatt_id[g_ipt[0][g_source_momentum[0]][g_source_momentum[1]][g_source_momentum[2]]];
      source_momentum_no    = qlatt_count[source_momentum_class];
      source_momentum_runs  = source_momentum_class==0 ? 1 : source_momentum_no + 1;
      if(g_cart_id==0) fprintf(stdout, "# [] source momentum belongs to class %d with %d members, which means %d runs\n",
          source_momentum_class, source_momentum_no, source_momentum_runs);
    }
  }

  if(g_source_type == 5) {
    if(g_seq_source_momentum_set) {
      if(g_seq_source_momentum[0]<0) g_seq_source_momentum[0] += LX_global;
      if(g_seq_source_momentum[1]<0) g_seq_source_momentum[1] += LY_global;
      if(g_seq_source_momentum[2]<0) g_seq_source_momentum[2] += LZ_global;
    } else if(g_source_momentum_set) {
      g_seq_source_momentum[0] = g_source_momentum[0];
      g_seq_source_momentum[1] = g_source_momentum[1];
      g_seq_source_momentum[2] = g_source_momentum[2];
    }
    fprintf(stdout, "# [invert_dw_quda] using final sequential source momentum ( %d, %d, %d )\n",
        g_seq_source_momentum[0], g_seq_source_momentum[1], g_seq_source_momentum[2]);
  }


  /***********************************************
   * loop on spin-color-index
   ***********************************************/
  for(isc=g_source_index[0]; isc<=g_source_index[1]; isc++)
//  for(isc=g_source_index[0]; isc<=g_source_index[0]; isc++)
  {
    ispin = isc / n_c;
    icol  = isc % n_c;

    for(imom=0; imom<source_momentum_runs; imom++) {

      /***********************************************
       * set source momentum
       ***********************************************/
      if(g_source_momentum_set) {
        if(imom == 0) {
          if(full_orbit) {
            source_momentum[0] = 0;
            source_momentum[1] = 0;
            source_momentum[2] = 0;
          } else {
            source_momentum[0] = g_source_momentum[0];
            source_momentum[1] = g_source_momentum[1];
            source_momentum[2] = g_source_momentum[2];
          }
        } else {
          source_momentum[0] = qlatt_map[source_momentum_class][imom-1] / (LY_global*LZ_global);
          source_momentum[1] = ( qlatt_map[source_momentum_class][imom-1] % (LY_global*LZ_global) ) / LZ_global;
          source_momentum[2] = qlatt_map[source_momentum_class][imom-1] % LZ_global;
        }
        if(g_cart_id==0) fprintf(stdout, "# [] run no. %d, source momentum (%d, %d, %d)\n",
            imom, source_momentum[0], source_momentum[1], source_momentum[2]);
      
      }
 
      /***********************************************
       * prepare the souce
       ***********************************************/
      if(g_read_source == 0) {  // create source
        switch(g_source_type) {
          case 0:
            // point source
            if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] Creating point source\n");
            for(ix=0;ix<L5*VOLUME;ix++) { _fv_eq_zero(g_spinor_field[0]+ix); }
            if(have_source_flag) {
              if(g_source_momentum_set) {
                phase = 2*M_PI*( source_momentum[0]*sl1/(double)LX_global + source_momentum[1]*sl2/(double)LY_global + source_momentum[2]*sl3/(double)LZ_global );
                g_spinor_field[0][_GSI(g_ipt[lsl0][lsl1][lsl2][lsl3]) + 2*(n_c*ispin+icol)  ] = cos(phase);
                g_spinor_field[0][_GSI(g_ipt[lsl0][lsl1][lsl2][lsl3]) + 2*(n_c*ispin+icol)+1] = sin(phase);
              } else {
                g_spinor_field[0][_GSI(g_ipt[lsl0][lsl1][lsl2][lsl3]) + 2*(n_c*ispin+icol)  ] = 1.;
              }
            }
            if(g_source_momentum_set) {
              sprintf(source_filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d.qx%.2dqy%.2dqz%.2d",
                  filename_prefix, Nconf, sl0, sl1, sl2, sl3, n_c*ispin+icol, source_momentum[0], source_momentum[1], source_momentum[2]);
            } else {
              sprintf(source_filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d", filename_prefix, Nconf, sl0, sl1, sl2, sl3, n_c*ispin+icol);
            }
#ifdef HAVE_QUDA
            // set matpc_tpye
            source_location_5d_iseven = ( (g_iseven[g_ipt[lsl0][lsl1][lsl2][lsl3]] && ispin<n_s/2) || (!g_iseven[g_ipt[lsl0][lsl1][lsl2][lsl3]] && ispin>=n_s/2) ) ? 1 : 0;
            if(source_location_5d_iseven) {
              inv_param.matpc_type = QUDA_MATPC_EVEN_EVEN;
              if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] matpc type is MATPC_EVEN_EVEN\n");
            } else {
              inv_param.matpc_type = QUDA_MATPC_ODD_ODD;
              if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] matpc type is MATPC_ODD_ODD\n");
            }
#endif
            break;
          case 2:
            // timeslice source
            if(g_coherent_source==1) {
              if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] Creating coherent timeslice source\n");
              status = prepare_coherent_timeslice_source(g_spinor_field[0], gauge_field_smeared, g_coherent_source_base, g_coherent_source_delta, VOLUME, g_rng_state, 1);
              if(status != 0) {
                fprintf(stderr, "[invert_dw_quda] Error from prepare source, status was %d\n", status);
#ifdef MPI
                MPI_Abort(MPI_COMM_WORLD, 123);
                MPI_Finalize();
#endif
                exit(123);
              }
              check_error(prepare_coherent_timeslice_source(g_spinor_field[0], gauge_field_smeared, g_coherent_source_base, g_coherent_source_delta, VOLUME, g_rng_state, 1),
                  "prepare_coherent_timeslice_source", NULL, 123);
              timeslice = g_coherent_source_base;
            } else {
              if(g_coherent_source==2) {
                timeslice = (g_coherent_source_base+isc*g_coherent_source_delta)%T_global;
                fprintf(stdout, "# [invert_dw_quda] Creating timeslice source\n");
                check_error(prepare_timeslice_source(g_spinor_field[0], gauge_field_smeared, timeslice, VOLUME, g_rng_state, 1),
                    "prepare_timeslice_source", NULL, 123);
              } else {
                if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] Creating timeslice source\n");
                check_error(prepare_timeslice_source(g_spinor_field[0], gauge_field_smeared, g_source_timeslice, VOLUME, g_rng_state, 1),
                    "prepare_timeslice_source", NULL, 124);
                timeslice = g_source_timeslice;
              }
            }
            if(g_source_momentum_set) {
              sprintf(source_filename, "%s.%.4d.%.2d.%.5d.qx%.2dqy%.2dqz%.2d", filename_prefix, Nconf, 
                  timeslice, isc, source_momentum[0], source_momentum[1], source_momentum[2]);
            } else {
              sprintf(source_filename, "%s.%.4d.%.2d.%.5d", filename_prefix, Nconf, timeslice, isc);
            }
            break;
          case 3:
            // timeslice sources for one-end trick (spin dilution)
            fprintf(stdout, "# [invert_dw_quda] Creating timeslice source for one-end-trick\n");
            check_error( prepare_timeslice_source_one_end(g_spinor_field[0], gauge_field_smeared, source_timeslice, source_momentum, isc%n_s, g_rng_state, \
                ( isc%n_s==(n_s-1) && imom==source_momentum_runs-1 )), "prepare_timeslice_source_one_end", NULL, 125 );
            c = N_Jacobi > 0 ? isc%n_s + n_s : isc%n_s;
            if(g_source_momentum_set) {
              sprintf(source_filename, "%s.%.4d.%.2d.%.2d.qx%.2dqy%.2dqz%.2d", filename_prefix, Nconf, 
                  g_source_timeslice, c, source_momentum[0], source_momentum[1], source_momentum[2]);
            } else {
              sprintf(source_filename, "%s.%.4d.%.2d.%.2d", filename_prefix, Nconf, g_source_timeslice, c);
            }
            break;
          case 4:
            // timeslice sources for one-end trick (spin and color dilution )
            fprintf(stdout, "# [invert_dw_quda] Creating timeslice source for one-end-trick\n");
            check_error(prepare_timeslice_source_one_end_color(g_spinor_field[0], gauge_field_smeared, source_timeslice, source_momentum,\
                isc%(n_s*n_c), g_rng_state, ( isc%(n_s*n_c)==(n_s*n_c-1)  && imom==source_momentum_runs-1 )), "prepare_timeslice_source_one_end_color", NULL, 126);
            c = N_Jacobi > 0 ? isc%(n_s*n_c) + (n_s*n_c) : isc%(n_s*n_c);
            if(g_source_momentum_set) {
              sprintf(source_filename, "%s.%.4d.%.2d.%.2d.qx%.2dqy%.2dqz%.2d", filename_prefix, Nconf, 
                  g_source_timeslice, c, source_momentum[0], source_momentum[1], source_momentum[2]);
            } else {
              sprintf(source_filename, "%s.%.4d.%.2d.%.2d", filename_prefix, Nconf, g_source_timeslice, c);
            }
            break;
          case 5:
            if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] preparing sequential point source\n");
            check_error( prepare_sequential_point_source (g_spinor_field[0], isc, sl0, g_seq_source_momentum, 
                  smear_source, g_spinor_field[1], gauge_field_smeared), "prepare_sequential_point_source", NULL, 33);
            sprintf(source_filename, "%s.%.4d.t%.2dx%.2d.y%.2d.z%.2d.%.2d.qx%.2dqy%.2dqz%.2d", filename_prefix2, Nconf,
                sl0, sl1, sl2, sl3, isc, g_source_momentum[0], g_source_momentum[1], g_source_momentum[2]);
            break;
          default:
            fprintf(stderr, "\nError, unrecognized source type\n");
            exit(32);
            break;
        }
      } else { // read source
        switch(g_source_type) {
          case 0:  // point source
            if(g_source_momentum_set) {
              sprintf(source_filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d.qx%.2dqy%.2dqz%.2d", \
                  filename_prefix2, Nconf, sl0, sl1, sl2, sl3, isc, source_momentum[0], source_momentum[1], source_momentum[2]);
            } else  {
              sprintf(source_filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d", filename_prefix2, Nconf, sl0, sl1, sl2, sl3, isc);
            }
            fprintf(stdout, "# [invert_dw_quda] reading source from file %s\n", source_filename);
            check_error(read_lime_spinor(g_spinor_field[0], source_filename, 0), "read_lime_spinor", NULL, 115);
            break;
          case 2:  // timeslice source
            if(g_source_momentum_set) {
              sprintf(source_filename, "%s.%.4d.%.2d.%.5d.qx%.2dqy%.2dqz%.2d", filename_prefix2, Nconf, g_source_timeslice,
                  isc, source_momentum[0], source_momentum[1], source_momentum[2]);
            } else {
              sprintf(source_filename, "%s.%.4d.%.2d.%.5d", filename_prefix2, Nconf, g_source_timeslice, isc);
            }
            fprintf(stdout, "# [invert_dw_quda] reading source from file %s\n", source_filename);
            check_error(read_lime_spinor(g_spinor_field[0], source_filename, 0), "read_lime_spinor", NULL, 115);
            break;
          default:
            check_error(1, "source type", NULL, 104);
            break;
          case -1:  // timeslice source
            sprintf(source_filename, "%s", filename_prefix2);
            fprintf(stdout, "# [invert_dw_quda] reading source from file %s\n", source_filename);
            check_error(read_lime_spinor(g_spinor_field[0], source_filename, 0), "read_lime_spinor", NULL, 115);
            break;
        }
      }  // of if g_read_source
  
      if(g_write_source) {
        check_error(write_propagator(g_spinor_field[0], source_filename, 0, g_propagator_precision), "write_propagator", NULL, 27);
      }

/***********************************************************************************************
 * here threads split: 
 ***********************************************************************************************/
      if(dummy_flag==0) strcpy(source_filename_write, source_filename);
      memcpy((void*)(smearing_spinor_field[0]), (void*)(g_spinor_field[0]), 24*VOLUME*sizeof(double));
      if(dummy_flag>0) {
        // copy only if smearing has been done; otherwise do not copy, do not invert
        if(g_cart_id==0) fprintf(stdout, "# [] copy smearing field -> g field\n");
        memcpy((void*)(g_spinor_field[0]), (void*)(smearing_spinor_field[1]), 24*VOLUME*sizeof(double));
      }

      omp_set_num_threads(g_num_threads);
#pragma omp parallel private(threadid, _2_kappa, is, ix, iy, iix, ratime, retime) shared(key,g_read_source, smear_source, N_Jacobi, kappa_Jacobi, smearing_spinor_field, g_spinor_field, nthreads, convert_sign, VOLUME, VOL3, T, L5, isc, rotate_gamma_basis, g_cart_id) firstprivate(inv_param, gauge_param, ofs)
{
      threadid = omp_get_thread_num();

  if(threadid < nthreads) {
      fprintf(stdout, "# [] proc%.2d thread%.2d starting source preparation\n", g_cart_id, threadid);

      // smearing
      if( ( !g_read_source || (g_read_source && smear_source ) ) && N_Jacobi > 0 ) {
        if(g_cart_id==0) fprintf(stdout, "#  [invert_dw_quda] smearing source with N_Jacobi=%d, kappa_Jacobi=%e\n", N_Jacobi, kappa_Jacobi);
        Jacobi_Smearing_threaded(gauge_field_smeared, smearing_spinor_field[0], smearing_spinor_field[1], kappa_Jacobi, N_Jacobi, threadid, nthreads);
      }


      /***********************************************
       * create the 5-dim. source field
       ***********************************************/
      if(convert_sign == 0) {
        spinor_4d_to_5d_threaded(smearing_spinor_field[0], smearing_spinor_field[0], threadid, nthreads);
      }  else if(convert_sign == 1 || convert_sign == -1) {
        spinor_4d_to_5d_sign_threaded(smearing_spinor_field[0], smearing_spinor_field[0], convert_sign, threadid, nthreads);
      }


      for(is=0; is<L5; is++) {
        for(it=threadid; it<T; it+=nthreads) {
          memcpy((void*)(g_spinor_field[0]+_GSI(g_ipt_5d[is][it][0][0][0])), (void*)(smearing_spinor_field[0]+_GSI(g_ipt_5d[is][it][0][0][0])), VOL3*24*sizeof(double));
        }
      }


      // reorder, multiply with g2
      for(is=0; is<L5; is++) {
        for(it=threadid; it<T; it+=nthreads) {
          for(i3=0; i3<VOL3; i3++) {
            ix = (is*T+it)*VOL3 + i3;
            _fv_eq_zero(smearing_spinor_field[1]+_GSI(ix));
      }}} 

      if(rotate_gamma_basis) {
        for(it=threadid; it<T; it+=nthreads) {
          for(i3=0; i3<VOL3; i3++) {
            ix = it * VOL3 + i3;
            iy = lexic2eot_5d(0, ix);
            _fv_eq_gamma_ti_fv(smearing_spinor_field[1]+_GSI(iy), 2, smearing_spinor_field[0]+_GSI(ix));
        }}
        for(it=threadid; it<T; it+=nthreads) {
          for(i3=0; i3<VOL3; i3++) {
            ix = it * VOL3 + i3;
            iy = lexic2eot_5d(L5-1, ix);
            _fv_eq_gamma_ti_fv(smearing_spinor_field[1]+_GSI(iy), 2, smearing_spinor_field[0]+_GSI(ix+(L5-1)*VOLUME));
        }}
      } else {
        for(it=threadid; it<T; it+=nthreads) {
          for(i3=0; i3<VOL3; i3++) {
            ix = it * VOL3 + i3;
            iy = lexic2eot_5d(0, ix);
            _fv_eq_fv(smearing_spinor_field[1]+_GSI(iy), smearing_spinor_field[0]+_GSI(ix));
        }}
        for(it=threadid; it<T; it+=nthreads) {
          for(i3=0; i3<VOL3; i3++) {
            ix = it * VOL3 + i3;
            iy = lexic2eot_5d(L5-1, ix);
            _fv_eq_fv(smearing_spinor_field[1]+_GSI(iy), smearing_spinor_field[0]+_GSI(ix+(L5-1)*VOLUME));
        }}
      }
      fprintf(stdout, "# [] proc%.2d thread%.2d finished source preparation\n", g_cart_id, threadid);

  } else if(threadid == g_num_threads-1 && dummy_flag > 0) {  // else branch on threadid
      fprintf(stdout, "# [] proc%.2d thread%.2d starting inversion for dummy_flag = %d\n", g_cart_id, threadid, dummy_flag);

      /***********************************************
       * perform the inversion
       ***********************************************/
      if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] starting inversion\n");

      xchange_field_5d(g_spinor_field[0]);
      memset(g_spinor_field[1], 0, (VOLUME+RAND)*L5*24*sizeof(double));
      ratime = CLOCK;
#ifdef MPI
      if(inv_param.inv_type == QUDA_BICGSTAB_INVERTER  || inv_param.inv_type == QUDA_GCR_INVERTER) {
        if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] calling invertQuda\n");
        invertQuda(g_spinor_field[1], g_spinor_field[0], &inv_param);
      } else if(inv_param.inv_type == QUDA_CG_INVERTER) {
        if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] calling testCG\n");
        testCG(g_spinor_field[1], g_spinor_field[0], &inv_param);
      } else {
        if(g_cart_id==0) fprintf(stderr, "# [invert_dw_quda] unrecognized inverter\n");
      }
#else
      invertQuda(g_spinor_field[1], g_spinor_field[0], &inv_param);
#endif
      retime = CLOCK;

      if(g_cart_id==0) {
        fprintf(stdout, "# [invert_dw_quda] QUDA time:  %e seconds\n", inv_param.secs);
        fprintf(stdout, "# [invert_dw_quda] QUDA Gflops: %e\n", inv_param.gflops/inv_param.secs);
        fprintf(stdout, "# [invert_dw_quda] wall time:  %e seconds\n", retime-ratime);
        fprintf(stdout, "# [invert_dw_quda] Device memory used:\n\tSpinor: %f GiB\n\tGauge: %f GiB\n",
        inv_param.spinorGiB, gauge_param.gaugeGiB);
      }
  }  // of if threadid

// wait till all threads are here
#pragma omp barrier

      if(inv_param.mass_normalization == QUDA_KAPPA_NORMALIZATION) {
        _2_kappa = 2. * g_kappa5d;
        for(ix=threadid; ix<VOLUME*L5;ix+=g_num_threads) {
          _fv_ti_eq_re(g_spinor_field[1]+_GSI(ix), _2_kappa );
        }
      }
  
#pragma omp barrier
      // reorder, multiply with g2
      for(is=0;is<L5;is++) {
      for(ix=threadid; ix<VOLUME; ix+=g_num_threads) {
        iy  = lexic2eot_5d(is, ix);
        iix = is*VOLUME + ix;
        _fv_eq_fv(g_spinor_field[0]+_GSI(iix), g_spinor_field[1]+_GSI(iy));
      }}
#pragma omp barrier
      if(rotate_gamma_basis) {
        for(ix=threadid; ix<VOLUME*L5; ix+=g_num_threads) {
          _fv_eq_gamma_ti_fv(g_spinor_field[1]+_GSI(ix), 2, g_spinor_field[0]+_GSI(ix));
        }
      } else {
        for(ix=threadid; ix<VOLUME*L5;ix+=g_num_threads) {
          _fv_eq_fv(g_spinor_field[1]+_GSI(ix), g_spinor_field[0]+_GSI(ix));
        }
      }
      if(g_cart_id==0 && threadid==g_num_threads-1) fprintf(stdout, "# [invert_dw_quda] inversion done in %e seconds\n", retime-ratime);

#pragma omp single
  {

#ifdef MPI
      xchange_field_5d(g_spinor_field[1]);
#endif
      /***********************************************
       * check residuum
       ***********************************************/
      if(check_residuum && dummy_flag>0) {
        // apply the Wilson Dirac operator in the gamma-basis defined in cvc_linalg,
        //   which uses the tmLQCD conventions (same as in contractions)
        //   without explicit boundary conditions
#ifdef MPI
        xchange_field_5d(g_spinor_field[2]);
        xchange_field_5d(g_spinor_field[1]);
#endif
        memset(g_spinor_field[0], 0, 24*(VOLUME+RAND)*L5*sizeof(double));

        //sprintf(filename, "%s.inverted.ascii.%.2d", source_filename, g_cart_id);
        //ofs = fopen(filename, "w");
        //printf_spinor_field_5d(g_spinor_field[1], ofs);
        //fclose(ofs);

        Q_DW_Wilson_phi(g_spinor_field[0], g_spinor_field[1]);
  
        for(ix=0;ix<VOLUME*L5;ix++) {
          _fv_mi_eq_fv(g_spinor_field[0]+_GSI(ix), g_spinor_field[2]+_GSI(ix));
        }
  
        spinor_scalar_product_re(&norm2, g_spinor_field[2], g_spinor_field[2], VOLUME*L5);
        spinor_scalar_product_re(&norm, g_spinor_field[0], g_spinor_field[0], VOLUME*L5);
        if(g_cart_id==0) fprintf(stdout, "\n# [invert_dw_quda] absolut residuum squared: %e; relative residuum %e\n", norm, sqrt(norm/norm2) );

      }
  
      if(dummy_flag>0) {
        /***********************************************
         * create 4-dim. propagator
         ***********************************************/
        if(convert_sign == 0) {
          spinor_5d_to_4d(g_spinor_field[1], g_spinor_field[1]);
        } else if(convert_sign == -1 || convert_sign == +1) {
          spinor_5d_to_4d_sign(g_spinor_field[1], g_spinor_field[1], convert_sign);
        }
  
        /***********************************************
         * write the solution 
         ***********************************************/
        sprintf(filename, "%s.inverted", source_filename_write);
        if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] writing propagator to file %s\n", filename);
        check_error(write_propagator(g_spinor_field[1], filename, 0, g_propagator_precision), "write_propagator", NULL, 22);
        
        //sprintf(filename, "prop.ascii.4d.%.2d.%.2d.%.2d", isc, g_nproc, g_cart_id);
        //ofs = fopen(filename, "w");
        //printf_spinor_field(g_spinor_field[1], ofs);
        //fclose(ofs);
      }

      if(check_residuum) memcpy(g_spinor_field[2], smearing_spinor_field[0], 24*VOLUME*L5*sizeof(double));

  }  // of omp single

}    // of omp parallel region

      if(dummy_flag > 0) strcpy(source_filename_write, source_filename);

      dummy_flag++;
 
    }  // of loop on momenta

  }  // of isc

#if 0
  // last inversion

  {
      memcpy(g_spinor_field[0], smearing_spinor_field[1], 24*VOLUME*L5*sizeof(double));
      if(g_cart_id==0) fprintf(stdout, "# [] proc%.2d starting last inversion\n", g_cart_id);


      /***********************************************
       * perform the inversion
       ***********************************************/
      if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] starting inversion\n");

      xchange_field_5d(g_spinor_field[0]);
      memset(g_spinor_field[1], 0, (VOLUME+RAND)*L5*24*sizeof(double));
      ratime = CLOCK;
#ifdef MPI
      if(inv_param.inv_type == QUDA_BICGSTAB_INVERTER  || inv_param.inv_type == QUDA_GCR_INVERTER) {
        if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] calling invertQuda\n");
        invertQuda(g_spinor_field[1], g_spinor_field[0], &inv_param);
      } else if(inv_param.inv_type == QUDA_CG_INVERTER) {
        if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] calling testCG\n");
        testCG(g_spinor_field[1], g_spinor_field[0], &inv_param);
      } else {
        if(g_cart_id==0) fprintf(stderr, "# [invert_dw_quda] unrecognized inverter\n");
      }
#else
      invertQuda(g_spinor_field[1], g_spinor_field[0], &inv_param);
#endif
      retime = CLOCK;

      if(g_cart_id==0) {
        fprintf(stdout, "# [invert_dw_quda] QUDA time:  %e seconds\n", inv_param.secs);
        fprintf(stdout, "# [invert_dw_quda] QUDA Gflops: %e\n", inv_param.gflops/inv_param.secs);
        fprintf(stdout, "# [invert_dw_quda] wall time:  %e seconds\n", retime-ratime);
        fprintf(stdout, "# [invert_dw_quda] Device memory used:\n\tSpinor: %f GiB\n\tGauge: %f GiB\n",
        inv_param.spinorGiB, gauge_param.gaugeGiB);
      }

      omp_set_num_threads(g_num_threads);
#pragma omp parallel private(threadid,_2_kappa,is,ix,iy,iix) shared(VOLUME,L5,g_kappa,g_spinor_field,g_num_threads)
    {
      threadid = omp_get_thread_num();

      if(inv_param.mass_normalization == QUDA_KAPPA_NORMALIZATION) {
        _2_kappa = 2. * g_kappa5d;
        for(ix=threadid; ix<VOLUME*L5;ix+=g_num_threads) {
          _fv_ti_eq_re(g_spinor_field[1]+_GSI(ix), _2_kappa );
        }
      }
#pragma omp barrier
      // reorder, multiply with g2
      for(is=0;is<L5;is++) {
      for(ix=threadid; ix<VOLUME; ix+=g_num_threads) {
        iy  = lexic2eot_5d(is, ix);
        iix = is*VOLUME + ix;
        _fv_eq_fv(g_spinor_field[0]+_GSI(iix), g_spinor_field[1]+_GSI(iy));
      }}
#pragma omp barrier
      if(rotate_gamma_basis) {
        for(ix=threadid; ix<VOLUME*L5; ix+=g_num_threads) {
          _fv_eq_gamma_ti_fv(g_spinor_field[1]+_GSI(ix), 2, g_spinor_field[0]+_GSI(ix));
        }
      } else {
        for(ix=threadid; ix<VOLUME*L5;ix+=g_num_threads) {
          _fv_eq_fv(g_spinor_field[1]+_GSI(ix), g_spinor_field[0]+_GSI(ix));
        }
      }

    }  // end of parallel region

    if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] inversion done in %e seconds\n", retime-ratime);


#ifdef MPI
      xchange_field_5d(g_spinor_field[1]);
#endif
      /***********************************************
       * check residuum
       ***********************************************/
      if(check_residuum && dummy_flag>0) {
        // apply the Wilson Dirac operator in the gamma-basis defined in cvc_linalg,
        //   which uses the tmLQCD conventions (same as in contractions)
        //   without explicit boundary conditions
#ifdef MPI
        xchange_field_5d(g_spinor_field[2]);
#endif
        memset(g_spinor_field[0], 0, 24*(VOLUME+RAND)*L5*sizeof(double));

        //sprintf(filename, "%s.inverted.ascii.%.2d", source_filename, g_cart_id);
        //ofs = fopen(filename, "w");
        //printf_spinor_field_5d(g_spinor_field[1], ofs);
        //fclose(ofs);


        Q_DW_Wilson_phi(g_spinor_field[0], g_spinor_field[1]);
  
        for(ix=0;ix<VOLUME*L5;ix++) {
          _fv_mi_eq_fv(g_spinor_field[0]+_GSI(ix), g_spinor_field[2]+_GSI(ix));
        }
  
        spinor_scalar_product_re(&norm, g_spinor_field[0], g_spinor_field[0], VOLUME*L5);
        spinor_scalar_product_re(&norm2, g_spinor_field[2], g_spinor_field[2], VOLUME*L5);
        if(g_cart_id==0) fprintf(stdout, "\n# [invert_dw_quda] absolut residuum squared: %e; relative residuum %e\n", norm, sqrt(norm/norm2) );

      }
  
      /***********************************************
       * create 4-dim. propagator
       ***********************************************/
      if(convert_sign == 0) {
        spinor_5d_to_4d(g_spinor_field[1], g_spinor_field[1]);
      } else if(convert_sign == -1 || convert_sign == +1) {
        spinor_5d_to_4d_sign(g_spinor_field[1], g_spinor_field[1], convert_sign);
      }
  
      /***********************************************
       * write the solution 
       ***********************************************/
      sprintf(filename, "%s.inverted", source_filename_write);
      if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] writing propagator to file %s\n", filename);
      check_error(write_propagator(g_spinor_field[1], filename, 0, g_propagator_precision), "write_propagator", NULL, 22);
        
      //sprintf(filename, "prop.ascii.4d.%.2d.%.2d.%.2d", isc, g_nproc, g_cart_id);
      //ofs = fopen(filename, "w");
      //printf_spinor_field(g_spinor_field[1], ofs);
      //fclose(ofs);
  }  // of last inversion

#endif  // of if 0

  /***********************************************
   * free the allocated memory, finalize 
   ***********************************************/

#ifdef HAVE_QUDA
  // finalize the QUDA library
  if(g_cart_id==0) fprintf(stdout, "# [invert_dw_quda] finalizing quda\n");
#ifdef MPI
  freeGaugeQuda();
#endif
  endQuda();
#endif
  if(g_gauge_field != NULL) free(g_gauge_field);
  if(gauge_field_smeared != NULL) free(gauge_field_smeared);
  if(no_fields>0) {
    if(g_spinor_field!=NULL) {
      for(i=0; i<no_fields; i++) if(g_spinor_field[i]!=NULL) free(g_spinor_field[i]);
      free(g_spinor_field);
    }
  }
  free_geometry();

  if(g_source_momentum_set && full_orbit) {
    finalize_q_orbits(&qlatt_id, &qlatt_count, &qlatt_list, &qlatt_rep);
    if(qlatt_map != NULL) {
      free(qlatt_map[0]);
      free(qlatt_map);
    }
  }
  if(source_momentum != NULL) free(source_momentum);
  if(lck != NULL) free(lck);


#ifdef MPI
#ifdef HAVE_QUDA
  endCommsQuda();
#else
  MPI_Finalize();
#endif
#endif
  if(g_cart_id==0) {
    g_the_time = time(NULL);
    fprintf(stdout, "\n# [invert_dw_quda] %s# [invert_dw_quda] end of run\n", ctime(&g_the_time));
    fprintf(stderr, "\n# [invert_dw_quda] %s# [invert_dw_quda] end of run\n", ctime(&g_the_time));
  }
  return(0);
}
Exemplo n.º 9
0
int main(int argc, char **argv) {
  
  int c, i, mu, nu;
  int count = 0;
  int filename_set = 0;
  int dims[4]      = {0,0,0,0};
  int l_LX_at, l_LXstart_at;
  int x0, x1, x2, x3, ix, iix;
  int sid, status;
  double *disc = (double*)NULL;
  double *data = (double*)NULL;
  double *bias = (double*)NULL;
  double *work = (double*)NULL;
  double q[4], fnorm;
  int verbose = 0;
  char filename[100], contype[200];
  double ratime, retime;
  double plaq; 
  double spinor1[24], spinor2[24], U_[18];
  complex w, w1, *cp1, *cp2, *cp3, *cp4;

  fftw_complex *in=(fftw_complex*)NULL;

#ifdef MPI
  fftwnd_mpi_plan plan_p, plan_m;
#else
  fftwnd_plan plan_p, plan_m;
#endif

#ifdef MPI
  MPI_Init(&argc, &argv);
#endif

  while ((c = getopt(argc, argv, "h?vf:")) != -1) {
    switch (c) {
    case 'v':
      verbose = 1;
      break;
    case 'f':
      strcpy(filename, optarg);
      filename_set=1;
      break;
    case 'h':
    case '?':
    default:
      usage();
      break;
    }
  }

  /* set the default values */
  if(filename_set==0) strcpy(filename, "cvc.input");
  fprintf(stdout, "# Reading input from file %s\n", filename);
  read_input_parser(filename);

  /* some checks on the input data */
  if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
    if(g_proc_id==0) fprintf(stdout, "T and L's must be set\n");
    usage();
  }
  if(g_kappa <= 0.) {
    if(g_proc_id==0) fprintf(stdout, "kappa should be > 0.\n");
    usage();
  }

  if(hpe_order%2==0 && hpe_order>0) {
    if(g_proc_id==0) fprintf(stdout, "HPE order should be odd\n");
    usage();
  }

  fprintf(stdout, "\n**************************************************\n"\
                  "* vp_disc_hpe_stoch_subtract with HPE of order %d\n"\
                  "**************************************************\n\n", hpe_order);

  /*********************************
   * initialize MPI parameters 
   *********************************/
  mpi_init(argc, argv);

  /* initialize fftw */
  dims[0]=T_global; dims[1]=LX; dims[2]=LY; dims[3]=LZ;
#ifdef MPI
  plan_p = fftwnd_mpi_create_plan(g_cart_grid, 4, dims, FFTW_BACKWARD, FFTW_MEASURE);
  plan_m = fftwnd_mpi_create_plan(g_cart_grid, 4, dims, FFTW_FORWARD, FFTW_MEASURE);
  fftwnd_mpi_local_sizes(plan_p, &T, &Tstart, &l_LX_at, &l_LXstart_at, &FFTW_LOC_VOLUME);
#else
  plan_p = fftwnd_create_plan(4, dims, FFTW_BACKWARD, FFTW_MEASURE | FFTW_IN_PLACE);
  plan_m = fftwnd_create_plan(4, dims, FFTW_FORWARD,  FFTW_MEASURE | FFTW_IN_PLACE);
  T            = T_global;
  Tstart       = 0;
  l_LX_at      = LX;
  l_LXstart_at = 0;
  FFTW_LOC_VOLUME = T*LX*LY*LZ;
#endif
  fprintf(stdout, "# [%2d] fftw parameters:\n"\
                  "# [%2d] T            = %3d\n"\
		  "# [%2d] Tstart       = %3d\n"\
		  "# [%2d] l_LX_at      = %3d\n"\
		  "# [%2d] l_LXstart_at = %3d\n"\
		  "# [%2d] FFTW_LOC_VOLUME = %3d\n", 
		  g_cart_id, g_cart_id, T, g_cart_id, Tstart, g_cart_id, l_LX_at,
		  g_cart_id, l_LXstart_at, g_cart_id, FFTW_LOC_VOLUME);

#ifdef MPI
  if(T==0) {
    fprintf(stderr, "[%2d] local T is zero; exit\n", g_cart_id);
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
    exit(101);
  }
#endif

  if(init_geometry() != 0) {
    fprintf(stderr, "ERROR from init_geometry\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(102);
  }

  geometry();

  /************************************************
   * read the gauge field, measure the plaquette 
   ************************************************/
  alloc_gauge_field(&g_gauge_field, VOLUMEPLUSRAND);
  sprintf(filename, "%s.%.4d", gaugefilename_prefix, Nconf);
  if(g_cart_id==0) fprintf(stdout, "# reading gauge field from file %s\n", filename);
  read_lime_gauge_field_doubleprec(filename);
  xchange_gauge();

  plaquette(&plaq);
  if(g_cart_id==0) fprintf(stdout, "# measured plaquette value: %25.16e\n", plaq);

  /****************************************
   * allocate memory for the spinor fields
   ****************************************/
  no_fields = 3;
  g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
  for(i=0; i<no_fields; i++) alloc_spinor_field(&g_spinor_field[i], VOLUMEPLUSRAND);

  /****************************************
   * allocate memory for the contractions
   ****************************************/
  disc  = (double*)calloc(16*VOLUME, sizeof(double));
  if( disc == (double*)NULL ) { 
    fprintf(stderr, "could not allocate memory for disc\n");
#  ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#  endif
    exit(103);
  }

  data = (double*)calloc(16*VOLUME, sizeof(double));
  if( data== (double*)NULL ) { 
    fprintf(stderr, "could not allocate memory for data\n");
#  ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#  endif
    exit(104);
  }
  for(ix=0; ix<16*VOLUME; ix++) data[ix] = 0.;

  work  = (double*)calloc(32*VOLUME, sizeof(double));
  if( work == (double*)NULL ) { 
    fprintf(stderr, "could not allocate memory for work\n");
#  ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#  endif
    exit(105);
  }

  bias  = (double*)calloc(32*VOLUME, sizeof(double));
  if( bias == (double*)NULL ) { 
    fprintf(stderr, "could not allocate memory for bias\n");
#  ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#  endif
    exit(106);
  }
  for(ix=0; ix<32*VOLUME; ix++) bias[ix] = 0.;

  /****************************************
   * prepare Fourier transformation arrays
   ****************************************/
  in  = (fftw_complex*)malloc(FFTW_LOC_VOLUME*sizeof(fftw_complex));
  if(in==(fftw_complex*)NULL) {    
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(107);
  }

  /***********************************************
   * start loop on source id.s 
   ***********************************************/
  for(sid=g_sourceid; sid<=g_sourceid2; sid+=g_sourceid_step) {
    for(ix=0; ix<16*VOLUME; ix++) disc[ix] = 0.;

    /* read the new propagator */
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(format==0) {
      sprintf(filename, "%s.%.4d.%.2d.inverted", filename_prefix, Nconf, sid);
      if(read_lime_spinor(g_spinor_field[2], filename, 0) != 0) break;
    }
    else if(format==1) {
      sprintf(filename, "%s.%.4d.%.5d.inverted", filename_prefix, Nconf, sid);
      if(read_cmi(g_spinor_field[2], filename) != 0) break;
    }
    xchange_field(g_spinor_field[2]);
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "# time to read prop.: %e seconds\n", retime-ratime);

    count++;

    /************************************************
     * calculate the source: apply Q_phi_tbc 
     ************************************************/
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    Q_phi_tbc(g_spinor_field[0], g_spinor_field[2]);
    xchange_field(g_spinor_field[0]); 
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "# time to calculate source: %e seconds\n", retime-ratime);

#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    /************************************************
     * HPE: apply BH to order hpe_order+2 
     ************************************************/
    if(hpe_order>0) {
      BHn(g_spinor_field[1], g_spinor_field[2], hpe_order+2);
    } else {
      memcpy((void*)g_spinor_field[1], (void*)g_spinor_field[2], 24*VOLUMEPLUSRAND*sizeof(double));
    }

    /************************************************
     * add new contractions to (existing) disc
     ************************************************/
    for(mu=0; mu<4; mu++) { 
      iix = _GWI(mu,0,VOLUME);
      for(ix=0; ix<VOLUME; ix++) {    
        _cm_eq_cm_ti_co(U_, &g_gauge_field[_GGI(ix, mu)], &co_phase_up[mu]);

        _fv_eq_cm_ti_fv(spinor1, U_, &g_spinor_field[1][_GSI(g_iup[ix][mu])]);
	_fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
	_fv_mi_eq_fv(spinor2, spinor1);
	_co_eq_fv_dag_ti_fv(&w, &g_spinor_field[0][_GSI(ix)], spinor2);
	disc[iix  ] = -0.5 * w.re;
	disc[iix+1] = -0.5 * w.im;
	data[iix  ] -= 0.5 * w.re;
	data[iix+1] -= 0.5 * w.im;

	_fv_eq_cm_dag_ti_fv(spinor1, U_, &g_spinor_field[1][_GSI(ix)]);
	_fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
	_fv_pl_eq_fv(spinor2, spinor1);
	_co_eq_fv_dag_ti_fv(&w, &g_spinor_field[0][_GSI(g_iup[ix][mu])], spinor2);
	disc[iix  ] -= 0.5 * w.re;
	disc[iix+1] -= 0.5 * w.im;
	data[iix  ] -= 0.5 * w.re;
	data[iix+1] -= 0.5 * w.im;

	iix += 2;
      }
    }
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "# time to contract cvc: %e seconds\n", retime-ratime);
 
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    for(mu=0; mu<4; mu++) {
      memcpy((void*)in, (void*)(disc+_GWI(mu,0,VOLUME)), 2*VOLUME*sizeof(double));
#ifdef MPI
      fftwnd_mpi(plan_m, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
      fftwnd_one(plan_m, in, NULL);
#endif
      memcpy((void*)(disc+_GWI(4+mu,0,VOLUME)), (void*)in, 2*VOLUME*sizeof(double));

      memcpy((void*)in, (void*)(disc+_GWI(mu,0,VOLUME)), 2*VOLUME*sizeof(double));
#ifdef MPI
      fftwnd_mpi(plan_p, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
      fftwnd_one(plan_p, in, NULL);
#endif
      memcpy((void*)(disc+_GWI(mu,0,VOLUME)), (void*)in, 2*VOLUME*sizeof(double));
    }  /* of mu =0 ,..., 3*/

    for(mu=0; mu<4; mu++) {
    for(nu=0; nu<4; nu++) {
      cp1 = (complex*)(disc+_GWI(mu,     0,VOLUME));
      cp2 = (complex*)(disc+_GWI(4+nu,   0,VOLUME));
      cp3 = (complex*)(bias+_GWI(4*mu+nu,0,VOLUME));
      for(ix=0; ix<VOLUME; ix++) {
        _co_eq_co_ti_co(&w1, cp1, cp2);
        cp3->re += w1.re;
        cp3->im += w1.im;
	cp1++; cp2++; cp3++;
      }
    }}
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "# time for Fourier trafo and adding to bias: %e seconds\n", 
      retime-ratime);
  }  /* of loop on sid */

  /************************************************
   * save results for count == Nsave 
   ************************************************/
  if(count==Nsave) {

    if(g_cart_id == 0) fprintf(stdout, "# save results for count = %d\n", count);

    for(ix=0; ix<16*VOLUME; ix++) disc[ix] = 0.;

    if(hpe_order>0) {
      sprintf(filename, "vp_disc_hpe%.2d_loops_X.%.4d", hpe_order, Nconf);
      if(g_cart_id==0) fprintf(stdout, "# reading loop part from file %s\n", filename);
      if( (status = read_lime_contraction(disc, filename, 4, 0)) != 0 ) {
#ifdef MPI
        MPI_Abort(MPI_COMM_WORLD, 1);
        MPI_Finalize();
#endif
        exit(108);
      }
    }


    /* save the result in position space */
    fnorm = 1. / ( (double)count * g_prop_normsqr );
    if(g_cart_id==0) fprintf(stdout, "# X-fnorm = %e\n", fnorm);
    for(mu=0; mu<4; mu++) {
      for(ix=0; ix<VOLUME; ix++) {
        work[_GWI(mu,ix,VOLUME)  ] = data[_GWI(mu,ix,VOLUME)  ] * fnorm + disc[_GWI(mu,ix,VOLUME)  ];
        work[_GWI(mu,ix,VOLUME)+1] = data[_GWI(mu,ix,VOLUME)+1] * fnorm + disc[_GWI(mu,ix,VOLUME)+1];
      }
    }
    sprintf(filename, "vp_disc_hpe%.2d_subtracted_X.%.4d.%.4d", hpe_order, Nconf, count);
    sprintf(contype, "cvc-disc-hpe-loops-%2d-to-%2d-stoch-subtracted-X", hpe_order, hpe_order+2);
    write_lime_contraction(work, filename, 64, 4, contype, Nconf, count);
/*
    sprintf(filename, "vp_disc_hpe%.2d_subtracted_X.%.4d.%.4d.ascii", hpe_order, Nconf, count);
    write_contraction(work, NULL, filename, 4, 2, 0);
*/

#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    for(mu=0; mu<4; mu++) {
      memcpy((void*)in, (void*)(data+_GWI(mu,0,VOLUME)), 2*VOLUME*sizeof(double));
#ifdef MPI
      fftwnd_mpi(plan_m, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
      fftwnd_one(plan_m, in, NULL);
#endif
      memcpy((void*)(data+_GWI(4+mu,0,VOLUME)), (void*)in, 2*VOLUME*sizeof(double));

      memcpy((void*)in, (void*)(data+_GWI(mu,0,VOLUME)), 2*VOLUME*sizeof(double));
#ifdef MPI
      fftwnd_mpi(plan_p, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
      fftwnd_one(plan_p, in, NULL);
#endif
      memcpy((void*)(data+_GWI(mu,0,VOLUME)), (void*)in, 2*VOLUME*sizeof(double));
    }  

    fnorm = 1. / ( g_prop_normsqr*g_prop_normsqr * (double)count * (double)(count-1) );
    if(g_cart_id==0) fprintf(stdout, "# P-fnorm for purely stochastic part = %e\n", fnorm);
    for(mu=0; mu<4; mu++) {
    for(nu=0; nu<4; nu++) {
      cp1 = (complex*)(data+_GWI(mu,     0,VOLUME));
      cp2 = (complex*)(data+_GWI(4+nu,   0,VOLUME));
      cp3 = (complex*)(work+_GWI(4*mu+nu,0,VOLUME));
      cp4 = (complex*)(bias+_GWI(4*mu+nu,0,VOLUME)); 
      for(ix=0; ix<VOLUME; ix++) {
        _co_eq_co_ti_co(&w1, cp1, cp2);
        cp3->re = ( w1.re - cp4->re ) * fnorm;
        cp3->im = ( w1.im - cp4->im ) * fnorm;
        cp1++; cp2++; cp3++; cp4++;
      }
    }}
  
    for(mu=0; mu<4; mu++) {
      memcpy((void*)in, (void*)(disc+_GWI(mu,0,VOLUME)), 2*VOLUME*sizeof(double));
#ifdef MPI
      fftwnd_mpi(plan_m, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
      fftwnd_one(plan_m, in, NULL);
#endif
      memcpy((void*)(disc+_GWI(4+mu,0,VOLUME)), (void*)in, 2*VOLUME*sizeof(double));

      memcpy((void*)in, (void*)(disc+_GWI(mu,0,VOLUME)), 2*VOLUME*sizeof(double));
#ifdef MPI
      fftwnd_mpi(plan_p, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
      fftwnd_one(plan_p, in, NULL);
#endif
      memcpy((void*)(disc+_GWI(mu,0,VOLUME)), (void*)in, 2*VOLUME*sizeof(double));
    }
 
    fnorm = 1. / ( g_prop_normsqr * (double)count );
    if(g_cart_id==0) fprintf(stdout, "# P-fnorm for mixed stochastic-loop part = %e\n", fnorm);
    for(mu=0; mu<4; mu++) {
    for(nu=0; nu<4; nu++) {
      cp1 = (complex*)(data + _GWI(mu,     0,VOLUME));
      cp2 = (complex*)(disc + _GWI(4+nu,   0,VOLUME));
      cp3 = (complex*)(work + _GWI(4*mu+nu,0,VOLUME));
      for(ix=0; ix<VOLUME; ix++) {
        _co_eq_co_ti_co(&w1, cp1, cp2);
        cp3->re += w1.re * fnorm;
        cp3->im += w1.im * fnorm;
        cp1++; cp2++; cp3++;
      }

      cp1 = (complex*)(disc + _GWI(mu,     0,VOLUME));
      cp2 = (complex*)(data + _GWI(4+nu,   0,VOLUME));
      cp3 = (complex*)(work + _GWI(4*mu+nu,0,VOLUME));
      for(ix=0; ix<VOLUME; ix++) {
        _co_eq_co_ti_co(&w1, cp1, cp2);
        cp3->re += w1.re * fnorm;
        cp3->im += w1.im * fnorm;
        cp1++; cp2++; cp3++;
      }
    }}

    fnorm = 1. / ( (double)T_global * (double)(LX*LY*LZ) );
    if(g_cart_id==0) fprintf(stdout, "# P-fnorm for final estimator (1/T/V) = %e\n", fnorm);
    for(mu=0; mu<4; mu++) {
    for(nu=0; nu<4; nu++) {
      cp1 = (complex*)(disc + _GWI(mu,     0,VOLUME));
      cp2 = (complex*)(disc + _GWI(4+nu,   0,VOLUME));
      cp3 = (complex*)(work + _GWI(4*mu+nu,0,VOLUME));
      for(x0=0; x0<T; x0++) {
        q[0] = (double)(x0+Tstart) / (double)T_global;
      for(x1=0; x1<LX; x1++) {
        q[1] = (double)x1 / (double)LX;
      for(x2=0; x2<LY; x2++) {
        q[2] = (double)x2 / (double)LY;
      for(x3=0; x3<LZ; x3++) {
        q[3] = (double)x3 / (double)LZ;
        ix = g_ipt[x0][x1][x2][x3];
        w.re = cos(M_PI * ( q[mu] - q[nu] ) );
        w.im = sin(M_PI * ( q[mu] - q[nu] ) );
        _co_eq_co_ti_co(&w1, cp1, cp2);
        cp3->re += w1.re;
        cp3->im += w1.im;
        _co_eq_co_ti_co(&w1, cp3, &w);
        cp3->re = w1.re * fnorm;
        cp3->im = w1.im * fnorm;
        cp1++; cp2++; cp3++;
      }}}}
    }}

    sprintf(filename, "vp_disc_hpe%.2d_subtracted_P.%.4d.%.4d", hpe_order, Nconf, count);
    sprintf(contype, "cvc-disc-hpe-loops-%2d-to-%2d-stoch-subtracted-P", hpe_order, hpe_order+2);
    write_lime_contraction(work, filename, 64, 16, contype, Nconf, count);
/*
    sprintf(filename, "vp_disc_hpe%.2d_subtracted_P.%.4d.%.4d.ascii", hpe_order, Nconf, count);
    write_contraction(work, NULL, filename, 16, 2, 0);
*/
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "# time to save cvc results: %e seconds\n", retime-ratime);
  }  /* of if count == Nsave */

  /***********************************************
   * free the allocated memory, finalize 
   ***********************************************/
  free(g_gauge_field);
  for(i=0; i<no_fields; i++) free(g_spinor_field[i]);
  free(g_spinor_field);
  free_geometry();
  fftw_free(in);
  free(disc);
  free(bias);
  free(data);
  free(work);
#ifdef MPI
  fftwnd_mpi_destroy_plan(plan_p);
  fftwnd_mpi_destroy_plan(plan_m);
  MPI_Finalize();
#else
  fftwnd_destroy_plan(plan_p);
  fftwnd_destroy_plan(plan_m);
#endif
  return(0);
}
Exemplo n.º 10
0
int main(int argc, char **argv) {
  
  int c, i, mu, status;
  int ispin, icol, isc;
  int n_c = 3;
  int n_s = 4;
  int count        = 0;
  int filename_set = 0;
  int dims[4]      = {0,0,0,0};
  int l_LX_at, l_LXstart_at;
  int x0, x1, x2, x3, ix, iix, iy;
  int sl0, sl1, sl2, sl3, have_source_flag=0;
  int source_proc_coords[4], lsl0, lsl1, lsl2, lsl3, source_proc_id;
  int check_residuum = 0;
  unsigned int VOL3;
  int do_gt   = 0;
  int full_orbit = 0;
  char filename[200], source_filename[200];
  double ratime, retime;
  double plaq_r=0., plaq_m=0., norm, norm2;
  // double spinor1[24], spinor2[24];
  double *gauge_qdp[4], *gauge_field_timeslice=NULL, *gauge_field_smeared=NULL;
  double _1_2_kappa, _2_kappa, phase;
  FILE *ofs;
  int mu_trans[4] = {3, 0, 1, 2};
  int threadid, nthreads;
  int timeslice;
  char rng_file_in[100], rng_file_out[100];
  int *source_momentum=NULL;
  int source_momentum_class = -1;
  int source_momentum_no = 0;
  int source_momentum_runs = 1;
  int imom;

  /************************************************/
  int qlatt_nclass;
  int *qlatt_id=NULL, *qlatt_count=NULL, **qlatt_rep=NULL, **qlatt_map=NULL;
  double **qlatt_list=NULL;
  /************************************************/
       

  /***********************************************
   * QUDA parameters
   ***********************************************/
  QudaPrecision cpu_prec         = QUDA_DOUBLE_PRECISION;
  QudaPrecision cuda_prec        = QUDA_DOUBLE_PRECISION;
  QudaPrecision cuda_prec_sloppy = QUDA_DOUBLE_PRECISION;

  QudaGaugeParam gauge_param = newQudaGaugeParam();
  QudaInvertParam inv_param = newQudaInvertParam();


#ifdef MPI
  MPI_Init(&argc, &argv);
#endif

  while ((c = getopt(argc, argv, "och?vgf:p:")) != -1) {
    switch (c) {
    case 'v':
      g_verbose = 1;
      break;
    case 'g':
      do_gt = 1;
      break;
    case 'f':
      strcpy(filename, optarg);
      filename_set=1;
      break;
    case 'c':
      check_residuum = 1;
      fprintf(stdout, "# [invert_quda] will check residuum again\n");
      break;
    case 'p':
      n_c = atoi(optarg);
      fprintf(stdout, "# [invert_quda] will use number of colors = %d\n", n_c);
      break;
    case 'o':
      full_orbit = 1;
      fprintf(stdout, "# [invert_quda] will invert for full orbit, if source momentum set\n");
      break;
    case 'h':
    case '?':
    default:
      usage();
      break;
    }
  }

  // get the time stamp
  g_the_time = time(NULL);

  /**************************************
   * set the default values, read input
   **************************************/
  if(filename_set==0) strcpy(filename, "cvc.input");
  if(g_proc_id==0) fprintf(stdout, "# Reading input from file %s\n", filename);
  read_input_parser(filename);

  /* some checks on the input data */
  if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
    if(g_proc_id==0) fprintf(stderr, "[invert_quda] Error, T and L's must be set\n");
    usage();
  }
  if(g_kappa == 0.) {
    if(g_proc_id==0) fprintf(stderr, "[invert_quda] Error, kappa should be > 0.n");
    usage();
  }

  // set number of openmp threads
#ifdef OPENMP
  omp_set_num_threads(g_num_threads);
#else
  fprintf(stdout, "[invert_quda_cg] Warning, resetting global number of threads to 1\n");
  g_num_threads = 1;
#endif

  /* initialize MPI parameters */
  mpi_init(argc, argv);
  
  // the volume of a timeslice
  VOL3 = LX*LY*LZ;

  fprintf(stdout, "# [%2d] parameters:\n"\
                  "# [%2d] T            = %3d\n"\
		  "# [%2d] Tstart       = %3d\n",\
		  g_cart_id, g_cart_id, T, g_cart_id, Tstart);

#ifdef MPI
  if(T==0) {
    fprintf(stderr, "[%2d] local T is zero; exit\n", g_cart_id);
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
    exit(2);
  }
#endif

  if(init_geometry() != 0) {
    fprintf(stderr, "ERROR from init_geometry\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(1);
  }

  geometry();


  /**************************************
   * initialize the QUDA library
   **************************************/
  fprintf(stdout, "# [invert_quda] initializing quda\n");
  initQuda(g_gpu_device_number);
  
  /**************************************
   * prepare the gauge field
   **************************************/
  // read the gauge field from file
  alloc_gauge_field(&g_gauge_field, VOLUMEPLUSRAND);
  if(strcmp( gaugefilename_prefix, "identity")==0 ) {
    if(g_cart_id==0) fprintf(stdout, "# [invert_quda] Setting up unit gauge field\n");
    for(ix=0;ix<VOLUME; ix++) {
      for(mu=0;mu<4;mu++) {
        _cm_eq_id(g_gauge_field+_GGI(ix,mu));
      }
    }
  } else {
    if(g_gauge_file_format == 0) {
      // ILDG
      sprintf(filename, "%s.%.4d", gaugefilename_prefix, Nconf);
      if(g_cart_id==0) fprintf(stdout, "# Reading gauge field from file %s\n", filename);
      status = read_lime_gauge_field_doubleprec(filename);
    } else if(g_gauge_file_format == 1) {
      // NERSC
      sprintf(filename, "%s.%.5d", gaugefilename_prefix, Nconf);
      if(g_cart_id==0) fprintf(stdout, "# Reading gauge field from file %s\n", filename);
      status = read_nersc_gauge_field(g_gauge_field, filename, &plaq_r);
    }
    if(status != 0) {
      fprintf(stderr, "[invert_quda] Error, could not read gauge field");
#ifdef MPI
      MPI_Abort(MPI_COMM_WORLD, 12);
      MPI_Finalize();
#endif
      exit(12);
    }
  }
#ifdef MPI
  xchange_gauge();
#endif

  // measure the plaquette
  plaquette(&plaq_m);
  if(g_cart_id==0) fprintf(stdout, "# Measured plaquette value: %25.16e\n", plaq_m);
  if(g_cart_id==0) fprintf(stdout, "# Read plaquette value    : %25.16e\n", plaq_r);

  // allocate the smeared / qdp ordered gauge field
  alloc_gauge_field(&gauge_field_smeared, VOLUME);
  for(i=0;i<4;i++) {
    gauge_qdp[i] = gauge_field_smeared + i*18*VOLUME;
  }


  // transcribe the gauge field
#ifdef OPENMP
  omp_set_num_threads(g_num_threads);
#pragma omp parallel for private(ix,iy,mu)
#endif
  for(ix=0;ix<VOLUME;ix++) {
    iy = g_lexic2eot[ix];
    for(mu=0;mu<4;mu++) {
      _cm_eq_cm(gauge_qdp[mu_trans[mu]]+18*iy, g_gauge_field+_GGI(ix,mu));
    }
  }
  // multiply timeslice T-1 with factor of -1 (antiperiodic boundary condition)
#ifdef OPENMP
  omp_set_num_threads(g_num_threads);
#pragma omp parallel for private(ix,iy)
#endif
  for(ix=0;ix<VOL3;ix++) {
    iix = (T-1)*VOL3 + ix;
    iy = g_lexic2eot[iix];
    _cm_ti_eq_re(gauge_qdp[mu_trans[0]]+18*iy, -1.);
  }


  // QUDA gauge parameters
  gauge_param.X[0] = LX_global;
  gauge_param.X[1] = LY_global;
  gauge_param.X[2] = LZ_global;
  gauge_param.X[3] = T_global;

  gauge_param.anisotropy  = 1.0;
  gauge_param.type        = QUDA_WILSON_LINKS;
  gauge_param.gauge_order = QUDA_QDP_GAUGE_ORDER;
  gauge_param.t_boundary  = QUDA_ANTI_PERIODIC_T;

  gauge_param.cpu_prec           = cpu_prec;
  gauge_param.cuda_prec          = cuda_prec;
  gauge_param.reconstruct        = QUDA_RECONSTRUCT_12;
  gauge_param.cuda_prec_sloppy   = cuda_prec_sloppy;
  gauge_param.reconstruct_sloppy = QUDA_RECONSTRUCT_12;
  gauge_param.gauge_fix          = QUDA_GAUGE_FIXED_NO;

  gauge_param.ga_pad = 0;

  // load the gauge field
  fprintf(stdout, "# [invert_quda] loading gauge field\n");
  loadGaugeQuda((void*)gauge_qdp, &gauge_param);
  gauge_qdp[0] = NULL; 
  gauge_qdp[1] = NULL; 
  gauge_qdp[2] = NULL; 
  gauge_qdp[3] = NULL; 

  /*********************************************
   * APE smear the gauge field
   *********************************************/
  memcpy(gauge_field_smeared, g_gauge_field, 72*VOLUME*sizeof(double));
  if(N_ape>0) {
    fprintf(stdout, "# [invert_quda] APE smearing gauge field with paramters N_APE=%d, alpha_APE=%e\n", N_ape, alpha_ape);
#ifdef OPENMP
     APE_Smearing_Step_threads(gauge_field_smeared, N_ape, alpha_ape);
#else
    for(i=0; i<N_ape; i++) {
       APE_Smearing_Step(gauge_field_smeared, alpha_ape);
     }
#endif
  }

  /* allocate memory for the spinor fields */
  no_fields = 3;
  g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
  for(i=0; i<no_fields; i++) alloc_spinor_field(&g_spinor_field[i], VOLUMEPLUSRAND);

  /* the source locaton */
  sl0 =   g_source_location                              / (LX_global*LY_global*LZ);
  sl1 = ( g_source_location % (LX_global*LY_global*LZ) ) / (          LY_global*LZ);
  sl2 = ( g_source_location % (          LY_global*LZ) ) / (                    LZ);
  sl3 =   g_source_location %                      LZ;
  if(g_cart_id==0) fprintf(stdout, "# [invert_quda] global sl = (%d, %d, %d, %d)\n", sl0, sl1, sl2, sl3);
  source_proc_coords[0] = sl0 / T;
  source_proc_coords[1] = sl1 / LX;
  source_proc_coords[2] = sl2 / LY;
  source_proc_coords[3] = sl3 / LZ;
#ifdef MPI
  MPI_Cart_rank(g_cart_grid, source_proc_coords, &source_proc_id);
#else
  source_proc_id = 0;
#endif
  have_source_flag = source_proc_id == g_cart_id;

  lsl0 = sl0 % T;
  lsl1 = sl1 % LX;
  lsl2 = sl2 % LY;
  lsl3 = sl3 % LZ;
  if(have_source_flag) {
    fprintf(stdout, "# [invert_quda] process %d has the source at (%d, %d, %d, %d)\n", g_cart_id, lsl0, lsl1, lsl2, lsl3);
  }

  // QUDA inverter parameters
  inv_param.dslash_type    = QUDA_WILSON_DSLASH;
//  inv_param.inv_type       = QUDA_BICGSTAB_INVERTER;
  inv_param.inv_type       = QUDA_CG_INVERTER;
  inv_param.kappa          = g_kappa;
  inv_param.tol            = solver_precision;
  inv_param.maxiter        = niter_max;
  inv_param.reliable_delta = reliable_delta;

  inv_param.solution_type      = QUDA_MAT_SOLUTION;
//  inv_param.solve_type         = QUDA_DIRECT_PC_SOLVE;
  inv_param.solve_type         = QUDA_NORMEQ_PC_SOLVE;
  inv_param.matpc_type         = QUDA_MATPC_EVEN_EVEN; // QUDA_MATPC_EVEN_EVEN;
  inv_param.dagger             = QUDA_DAG_NO;
  inv_param.mass_normalization = QUDA_KAPPA_NORMALIZATION; //;QUDA_MASS_NORMALIZATION;

  inv_param.cpu_prec         = cpu_prec;
  inv_param.cuda_prec        = cuda_prec;
  inv_param.cuda_prec_sloppy = cuda_prec_sloppy;
  inv_param.preserve_source  = QUDA_PRESERVE_SOURCE_NO;
  inv_param.dirac_order      = QUDA_DIRAC_ORDER;

  inv_param.sp_pad = 0;
  inv_param.cl_pad = 0;

  inv_param.verbosity = QUDA_VERBOSE;

  // write initial rng state to file
  if(g_source_type==2 && g_coherent_source==2) {
    sprintf(rng_file_out, "%s.0", g_rng_filename);
    if( init_rng_stat_file (g_seed, rng_file_out) != 0 ) {
      fprintf(stderr, "[invert_quda] Error, could not write rng status\n");
      exit(210);
    }
  } else if(g_source_type==3 || g_source_type==4) {
    if( init_rng_state(g_seed, &g_rng_state) != 0 ) {
      fprintf(stderr, "[invert_quda] Error, could initialize rng state\n");
      exit(211);
    }
  }

  // check the source momenta
  if(g_source_momentum_set) {
    source_momentum = (int*)malloc(3*sizeof(int));

    if(g_source_momentum[0]<0) g_source_momentum[0] += LX;
    if(g_source_momentum[1]<0) g_source_momentum[1] += LY;
    if(g_source_momentum[2]<0) g_source_momentum[2] += LZ;
    fprintf(stdout, "# [invert_quda] using final source momentum ( %d, %d, %d )\n", g_source_momentum[0], g_source_momentum[1], g_source_momentum[2]);


    if(full_orbit) {
      status = make_qcont_orbits_3d_parity_avg( &qlatt_id, &qlatt_count, &qlatt_list, &qlatt_nclass, &qlatt_rep, &qlatt_map);
      if(status != 0) {
        fprintf(stderr, "\n[invert_quda] Error while creating O_3-lists\n");
        exit(4);
      }
      source_momentum_class = qlatt_id[g_ipt[0][g_source_momentum[0]][g_source_momentum[1]][g_source_momentum[2]]];
      source_momentum_no    = qlatt_count[source_momentum_class];
      source_momentum_runs  = source_momentum_class==0 ? 1 : source_momentum_no + 1;
      fprintf(stdout, "# [] source momentum belongs to class %d with %d members, which means %d runs\n",
          source_momentum_class, source_momentum_no, source_momentum_runs);
    }
  }


  /***********************************************
   * loop on spin-color-index
   ***********************************************/
  for(isc=g_source_index[0]; isc<=g_source_index[1]; isc++) {
    ispin = isc / n_c;
    icol  = isc % n_c;

    for(imom=0; imom<source_momentum_runs; imom++) {

      /***********************************************
       * set source momentum
       ***********************************************/
      if(g_source_momentum_set) {
        if(imom == 0) {
          if(full_orbit) {
            source_momentum[0] = 0;
            source_momentum[1] = 0;
            source_momentum[2] = 0;
          } else {
            source_momentum[0] = g_source_momentum[0];
            source_momentum[1] = g_source_momentum[1];
            source_momentum[2] = g_source_momentum[2];
          }
        } else {
          source_momentum[0] = qlatt_map[source_momentum_class][imom-1] / (LY*LZ);
          source_momentum[1] = ( qlatt_map[source_momentum_class][imom-1] % (LY*LZ) ) / LZ;
          source_momentum[2] = qlatt_map[source_momentum_class][imom-1] % LZ;
        }
        fprintf(stdout, "# [] run no. %d, source momentum (%d, %d, %d)\n", imom, source_momentum[0], source_momentum[1], source_momentum[2]);
      }
 
      /***********************************************
       * prepare the souce
       ***********************************************/
      if(g_read_source == 0) {  // create source
        switch(g_source_type) {
          case 0:
            // point source
            fprintf(stdout, "# [invert_quda] Creating point source\n");
            for(ix=0;ix<24*VOLUME;ix++) g_spinor_field[0][ix] = 0.;
            if(have_source_flag) {
              if(g_source_momentum_set) {
                phase = 2*M_PI*( source_momentum[0]*lsl1/(double)LX + source_momentum[1]*lsl2/(double)LY + source_momentum[2]*lsl3/(double)LZ );
                g_spinor_field[0][_GSI(g_source_location) + 2*(n_c*ispin+icol)  ] = cos(phase);
                g_spinor_field[0][_GSI(g_source_location) + 2*(n_c*ispin+icol)+1] = sin(phase);
              } else {
                g_spinor_field[0][_GSI(g_source_location) + 2*(n_c*ispin+icol)  ] = 1.;
              }
            }
            if(g_source_momentum_set) {
              sprintf(source_filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d.qx%.2dqy%.2dqz%.2d",
                  filename_prefix, Nconf, sl0, sl1, sl2, sl3, n_c*ispin+icol, source_momentum[0], source_momentum[1], source_momentum[2]);
            } else {
              sprintf(source_filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d", filename_prefix, Nconf, sl0, sl1, sl2, sl3, n_c*ispin+icol);
            }
            break;
          case 2:
            // timeslice source
            if(g_coherent_source==1) {
              fprintf(stdout, "# [invert_quda] Creating coherent timeslice source\n");
              status = prepare_coherent_timeslice_source(g_spinor_field[0], gauge_field_smeared, g_coherent_source_base, g_coherent_source_delta, VOLUME, g_rng_filename, NULL);
              if(status != 0) {
                fprintf(stderr, "[invert_quda] Error from prepare source, status was %d\n", status);
                exit(123);
              }
              timeslice = g_coherent_source_base;
            } else {
              if(g_coherent_source==2) {
                strcpy(rng_file_in, rng_file_out);
                if(isc == g_source_index[1]) { strcpy(rng_file_out, g_rng_filename); }
                else                         { sprintf(rng_file_out, "%s.%d", g_rng_filename, isc+1); }
                timeslice = (g_coherent_source_base+isc*g_coherent_source_delta)%T_global;
                fprintf(stdout, "# [invert_quda] Creating timeslice source\n");
                status = prepare_timeslice_source(g_spinor_field[0], gauge_field_smeared, timeslice, VOLUME, rng_file_in, rng_file_out);
                if(status != 0) {
                  fprintf(stderr, "[invert_quda] Error from prepare source, status was %d\n", status);
                  exit(123);
                }
              } else {
                fprintf(stdout, "# [invert_quda] Creating timeslice source\n");
                status = prepare_timeslice_source(g_spinor_field[0], gauge_field_smeared, g_source_timeslice, VOLUME, g_rng_filename, g_rng_filename);
                if(status != 0) {
                  fprintf(stderr, "[invert_quda] Error from prepare source, status was %d\n", status);
                  exit(124);
                }
                timeslice = g_source_timeslice;
              }
            }
            if(g_source_momentum_set) {
              sprintf(source_filename, "%s.%.4d.%.2d.%.5d.qx%.2dqy%.2dqz%.2d", filename_prefix, Nconf, 
                  timeslice, isc, source_momentum[0], source_momentum[1], source_momentum[2]);
            } else {
              sprintf(source_filename, "%s.%.4d.%.2d.%.5d", filename_prefix, Nconf, timeslice, isc);
            }
            break;
          case 3:
            // timeslice sources for one-end trick (spin dilution)
            fprintf(stdout, "# [invert_quda] Creating timeslice source for one-end-trick\n");
            status = prepare_timeslice_source_one_end(g_spinor_field[0], gauge_field_smeared, g_source_timeslice, source_momentum, isc%n_s, g_rng_state, \
                ( isc%n_s==(n_s-1) && imom==source_momentum_runs-1 ) );
            if(status != 0) {
              fprintf(stderr, "[invert_quda] Error from prepare source, status was %d\n", status);
              exit(125);
            }
            c = N_Jacobi > 0 ? isc%n_s + n_s : isc%n_s;
            if(g_source_momentum_set) {
              sprintf(source_filename, "%s.%.4d.%.2d.%.2d.qx%.2dqy%.2dqz%.2d", filename_prefix, Nconf, 
                  g_source_timeslice, c, source_momentum[0], source_momentum[1], source_momentum[2]);
            } else {
              sprintf(source_filename, "%s.%.4d.%.2d.%.2d", filename_prefix, Nconf, g_source_timeslice, c);
            }
            break;
          case 4:
            // timeslice sources for one-end trick (spin and color dilution )
            fprintf(stdout, "# [invert_quda] Creating timeslice source for one-end-trick\n");
            status = prepare_timeslice_source_one_end_color(g_spinor_field[0], gauge_field_smeared, g_source_timeslice, source_momentum,\
                isc%(n_s*n_c), g_rng_state, ( isc%(n_s*n_c)==(n_s*n_c-1)  && imom==source_momentum_runs-1 ) );
            if(status != 0) {
              fprintf(stderr, "[invert_quda] Error from prepare source, status was %d\n", status);
              exit(126);
            }
            c = N_Jacobi > 0 ? isc%(n_s*n_c) + (n_s*n_c) : isc%(n_s*n_c);
            if(g_source_momentum_set) {
              sprintf(source_filename, "%s.%.4d.%.2d.%.2d.qx%.2dqy%.2dqz%.2d", filename_prefix, Nconf, 
                  g_source_timeslice, c, source_momentum[0], source_momentum[1], source_momentum[2]);
            } else {
              sprintf(source_filename, "%s.%.4d.%.2d.%.2d", filename_prefix, Nconf, g_source_timeslice, c);
            }
            break;
          default:
            fprintf(stderr, "\nError, unrecognized source type\n");
            exit(32);
            break;
        }
      } else { // read source
        switch(g_source_type) {
          case 0:  // point source
            if(g_source_momentum_set) {
              sprintf(source_filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d.qx%.2dqy%.2dqz%.2d", \
                  filename_prefix2, Nconf, sl0, sl1, sl2, sl3, isc, source_momentum[0], source_momentum[1], source_momentum[2]);
            } else  {
              sprintf(source_filename, "%s.%.4d.t%.2dx%.2dy%.2dz%.2d.%.2d", filename_prefix2, Nconf, sl0, sl1, sl2, sl3, isc);
            }
            fprintf(stdout, "# [invert_quda] reading source from file %s\n", source_filename);
            status = read_lime_spinor(g_spinor_field[0], source_filename, 0);
            if(status != 0) {
              fprintf(stderr, "# [invert_quda] Errro, could not read source from file %s\n", source_filename);
              exit(115);
            }
            break;
          case 2:  // timeslice source
            if(g_source_momentum_set) {
              sprintf(source_filename, "%s.%.4d.%.2d.%.5d.qx%.2dqy%.2dqz%.2d", filename_prefix2, Nconf, g_source_timeslice,
                  isc, source_momentum[0], source_momentum[1], source_momentum[2]);
            } else {
              sprintf(source_filename, "%s.%.4d.%.2d.%.5d", filename_prefix2, Nconf, g_source_timeslice, isc);
            }
            fprintf(stdout, "# [invert_quda] reading source from file %s\n", source_filename);
            status = read_lime_spinor(g_spinor_field[0], source_filename, 0);
            if(status != 0) {
              fprintf(stderr, "# [invert_quda] Errro, could not read source from file %s\n", source_filename);
              exit(115);
            }
            break;
          default:
            fprintf(stderr, "[] Error, unrecognized source type for reading\n");
            exit(104);
            break;
        }
      }  // of if g_read_source
  
      //sprintf(filename, "%s.ascii", source_filename);
      //ofs = fopen(filename, "w");
      //printf_spinor_field(g_spinor_field[0], ofs);
      //fclose(ofs);
  
      if(g_write_source) {
        status = write_propagator(g_spinor_field[0], source_filename, 0, g_propagator_precision);
        if(status != 0) {
          fprintf(stderr, "Error from write_propagator, status was %d\n", status);
          exit(27);
        }
      }
  
      // smearing
      if(N_Jacobi > 0) {
  #ifdef OPENMP
        Jacobi_Smearing_Step_one_threads(gauge_field_smeared, g_spinor_field[0], g_spinor_field[1], N_Jacobi, kappa_Jacobi);
  #else
        for(c=0; c<N_Jacobi; c++) {
          Jacobi_Smearing_Step_one(gauge_field_smeared, g_spinor_field[0], g_spinor_field[1], kappa_Jacobi);
        }
  #endif
      }
  
      // multiply with g2
      for(ix=0;ix<VOLUME;ix++) {
        _fv_eq_gamma_ti_fv(g_spinor_field[1]+_GSI(ix), 2, g_spinor_field[0]+_GSI(ix));
      }
  
      // transcribe the spinor field to even-odd ordering with coordinates (x,y,z,t)
      for(ix=0;ix<VOLUME;ix++) {
        iy = g_lexic2eot[ix];
        _fv_eq_fv(g_spinor_field[2]+_GSI(iy), g_spinor_field[1]+_GSI(ix));
      }
  
  
      /***********************************************
       * perform the inversion
       ***********************************************/
      fprintf(stdout, "# [invert_quda] starting inversion\n");
      ratime = (double)clock() / CLOCKS_PER_SEC;
  
      for(ix=0;ix<VOLUME;ix++) {
        _fv_eq_zero(g_spinor_field[1]+_GSI(ix) );
      }
  
      invertQuda(g_spinor_field[1], g_spinor_field[2], &inv_param);
  
      retime = (double)clock() / CLOCKS_PER_SEC;
      fprintf(stdout, "# [invert_quda] inversion done in %e seconds\n", retime-ratime);
      fprintf(stdout, "# [invert_quda] Device memory used:\n\tSpinor: %f GiB\n\tGauge: %f GiB\n",
        inv_param.spinorGiB, gauge_param.gaugeGiB);
  
      if(inv_param.mass_normalization == QUDA_KAPPA_NORMALIZATION) {
        _2_kappa = 2. * g_kappa;
        for(ix=0;ix<VOLUME;ix++) {
          _fv_ti_eq_re(g_spinor_field[1]+_GSI(ix), _2_kappa );
        }
      }
  
      // transcribe the spinor field to lexicographical order with (t,x,y,z)
      for(ix=0;ix<VOLUME;ix++) {
        iy = g_lexic2eot[ix];
        _fv_eq_fv(g_spinor_field[2]+_GSI(ix), g_spinor_field[1]+_GSI(iy));
      }
      // multiply with g2
      for(ix=0;ix<VOLUME;ix++) {
        _fv_eq_gamma_ti_fv(g_spinor_field[1]+_GSI(ix), 2, g_spinor_field[2]+_GSI(ix));
      }
  
      /***********************************************
       * check residuum
       ***********************************************/
      if(check_residuum) {
        // apply the Wilson Dirac operator in the gamma-basis defined in cvc_linalg,
        //   which uses the tmLQCD conventions (same as in contractions)
        //   without explicit boundary conditions
        Q_Wilson_phi(g_spinor_field[2], g_spinor_field[1]);
  
        for(ix=0;ix<VOLUME;ix++) {
          _fv_mi_eq_fv(g_spinor_field[2]+_GSI(ix), g_spinor_field[0]+_GSI(ix));
        }
  
        spinor_scalar_product_re(&norm, g_spinor_field[2], g_spinor_field[2], VOLUME);
        spinor_scalar_product_re(&norm2, g_spinor_field[0], g_spinor_field[0], VOLUME);
        fprintf(stdout, "\n# [invert_quda] absolut residuum squared: %e; relative residuum %e\n", norm, sqrt(norm/norm2) );
      }
  
      /***********************************************
       * write the solution 
       ***********************************************/
      sprintf(filename, "%s.inverted", source_filename);
      fprintf(stdout, "# [invert_quda] writing propagator to file %s\n", filename);
      status = write_propagator(g_spinor_field[1], filename, 0, g_propagator_precision);
      if(status != 0) {
        fprintf(stderr, "Error from write_propagator, status was %d\n", status);
        exit(22);
      }
 
    }  // of loop on momenta

  }  // of isc

  /***********************************************
   * free the allocated memory, finalize 
   ***********************************************/

  // finalize the QUDA library
  fprintf(stdout, "# [invert_quda] finalizing quda\n");
  endQuda();

  free(g_gauge_field);
  free(gauge_field_smeared);
  for(i=0; i<no_fields; i++) free(g_spinor_field[i]);
  free(g_spinor_field);
  free_geometry();

  if(g_source_momentum_set && full_orbit) {
    finalize_q_orbits(&qlatt_id, &qlatt_count, &qlatt_list, &qlatt_rep);
    if(qlatt_map != NULL) {
      free(qlatt_map[0]);
      free(qlatt_map);
    }
  }
  if(source_momentum != NULL) free(source_momentum);

#ifdef MPI
  MPI_Finalize();
#endif

  if(g_cart_id==0) {
    g_the_time = time(NULL);
    fprintf(stdout, "\n# [invert_quda] %s# [invert_quda] end of run\n", ctime(&g_the_time));
    fprintf(stderr, "\n# [invert_quda] %s# [invert_quda] end of run\n", ctime(&g_the_time));
  }
  return(0);
}
Exemplo n.º 11
0
int main(int argc, char **argv) {
  
  int c, i, mu, nu;
  int count        = 0;
  int filename_set = 0;
  int dims[4]      = {0,0,0,0};
  int l_LX_at, l_LXstart_at;
  int x0, x1, x2, x3, ix, iix;
  int sx0, sx1, sx2, sx3;
  int sid;
  double *disc  = (double*)NULL;
  double *disc2 = (double*)NULL;
  double *work = (double*)NULL;
  double q[4], fnorm;
  double cvc_lnuy[8];
  double *gauge_trafo=(double*)NULL;
  double unit_trace[2], D_trace[2];
  int verbose = 0;
  int do_gt   = 0;
  char filename[100];
  double ratime, retime;
  double plaq;
  double spinor1[24], spinor2[24], U_[18];
  complex w, w1, *cp1, *cp2, *cp3;
  FILE *ofs;

  fftw_complex *in=(fftw_complex*)NULL;

#ifdef MPI
  fftwnd_mpi_plan plan_p;
  int *status;
#else
  fftwnd_plan plan_p;
#endif

#ifdef MPI
  MPI_Init(&argc, &argv);
#endif

  while ((c = getopt(argc, argv, "h?vgf:")) != -1) {
    switch (c) {
    case 'v':
      verbose = 1;
      break;
    case 'g':
      do_gt = 1;
      break;
    case 'f':
      strcpy(filename, optarg);
      filename_set=1;
      break;
    case 'h':
    case '?':
    default:
      usage();
      break;
    }
  }

  /* set the default values */
  set_default_input_values();
  if(filename_set==0) strcpy(filename, "cvc.input");

  /* read the input file */
  read_input(filename);

  /* some checks on the input data */
  if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
    if(g_proc_id==0) fprintf(stdout, "T and L's must be set\n");
    usage();
  }
  if(g_kappa == 0.) {
    if(g_proc_id==0) fprintf(stdout, "kappa should be > 0.n");
    usage();
  }

  /* initialize MPI parameters */
  mpi_init(argc, argv);
#ifdef MPI
  if((status = (int*)calloc(g_nproc, sizeof(int))) == (int*)NULL) {
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
    exit(7);
  }
#endif

  /* initialize fftw */
  dims[0]=T_global; dims[1]=LX; dims[2]=LY; dims[3]=LZ;
#ifdef MPI
  plan_p = fftwnd_mpi_create_plan(g_cart_grid, 4, dims, FFTW_BACKWARD, FFTW_MEASURE);
  fftwnd_mpi_local_sizes(plan_p, &T, &Tstart, &l_LX_at, &l_LXstart_at, &FFTW_LOC_VOLUME);
#else
  plan_p = fftwnd_create_plan(4, dims, FFTW_BACKWARD, FFTW_MEASURE | FFTW_IN_PLACE);
  T            = T_global;
  Tstart       = 0;
  l_LX_at      = LX;
  l_LXstart_at = 0;
  FFTW_LOC_VOLUME = T*LX*LY*LZ;
#endif
  fprintf(stdout, "# [%2d] fftw parameters:\n"\
                  "# [%2d] T            = %3d\n"\
		  "# [%2d] Tstart       = %3d\n"\
		  "# [%2d] l_LX_at      = %3d\n"\
		  "# [%2d] l_LXstart_at = %3d\n"\
		  "# [%2d] FFTW_LOC_VOLUME = %3d\n", 
		  g_cart_id, g_cart_id, T, g_cart_id, Tstart, g_cart_id, l_LX_at,
		  g_cart_id, l_LXstart_at, g_cart_id, FFTW_LOC_VOLUME);

#ifdef MPI
  if(T==0) {
    fprintf(stderr, "[%2d] local T is zero; exit\n", g_cart_id);
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
    exit(2);
  }
#endif

  if(init_geometry() != 0) {
    fprintf(stderr, "ERROR from init_geometry\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(1);
  }

  geometry();

  /* read the gauge field */
  alloc_gauge_field(&g_gauge_field, VOLUMEPLUSRAND);
  sprintf(filename, "%s.%.4d", gaugefilename_prefix, Nconf);
  if(g_cart_id==0) fprintf(stdout, "reading gauge field from file %s\n", filename);
  read_lime_gauge_field_doubleprec(filename);
  xchange_gauge();

  /* measure the plaquette */
  plaquette(&plaq);
  if(g_cart_id==0) fprintf(stdout, "measured plaquette value: %25.16e\n", plaq);

  /* get the source location coordinates */
  sx0 =   g_source_location / (LX*LY*LZ  );
  sx1 = ( g_source_location % (LX*LY*LZ) ) / (LY*LZ);
  sx2 = ( g_source_location % (LY*LZ)    ) / LZ;
  sx3 = ( g_source_location %  LZ        );

  /* read the data for lnuy */
  sprintf(filename, "cvc_lnuy_X.%.4d", Nconf);
  ofs = fopen(filename, "r");
  fprintf(stdout, "reading cvc lnuy from file %s\n", filename);
  for(mu=0; mu<4; mu++) {
    fscanf(ofs, "%lf%lf", cvc_lnuy+2*mu, cvc_lnuy+2*mu+1);
  }
  fclose(ofs);

  /* allocate memory for the spinor fields */
  no_fields = 2;
  g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
  for(i=0; i<no_fields; i++) alloc_spinor_field(&g_spinor_field[i], VOLUMEPLUSRAND);

  /****************************************
   * allocate memory for the contractions 
   ****************************************/
  disc  = (double*)calloc(8*VOLUME, sizeof(double));
  if( disc == (double*)NULL ) { 
    fprintf(stderr, "could not allocate memory for disc\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(3);
  }
  for(ix=0; ix<8*VOLUME; ix++) disc[ix] = 0.;

  disc2 = (double*)calloc(8*VOLUME, sizeof(double));
  if( disc2 == (double*)NULL ) { 
    fprintf(stderr, "could not allocate memory for disc2\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(3);
  }
  for(ix=0; ix<8*VOLUME; ix++) disc2[ix] = 0.;

  work  = (double*)calloc(48*VOLUME, sizeof(double));
  if( work == (double*)NULL ) { 
    fprintf(stderr, "could not allocate memory for work\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(3);
  }

  /****************************************
   * prepare Fourier transformation arrays
   ****************************************/
  in  = (fftw_complex*)malloc(FFTW_LOC_VOLUME*sizeof(fftw_complex));
  if(in==(fftw_complex*)NULL) {    
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(4);
  }

  if(g_resume==1) { /* read current disc from file */
    sprintf(filename, ".outcvc_current.%.4d", Nconf);
    c = read_contraction(disc, &count, filename, 8);

#ifdef MPI
    MPI_Gather(&c, 1, MPI_INT, status, 1, MPI_INT, 0, g_cart_grid);
    if(g_cart_id==0) {
      /* check the entries in status */
      for(i=0; i<g_nproc; i++) 
        if(status[i]!=0) { status[0] = 1; break; }
    }
    MPI_Bcast(status, 1, MPI_INT, 0, g_cart_grid);
    if(status[0]==1) {
      for(ix=0; ix<8*VOLUME; ix++) disc[ix] = 0.;
      count = 0;
    }
#else
    if(c != 0) {
      fprintf(stdout, "could not read current disc; start new\n");
      for(ix=0; ix<8*VOLUME; ix++) disc[ix] = 0.;
      count = 0;
    }
#endif
    if(g_cart_id==0) fprintf(stdout, "starting with count = %d\n", count);
  }  /* of g_resume ==  1 */

  if(do_gt==1) {
    /***********************************
     * initialize gauge transformation 
     ***********************************/
    init_gauge_trafo(&gauge_trafo,1.0);
    fprintf(stdout, "applying gauge trafo to gauge field\n");
    apply_gt_gauge(gauge_trafo);
     plaquette(&plaq);
     if(g_cart_id==0) fprintf(stdout, "plaquette plaq = %25.16e\n", plaq);
  } 
  unit_trace[0] = 0.;
  unit_trace[1] = 0.;
  D_trace[0] = 0.;
  D_trace[1] = 0.;
  
  /****************************************
   * start loop on source id.s
   ****************************************/
  for(sid=g_sourceid; sid<=g_sourceid2; sid++) {

    /****************************************
     * read the new propagator
     ****************************************/
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif

    /****************************************
     * check: write source before D-appl.
     ****************************************/
/*
    if(format==0) {
      sprintf(filename, "%s.%.4d.%.2d", filename_prefix, Nconf, sid);
      read_lime_spinor(g_spinor_field[0], filename, 0);
    }
    for(ix=0; ix<12*VOLUME; ix++) {
      fprintf(stdout, "source: %6d%25.16e%25.16e\n", ix, g_spinor_field[0][2*ix], g_spinor_field[0][2*ix+1]);
    }
*/

    if(format==0) {
      sprintf(filename, "%s.%.4d.%.2d.inverted", filename_prefix, Nconf, sid);
      /* sprintf(filename, "%s.%.4d.%.2d", filename_prefix, Nconf, sid); */
      if(read_lime_spinor(g_spinor_field[1], filename, 0) != 0) break;
    }
    else if(format==1) {
      sprintf(filename, "%s.%.4d.%.5d.inverted", filename_prefix, Nconf, sid);
      if(read_cmi(g_spinor_field[1], filename) != 0) break;
    }
    xchange_field(g_spinor_field[1]);

    if(do_gt==1) {
      fprintf(stdout, "applying gt on propagators\n");
      for(ix=0; ix<VOLUME; ix++) {
        _fv_eq_cm_ti_fv(spinor1, gauge_trafo+18*ix, g_spinor_field[1]+_GSI(ix));
        _fv_eq_fv(g_spinor_field[1]+_GSI(ix), spinor1);
      }
    }

#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    fprintf(stdout, "time to read prop.: %e seconds\n", retime-ratime);

    count++;

    /****************************************
     * calculate the source: apply Q_phi_tbc
     ****************************************/
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    Q_phi_tbc(g_spinor_field[0], g_spinor_field[1]);
    xchange_field(g_spinor_field[0]); 
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "time to calculate source: %e seconds\n", retime-ratime);

    /****************************************
     * check: write source after D-appl.
     ****************************************/
/*
     for(ix=0; ix<12*VOLUME; ix++) {
       fprintf(stdout, "D_source: %6d%25.16e%25.16e\n", ix, g_spinor_field[0][2*ix], g_spinor_field[0][2*ix+1]);
     }
*/

    /****************************************
     * add new contractions to (existing) disc
     ****************************************/
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    for(mu=0; mu<4; mu++) { /* loop on Lorentz index of the current */
      iix = _GWI(mu,0,VOLUME);
      for(ix=0; ix<VOLUME; ix++) {    /* loop on lattice sites */
        _cm_eq_cm_ti_co(U_, &g_gauge_field[_GGI(ix, mu)], &co_phase_up[mu]);

        /* first contribution */
        _fv_eq_cm_ti_fv(spinor1, U_, &g_spinor_field[1][_GSI(g_iup[ix][mu])]);
	_fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
	_fv_mi_eq_fv(spinor2, spinor1);
	_co_eq_fv_dag_ti_fv(&w, &g_spinor_field[0][_GSI(ix)], spinor2);
	disc[iix  ] -= 0.5 * w.re;
	disc[iix+1] -= 0.5 * w.im;

        /* second contribution */
	_fv_eq_cm_dag_ti_fv(spinor1, U_, &g_spinor_field[1][_GSI(ix)]);
	_fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
	_fv_pl_eq_fv(spinor2, spinor1);
	_co_eq_fv_dag_ti_fv(&w, &g_spinor_field[0][_GSI(g_iup[ix][mu])], spinor2);
	disc2[iix  ] -= 0.5 * w.re;
	disc2[iix+1] -= 0.5 * w.im;

        iix += 2;
      }  /* of ix */
    }    /* of mu */

#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    fprintf(stdout, "[%2d] contractions for CVC in %e seconds\n", g_cart_id, retime-ratime);

    /***************************************************
     * check: convergence of trace of unit matrix
     ***************************************************/
     _co_eq_fv_dag_ti_fv(&w, g_spinor_field[0]+_GSI(g_source_location), g_spinor_field[0]+_GSI(g_source_location));
     unit_trace[0] += w.re;
     unit_trace[1] += w.im;
     fprintf(stdout, "unit_trace: %4d%25.16e%25.16e\n", count, w.re, w.im);
     _co_eq_fv_dag_ti_fv(&w, g_spinor_field[0]+_GSI(g_source_location), g_spinor_field[0]+_GSI(g_iup[g_source_location][0]));
     fprintf(stdout, "shift_trace: %4d%25.16e%25.16e\n", count, w.re, w.im);

    /***************************************************
     * check: convergence of trace D_u(source_location, source_location)
     ***************************************************/
     Q_phi_tbc(g_spinor_field[1], g_spinor_field[0]);
     _co_eq_fv_dag_ti_fv(&w, g_spinor_field[0]+_GSI(g_source_location), g_spinor_field[1]+_GSI(g_source_location));
     D_trace[0] += w.re;
     D_trace[1] += w.im;
/*     fprintf(stdout, "D_trace: %4d%25.16e%25.16e\n", count, D_trace[0]/(double)count, D_trace[1]/(double)count); */
     fprintf(stdout, "D_trace: %4d%25.16e%25.16e\n", count, w.re, w.im); 


    /***************************************************
     * save results for count = multiple of Nsave 
     ***************************************************/
    if(count%Nsave == 0) {

      if(g_cart_id == 0) fprintf(stdout, "save results for count = %d\n", count);

      /* save the result in position space */

      /* divide by number of propagators */
      for(ix=0; ix<8*VOLUME; ix++) work[ix] = disc[ix]  / (double)count;
      sprintf(filename, "outcvc_Xm.%.4d.%.4d", Nconf, count);
      write_contraction(work, NULL, filename, 4, 2, 0);
      for(ix=0; ix<8*VOLUME; ix++) work[ix] = disc2[ix] / (double)count;
      sprintf(filename, "outcvc_Xp.%.4d.%.4d", Nconf, count);
      write_contraction(work, NULL, filename, 4, 2, 0);
      for(ix=0; ix<8*VOLUME; ix++) work[ix] = (disc[ix] + disc2[ix]) / (double)count;
      sprintf(filename, "outcvc_X.%.4d.%.4d", Nconf, count);
      write_contraction(work, NULL, filename, 4, 2, 0);

#ifdef MPI
      ratime = MPI_Wtime();
#else
      ratime = (double)clock() / CLOCKS_PER_SEC;
#endif

      /****************************************
       * Fourier transform data, copy to work
       ****************************************/
      for(mu=0; mu<4; mu++) {
        memcpy((void*)in, (void*)(work+_GWI(mu,0,VOLUME)), 2*VOLUME*sizeof(double));
#ifdef MPI
        fftwnd_mpi(plan_p, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
        fftwnd_one(plan_p, in, NULL);
#endif
        memcpy((void*)(work+_GWI(mu,0,VOLUME)), (void*)in, 2*VOLUME*sizeof(double));
      }  /* of mu =0 ,..., 3*/

      /* fnorm = 1. / ((double)count); */
      fprintf(stdout, "fnorm = %e\n", fnorm);
      for(mu=0; mu<4; mu++) {
      for(nu=0; nu<4; nu++) {
        cp1 = (complex*)(work+_GWI(mu,0,VOLUME));
        cp2 = (complex*)(cvc_lnuy+2*nu);
        cp3 = (complex*)(work+_GWI(4+4*mu+nu,0,VOLUME));
     
        for(x0=0; x0<T; x0++) {
	  q[0] = (double)(x0+Tstart) / (double)T_global;
        for(x1=0; x1<LX; x1++) {
	  q[1] = (double)(x1) / (double)LX;
        for(x2=0; x2<LY; x2++) {
	  q[2] = (double)(x2) / (double)LY;
        for(x3=0; x3<LZ; x3++) {
	  q[3] = (double)(x3) / (double)LZ;
	  ix = g_ipt[x0][x1][x2][x3];
	  w.re = cos( M_PI * ( q[mu] - q[nu] - 2.*(sx0*q[0]+sx1*q[1]+sx2*q[2]+sx3*q[3])) );
	  w.im = sin( M_PI * ( q[mu] - q[nu] - 2.*(sx0*q[0]+sx1*q[1]+sx2*q[2]+sx3*q[3])) );
/*          fprintf(stdout, "mu=%3d, nu=%3d, t=%3d, x=%3d, y=%3d, z=%3d, phase= %21.12e + %21.12ei\n", \
              mu, nu, x0, x1, x2, x3, w.re, w.im); */
	  _co_eq_co_ti_co(&w1, cp1, cp2);
	  _co_eq_co_ti_co(cp3, &w1, &w);
          /* _co_ti_eq_re(cp3, fnorm); */
	  cp1++; cp3++;
	}
	}
	}
	}

      }
      }
  
      /* save the result in momentum space */
      sprintf(filename, "outcvc_P.%.4d.%.4d", Nconf, count);
      write_contraction(work+_GWI(4,0,VOLUME), NULL, filename, 16, 2, 0);

#ifdef MPI
      retime = MPI_Wtime();
#else
      retime = (double)clock() / CLOCKS_PER_SEC;
#endif
      if(g_cart_id==0) fprintf(stdout, "time to cvc save results: %e seconds\n", retime-ratime);

    }  /* of count % Nsave == 0 */

  }  /* of loop on sid */

  if(g_resume==1) {
    /* write current disc to file */
    sprintf(filename, ".outcvc_current.%.4d", Nconf);
    write_contraction(disc, &count, filename, 4, 0, 0);

  }

  /**************************************
   * free the allocated memory, finalize
   **************************************/
  free(g_gauge_field);
  if(do_gt==1) free(gauge_trafo);
  for(i=0; i<no_fields; i++) free(g_spinor_field[i]);
  free(g_spinor_field);
  free_geometry();
  fftw_free(in);
  free(disc); free(disc2);
  free(work);
#ifdef MPI
  fftwnd_mpi_destroy_plan(plan_p);
  free(status);
  MPI_Finalize();
#else
  fftwnd_destroy_plan(plan_p);
#endif

  return(0);

}
Exemplo n.º 12
0
Arquivo: hdisc.c Projeto: etmc/cvc
int main(int argc, char **argv) {
  
  int c, i, mu, K=16;
  int count        = 0;
  int filename_set = 0;
  int x0;
  int estat; // exit status
  unsigned long int ix, idx;
  unsigned long int x1, VOL3, index_min;
  int sid;
  double *disc = (double*)NULL, *buffer=NULL, *buffer2=NULL;
  int verbose = 0;
  char filename[100];
  double ratime, retime;
  double plaq;
  double spinor1[24];
  double *gauge_field_f=NULL, *gauge_field_timeslice=NULL;
  double v4norm = 0., vvnorm = 0.;
  double *psi0 = NULL, *psi1 = NULL, *psi2 = NULL, *psi3 = NULL;
  complex w;
  FILE *ofs[4];
  double addreal, addimag;

/* Initialise all the gamma matrix combinations 
   g5, g1, g2, g3, ig0g5, ig0gi, -1, -g5gi, g0 -g5g0gi */
  int gindex[] = {5, 1, 2, 3, 6, 7, 8, 9, 4, 10, 11, 12, 0, 13, 14, 15};

  double gsign[]  = {-1., 1., 1., 1., -1., 1., 1., 1., 1., 1., 1., 1., 1., 1., -1., 1.};

#ifdef MPI
  MPI_Status status;
#endif

#ifdef MPI
  MPI_Init(&argc, &argv);
#endif

  while ((c = getopt(argc, argv, "h?vgf:")) != -1) {
    switch (c) {
    case 'v':
      verbose = 1;
      break;
    case 'f':
      strcpy(filename, optarg);
      filename_set=1;
      break;
    case 'h':
    case '?':
    default:
      usage();
      break;
    }
  }

  // local time stamp
  g_the_time = time;
  if(g_cart_id == 0) {
    fprintf(stdout, "\n# [disc] using global time stamp %s", ctime(&g_the_time));
  }

  /* set the default values */
  if(filename_set==0) strcpy(filename, "cvc.input");
  fprintf(stdout, "# reading input from file %s\n", filename);
  read_input_parser(filename);

  /* some checks on the input data */
  if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
    if(g_proc_id==0) fprintf(stdout, "T and L's must be set\n");
    usage();
  }
  if(g_kappa == 0.) {
    if(g_proc_id==0) fprintf(stdout, "kappa should be > 0.n");
    usage();
  }

  /* initialize MPI parameters */
  mpi_init(argc, argv);

#ifdef MPI
#  if ! ( (defined PARALLELTX) || (defined PARALLELTXY) )
  T = T_global / g_nproc;
  Tstart = g_cart_id * T;
#  endif
#else
  T            = T_global;
  Tstart       = 0;
#endif
  VOL3 = LX*LY*LZ;
  fprintf(stdout, "# [%2d] parameters:\n"\
                  "# [%2d] T_global     = %3d\n"\
                  "# [%2d] T            = %3d\n"\
		  "# [%2d] Tstart       = %3d\n"\
                  "# [%2d] LX_global    = %3d\n"\
                  "# [%2d] LX           = %3d\n"\
		  "# [%2d] LXstart      = %3d\n",
		  g_cart_id, g_cart_id, T_global, g_cart_id, T, g_cart_id, Tstart, g_cart_id, LX_global, g_cart_id, LX,
		  g_cart_id, LXstart);

  if(init_geometry() != 0) {
    fprintf(stderr, "ERROR from init_geometry\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(1);
  }

  geometry();

  /**********************************************
   * read the gauge field 
   **********************************************/
//  if(N_ape>0 || Nlong>0) {
    alloc_gauge_field(&g_gauge_field, VOLUMEPLUSRAND);
    sprintf(filename, "%s.%.4d", gaugefilename_prefix, Nconf);
    if(g_cart_id==0) fprintf(stdout, "reading gauge field from file %s\n", filename);
    read_lime_gauge_field_doubleprec(filename);
    xchange_gauge();
    plaquette(&plaq);
    if(g_cart_id==0) fprintf(stdout, "# measured plaquette value: %25.16e\n", plaq);
//  } else {
//    g_gauge_field = (double*)NULL;
//  } 
 
  if(Nlong > 0) {
//    N_ape     = 1; 
//    alpha_ape = 0.4;
    if(g_cart_id==0) fprintf(stdout, "# apply fuzzing of gauge field and propagators with parameters:\n"\
                                     "# Nlong = %d\n# N_ape = %d\n# alpha_ape = %f\n", Nlong, N_ape, alpha_ape);
    alloc_gauge_field(&gauge_field_f, VOLUMEPLUSRAND);
#if !( (defined PARALLELTX) || (defined PARALLELTXY) )
    gauge_field_timeslice = (double*)calloc(72*VOL3, sizeof(double));
    if( gauge_field_timeslice == (double*)NULL  ) {
      fprintf(stderr, "Error, could not allocate mem for gauge_field_timeslice\n");
#ifdef MPI
      MPI_Abort(MPI_COMM_WORLD, 1);
      MPI_Finalize();
#endif
      exit(2);
    }

    for(x0=0; x0<T; x0++) {
      memcpy((void*)gauge_field_timeslice, (void*)(g_gauge_field+_GGI(g_ipt[x0][0][0][0],0)), 72*VOL3*sizeof(double));
      for(i=0; i<N_ape; i++) {
        fprintf(stdout, "# [] APE smearing time slice %d step %d\n", x0, i);
        APE_Smearing_Step_Timeslice(gauge_field_timeslice, alpha_ape);
      }
      if(Nlong > 0) {
        fuzzed_links_Timeslice(gauge_field_f, gauge_field_timeslice, Nlong, x0);
      } else {
        memcpy(gauge_field_f+_GGI(g_ipt[x0][0][0][0], 0), gauge_field_timeslice, 72*VOL3*sizeof(double));
      }
    }
    free(gauge_field_timeslice);
#else 
    for(i=0; i<N_ape; i++) {
      APE_Smearing_Step(g_gauge_field, alpha_ape);
      xchange_gauge_field_timeslice(g_gauge_field);
    }

    if ( Nlong > 0 ) {
      if(g_cart_id==0) fprintf(stdout, "\n# [hdisc] fuzzing gauge field ...\n");
      fuzzed_links2(gauge_field_f, g_gauge_field, Nlong);
    } else {
      memcpy(gauge_field_f, g_gauge_field, 72*VOLUMEPLUSRAND*sizeof(double));
    }
    xchange_gauge_field(gauge_field_f);
    read_lime_gauge_field_doubleprec(filename);
    xchange_gauge();
#endif
/*
    for(ix=0; ix<VOLUME; ix++) {
      for(mu=0; mu<4; mu++) {
      for(i=0; i<9; i++) {
        fprintf(stdout, "%6d%3d%3d%25.16e%25.16e%25.16e%25.16e\n", ix, mu, i,
          gauge_field_f[_GGI(ix,mu)+2*i], gauge_field_f[_GGI(ix,mu)+2*i+1],
          g_gauge_field[_GGI(ix,mu)+2*i], g_gauge_field[_GGI(ix,mu)+2*i+1]);
      }}
    }
*/
  }  // of if Nlong > 0

  /* allocate memory for the spinor fields */
  no_fields = 8;
  g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
  for(i=0; i<no_fields; i++) alloc_spinor_field(&g_spinor_field[i], VOLUME+RAND);

  /* allocate memory for the contractions */
/*
#ifdef PARALLELTX
  if(g_xs_id==0) {idx = 4 * 4 * K * T_global * 2;}
  else           {idx = 4 * 4 * K * T        * 2;}
#else
  if(g_cart_id==0) {idx = 4 * 4 * K * T_global * 2;}
  else             {idx = 4 * 4 * K*  T        * 2;}
#endif
*/
  disc = (double*)calloc(32*K*T, sizeof(double));
  if( disc==(double*)NULL ) {
    fprintf(stderr, "could not allocate memory for disc\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(3);
  }
  buffer = (double*)calloc(32*K*T, sizeof(double));
  if( buffer==(double*)NULL ) {
    fprintf(stderr, "could not allocate memory for buffer\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(4);
  }
  buffer2 = (double*)calloc(32*K*T_global, sizeof(double));
  if( buffer2==(double*)NULL ) {
    fprintf(stderr, "could not allocate memory for buffer2\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(5);
  }

  if(g_cart_id==0) {
    sprintf(filename, "hdisc-ss.k0v4.%.4d", Nconf);
    ofs[0] = fopen(filename, "w");
    sprintf(filename, "hdisc-sc.k0v4.%.4d", Nconf);
    ofs[1] = fopen(filename, "w");
    sprintf(filename, "hdisc-cs.k0v4.%.4d", Nconf);
    ofs[2] = fopen(filename, "w");
    sprintf(filename, "hdisc-cc.k0v4.%.4d", Nconf);
    ofs[3] = fopen(filename, "w");
    if(ofs[0]==(FILE*)NULL || ofs[1]==(FILE*)NULL || ofs[2]==(FILE*)NULL || ofs[3]==(FILE*)NULL) {
      fprintf(stderr, "Error, could not open files for writing.\n");
#ifdef MPI
        MPI_Abort(MPI_COMM_WORLD, 1);
        MPI_Finalize();
#endif
        exit(6);
    }
  }

  /*****************************************
   *  HPE coefficients
   *****************************************/
/*
  if(format==1) {
*/
    addimag = 2*g_kappa*g_musigma/sqrt(1 + 4*g_kappa*g_kappa*(g_musigma*g_musigma-g_mudelta*g_mudelta)) * 
      LX*LY*LZ*3*4*2.*g_kappa*g_kappa*4;
//    addreal = (1.+2*g_kappa*g_mudelta)/sqrt(1 + 4*g_kappa*g_kappa*(g_musigma*g_musigma-g_mudelta*g_mudelta)) * 
//      LX*LY*LZ*3*4*2.*g_kappa*g_kappa*4;
    addreal = (1.- 2*g_kappa*g_mudelta)/sqrt(1 + 4*g_kappa*g_kappa*(g_musigma*g_musigma-g_mudelta*g_mudelta)) * 
      LX*LY*LZ*3*4*2.*g_kappa*g_kappa*4;
    v4norm = 1. / ( 8. * g_kappa * g_kappa );
    vvnorm = 1. / ( 8. * g_kappa * g_kappa );
/*
  } else {
    addimag = 2*g_kappa*g_musigma/sqrt(1 + 4*g_kappa*g_kappa*(g_musigma*g_musigma-g_mudelta*g_mudelta)) * 
      LX*LY*LZ*3*4*2.*g_kappa*2;
    addreal = (1.+2*g_kappa*g_mudelta)/sqrt(1 + 4*g_kappa*g_kappa*(g_musigma*g_musigma-g_mudelta*g_mudelta)) * 
      LX*LY*LZ*3*4*2.*g_kappa*2;
    v4norm = 1. / ( 4. * g_kappa  );
    vvnorm = 1. / ( 4. * g_kappa  );
  }
*/
  if(g_cart_id==0) fprintf(stdout, "# addimag = %25.16e;\t addreal = %25.16e\n"\
                                   "# v4norm  = %25.16e;\t vvnorm  = %25.16e\n", addimag, addreal, v4norm, vvnorm);

  /******************************************
   * start loop on source id.s
   ******************************************/
  count = -1;
  for(sid=g_sourceid; sid<=g_sourceid2; sid+=g_sourceid_step) {
    for(ix=0; ix<32*K*T; ix++) disc[ix]   = 0.;
    for(ix=0; ix<32*K*T; ix++) buffer[ix]   = 0.;
    for(ix=0; ix<32*K*T_global; ix++) buffer2[ix]   = 0.;

    /* read the new propagator */
    sprintf(filename, "%s.%.4d.%.5d.hinverted", filename_prefix, Nconf, sid); 
/*    sprintf(filename, "%s.%.4d.%.2d.inverted", filename_prefix, Nconf, sid); */
    estat = read_lime_spinor(g_spinor_field[2], filename, 0);
    if( estat != 0 ) {
      fprintf(stderr, "[%2d] Error, could not read from file %s at position 0\n", g_cart_id, filename);
#ifdef MPI
      MPI_Abort(MPI_COMM_WORLD, 1);
      MPI_Finalize();
#endif
      exit(7);
    }
    estat =  read_lime_spinor(g_spinor_field[3], filename, 1);
    if( estat != 0 ) {
      fprintf(stderr, "[%2d] Error, could not read from file %s at position 1\n", g_cart_id, filename);
#ifdef MPI
      MPI_Abort(MPI_COMM_WORLD, 1);
      MPI_Finalize();
#endif
      exit(7);
    }

    count++;
    xchange_field(g_spinor_field[2]);
    xchange_field(g_spinor_field[3]);

    /* calculate the source: apply Q_phi_tbc */
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    Q_h_phi(g_spinor_field[0], g_spinor_field[1], g_spinor_field[2], g_spinor_field[3]);
    xchange_field(g_spinor_field[0]); 
    xchange_field(g_spinor_field[1]); 

    // print the sources
/*
    for(ix=0; ix<VOLUME; ix++) {
      for(mu=0; mu<12; mu++) {
        fprintf(stdout, "%6d%3d%25.16e%25.16e%25.16e%25.16e\n", ix, mu,
          g_spinor_field[0][_GSI(ix)+2*mu], g_spinor_field[0][_GSI(ix)+2*mu+1],
          g_spinor_field[1][_GSI(ix)+2*mu], g_spinor_field[1][_GSI(ix)+2*mu+1]);
      }
    }
*/


#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "\n# [hdisc] time for applying Q_tm_h: %e seconds\n", retime-ratime);


    /* apply gamma5_BdagH4_gamma5 */
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    gamma5_B_h_dagH4_gamma5(g_spinor_field[4], g_spinor_field[5], g_spinor_field[0], g_spinor_field[1], g_spinor_field[6], g_spinor_field[7]);

/*
    for(ix=0; ix<VOLUME; ix++) {
      for(mu=0; mu<12; mu++) {
        fprintf(stdout, "%6d%3d%25.16e%25.16e%25.16e%25.16e\n", ix, mu,
          g_spinor_field[4][_GSI(ix)+2*mu], g_spinor_field[4][_GSI(ix)+2*mu+1],
          g_spinor_field[5][_GSI(ix)+2*mu], g_spinor_field[5][_GSI(ix)+2*mu+1]);
      }
    }
*/

#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "# time for applying noise reduction: %e seconds\n", retime-ratime);


#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(Nlong>0) {
      if(g_cart_id==0) fprintf(stdout, "# fuzzing propagator with Nlong = %d\n", Nlong);
      memcpy((void*)g_spinor_field[6], (void*)g_spinor_field[2], 24*(VOLUME+RAND)*sizeof(double));
/*      xchange_field_timeslice(g_spinor_field[6]); */
      Fuzz_prop3(gauge_field_f, g_spinor_field[6], g_spinor_field[0], Nlong);
      xchange_field_timeslice(g_spinor_field[6]);

      memcpy((void*)g_spinor_field[7], (void*)g_spinor_field[3], 24*(VOLUME+RAND)*sizeof(double));
/*      xchange_field_timeslice(g_spinor_field[7]); */
      Fuzz_prop3(gauge_field_f, g_spinor_field[7], g_spinor_field[1], Nlong);
      xchange_field_timeslice(g_spinor_field[7]);
    } else {
      for(ix=0;ix<VOLUME;ix++) { _fv_eq_zero(g_spinor_field[6]+_GSI(ix)); }
      for(ix=0;ix<VOLUME;ix++) { _fv_eq_zero(g_spinor_field[7]+_GSI(ix)); }
    }

/*
    for(ix=0; ix<VOLUME; ix++) {
      for(mu=0; mu<12; mu++) {
        fprintf(stdout, "%6d%3d%25.16e%25.16e%25.16e%25.16e\n", ix, mu,
          g_spinor_field[6][_GSI(ix)+2*mu], g_spinor_field[6][_GSI(ix)+2*mu+1],
          g_spinor_field[7][_GSI(ix)+2*mu], g_spinor_field[7][_GSI(ix)+2*mu+1]);
      }
    }
*/
    // recalculate the sources --- they are changed in Fuzz_prop3
    Q_h_phi(g_spinor_field[0], g_spinor_field[1], g_spinor_field[2], g_spinor_field[3]);
    xchange_field(g_spinor_field[0]); 
    xchange_field(g_spinor_field[1]); 

#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "# time for fuzzing: %e seconds\n", retime-ratime);

    /********************************
     * add new contractions to disc
     ********************************/
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    for(c=0; c<4; c++)
    {
      if(c==0) { psi0 = g_spinor_field[2]; psi1 = g_spinor_field[4]; psi2 = g_spinor_field[6]; psi3 = g_spinor_field[0]; }
      if(c==1) { psi0 = g_spinor_field[2]; psi1 = g_spinor_field[5]; psi2 = g_spinor_field[6]; psi3 = g_spinor_field[1]; }
      if(c==2) { psi0 = g_spinor_field[3]; psi1 = g_spinor_field[4]; psi2 = g_spinor_field[7]; psi3 = g_spinor_field[0]; }
      if(c==3) { psi0 = g_spinor_field[3]; psi1 = g_spinor_field[5]; psi2 = g_spinor_field[7]; psi3 = g_spinor_field[1]; }

/*
      for(ix=0; ix<VOLUME; ix++) {
        for(mu=0; mu<12; mu++) {
          fprintf(stdout, "%6d%3d%16.7e%16.7e%16.7e%16.7e%16.7e%16.7e%16.7e%16.7e\n", ix, mu,
            psi0[_GSI(ix)+2*mu], psi0[_GSI(ix)+2*mu+1], psi1[_GSI(ix)+2*mu], psi1[_GSI(ix)+2*mu+1],
            psi2[_GSI(ix)+2*mu], psi2[_GSI(ix)+2*mu+1], psi3[_GSI(ix)+2*mu], psi3[_GSI(ix)+2*mu+1]);
        }
      }
*/

      for(x0=0; x0<T; x0++) {
        for(mu=0; mu<16; mu++) {
          index_min =  x0 * K + mu + c * 4 * K * T;
          for(x1=0; x1<VOL3; x1++) {
            ix  = x0*VOL3 + x1;
            idx = _GSI( ix );

            _fv_eq_gamma_ti_fv(spinor1, mu, psi0+idx);
            _co_eq_fv_dag_ti_fv(&w, psi1+idx, spinor1);
	    disc[2*(         index_min)  ] += w.re;
	    disc[2*(         index_min)+1] += w.im;

            if(Nlong>0) {
              _fv_eq_gamma_ti_fv(spinor1, mu, psi2+idx);
    	      _co_eq_fv_dag_ti_fv(&w, psi1+idx, spinor1);
  	      disc[2*(  K*T + index_min)  ] += w.re;
	      disc[2*(  K*T + index_min)+1] += w.im;
            }

            _fv_eq_gamma_ti_fv(spinor1, mu, psi0+idx);
            _co_eq_fv_dag_ti_fv(&w, psi3+idx, spinor1);
	    disc[2*(2*K*T + index_min)  ] += w.re;
	    disc[2*(2*K*T + index_min)+1] += w.im;

            if(Nlong>0) {
              _fv_eq_gamma_ti_fv(spinor1, mu, psi2+idx);
    	      _co_eq_fv_dag_ti_fv(&w, psi3+idx, spinor1);
  	      disc[2*(3*K*T + index_min)  ] += w.re;
	      disc[2*(3*K*T + index_min)+1] += w.im;
            }
          }
        }
      }  // of loop on x0

      for(x0=0; x0<T; x0++) {   
          disc[2*(      x0*K+4 + 4*c*K*T)  ] += addreal;
          disc[2*(      x0*K+5 + 4*c*K*T)+1] -= addimag;

        if(Nlong>0) {
          disc[2*(K*T + x0*K+4 + 4*c*K*T)  ] += addreal;
          disc[2*(K*T + x0*K+5 + 4*c*K*T)+1] -= addimag;
        }

      }
    }  // of c=0,...,4 
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    if(g_cart_id==0) fprintf(stdout, "# time for contracting: %e seconds\n", retime-ratime);


#ifdef MPI
    /* collect results to disc */
#if (defined PARALLELTX) || (defined PARALLELTXY)
    MPI_Allreduce(disc, buffer, 32*K*T, MPI_DOUBLE, MPI_SUM, g_ts_comm);
    MPI_Allgather(buffer, 32*K*T, MPI_DOUBLE, buffer2, 32*K*T, MPI_DOUBLE, g_xs_comm);
#  else
    MPI_Gather(disc, 32*K*T, MPI_DOUBLE, buffer2, 32*K*T, MPI_DOUBLE, 0, g_cart_grid);
#  endif
#else 
    memcpy((void*)buffer2, (void*)disc, 32*K*T_global*sizeof(double));
#endif

    /* write current disc to file */

    if(g_cart_id==0) {
      for(c=0; c<4; c++) {
        if(sid==g_sourceid) fprintf(ofs[c], "#%6d%3d%3d%3d%3d\t%f\t%f\t%f\t%f\n", Nconf, T_global, LX_global, LY_global, LZ, 
          g_kappa, g_mu, g_musigma, g_mudelta);
        for(x0=0; x0<T_global; x0++) {
          for(mu=0; mu<16; mu++) {
            idx = gindex[mu];
            ix = K*(x0%T) + idx + 16*K*T*(x0/T) + c*4*K*T;
            fprintf(ofs[c], "%6d%3d%4d%4d%25.16e%25.16e%25.16e%25.16e%25.16e%25.16e%25.16e%25.16e\n",
              Nconf, mu, x0, sid,
              gsign[mu]*buffer2[2*(      ix)]*v4norm, gsign[mu]*buffer2[2*(      ix)+1]*v4norm,
              gsign[mu]*buffer2[2*(  K*T+ix)]*v4norm, gsign[mu]*buffer2[2*(  K*T+ix)+1]*v4norm,
              gsign[mu]*buffer2[2*(2*K*T+ix)]*vvnorm, gsign[mu]*buffer2[2*(2*K*T+ix)+1]*vvnorm,
              gsign[mu]*buffer2[2*(3*K*T+ix)]*vvnorm, gsign[mu]*buffer2[2*(3*K*T+ix)+1]*vvnorm);
          }
        }
      }
    }
    if(g_cart_id==0) fprintf(stdout, "# finished all sid %d\n", sid);


  }  /* of loop on sid */

  if(g_cart_id==0) { fclose(ofs[0]); fclose(ofs[1]); fclose(ofs[2]); fclose(ofs[3]); }



  /* free the allocated memory, finalize */
  free(g_gauge_field); 
  if(no_fields>0) {
    for(i=0; i<no_fields; i++) free(g_spinor_field[i]);
    free(g_spinor_field);
  }
  free_geometry();
  free(disc);
  free(buffer);
  free(buffer2);
  if(Nlong>0) free(gauge_field_f);

  if(g_cart_id == 0) {
    g_the_time = time(NULL);
    fprintf(stdout, "\n# [disc] %s# [disc] end of run\n", ctime(&g_the_time));
    fprintf(stderr, "\n# [disc] %s# [disc] end of run\n", ctime(&g_the_time));
  }

#ifdef MPI
  MPI_Finalize();
#endif

  return(0);

}
Exemplo n.º 13
0
int main(int argc, char **argv) {

  const int n_c = 3;  // number of colors

  int c, i, j, mu, nu, ir, is, ia, imunu;
  int filename_set = 0;
  int dims[4]      = {0,0,0,0};
  int l_LX_at, l_LXstart_at;
  int source_location, have_source_flag = 0;
  int x0, x1, x2, x3, ix;
  int sx0, sx1, sx2, sx3;
  int isimag[4];
  int gperm[5][4], gperm2[4][4];
  int check_position_space_WI=0;
  int num_threads = 1, nthreads=-1, threadid=-1;
  int exitstatus;
  int write_ascii=0;
  int mms = 0, mass_id = -1;
  int outfile_prefix_set = 0;
  int source_proc_coords[4], source_proc_id = -1;
  int ud_single_file = 0;
  double gperm_sign[5][4], gperm2_sign[4][4];
  double *conn  = NULL;
  double *conn2 = NULL;
  double contact_term[8];
  double *work=NULL;
  int verbose = 0;
  int do_gt   = 0, status;
  char filename[100], contype[400], outfile_prefix[400];
  double ratime, retime;
  double plaq;
  double spinor1[24], spinor2[24], U_[18];
  double *gauge_trafo=(double*)NULL;
  double *phi=NULL, *chi=NULL;
  complex w;
  double Usourcebuff[72], *Usource[4];
  FILE *ofs;

#ifdef MPI
  int *status;
#endif

#ifdef MPI
  MPI_Init(&argc, &argv);
#endif

  while ((c = getopt(argc, argv, "swah?vgf:t:m:o:")) != -1) {
    switch (c) {
    case 'v':
      verbose = 1;
      break;
    case 'g':
      do_gt = 1;
      break;
    case 'f':
      strcpy(filename, optarg);
      filename_set=1;
      break;
    case 'w':
      check_position_space_WI = 1;
      fprintf(stdout, "\n# [avc_exact2_lowmem_xspace] will check Ward identity in position space\n");
      break;
    case 't':
      num_threads = atoi(optarg);
      fprintf(stdout, "\n# [avc_exact2_lowmem_xspace] will use %d threads in spacetime loops\n", num_threads);
      break;
    case 'a':
      write_ascii = 1;
      fprintf(stdout, "\n# [avc_exact2_lowmem_xspace] will write data in ASCII format too\n");
      break;
    case 'm':
      mms = 1;
      mass_id = atoi(optarg);
      fprintf(stdout, "\n# [avc_exact2_lowmem_xspace] will read propagators in MMS format with mass id %d\n", mass_id);
      break;
    case 'o':
      strcpy(outfile_prefix, optarg);
      fprintf(stdout, "\n# [avc_exact2_lowmem_xspace] will use prefix %s for output filenames\n", outfile_prefix);
      outfile_prefix_set = 1;
      break;
    case 's':
      ud_single_file = 1;
      fprintf(stdout, "\n# [avc_exact2_lowmem_xspace] will read up and down propagator from same file\n");
      break;
    case 'h':
    case '?':
    default:
      usage();
      break;
    }
  }

  if(g_cart_id==0) {
    g_the_time = time(NULL);
    fprintf(stdout, "\n# [avc_exact2_lowmem_xspace] using global time stamp %s", ctime(&g_the_time));
  }

  /*********************************
   * set number of openmp threads
   *********************************/
#ifdef OPENMP
  omp_set_num_threads(num_threads);
#endif

  /* set the default values */
  if(filename_set==0) strcpy(filename, "cvc.input");
  fprintf(stdout, "# Reading input from file %s\n", filename);
  read_input_parser(filename);

  /* some checks on the input data */
  if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
    if(g_proc_id==0) fprintf(stderr, "\n[avc_exact2_lowmem_xspace] T and L's must be set\n");
    usage();
  }
  if(g_kappa == 0.) {
    if(g_proc_id==0) fprintf(stderr, "\n[avc_exact2_lowmem_xspace] kappa should be > 0.n");
    usage();
  }

  /* initialize MPI parameters */
  mpi_init(argc, argv);
#ifdef MPI
  if((status = (int*)calloc(g_nproc, sizeof(int))) == (int*)NULL) {
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
    exit(7);
  }
#endif


  dims[0]=T_global; dims[1]=LX; dims[2]=LY; dims[3]=LZ;
#ifndef MPI
  T            = T_global;
  Tstart       = 0;
  l_LX_at      = LX;
  l_LXstart_at = 0;
#endif
  fprintf(stdout, "# [%2d] parameters:\n"\
                  "# [%2d] T            = %3d\n"\
		  "# [%2d] Tstart       = %3d\n"\
		  "# [%2d] l_LX_at      = %3d\n"\
		  "# [%2d] l_LXstart_at = %3d\n",
		  g_cart_id, g_cart_id, T, g_cart_id, Tstart, g_cart_id, l_LX_at,
		  g_cart_id, l_LXstart_at);

#ifdef MPI
  if(T==0) {
    fprintf(stderr, "[%2d] local T is zero; exit\n", g_cart_id);
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
    exit(2);
  }
#endif

  if(init_geometry() != 0) {
    fprintf(stderr, "ERROR from init_geometry\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(1);
  }

  geometry();

  alloc_gauge_field(&g_gauge_field, VOLUMEPLUSRAND);
  if(!(strcmp(gaugefilename_prefix,"identity")==0)) {
    /* read the gauge field */
    sprintf(filename, "%s.%.4d", gaugefilename_prefix, Nconf);
    if(g_cart_id==0) fprintf(stdout, "reading gauge field from file %s\n", filename);
    read_lime_gauge_field_doubleprec(filename);
  } else {
    /* initialize unit matrices */
    if(g_cart_id==0) fprintf(stdout, "\n# [avc_exact] initializing unit matrices\n");
    for(ix=0;ix<VOLUME;ix++) {
      _cm_eq_id( g_gauge_field + _GGI(ix, 0) );
      _cm_eq_id( g_gauge_field + _GGI(ix, 1) );
      _cm_eq_id( g_gauge_field + _GGI(ix, 2) );
      _cm_eq_id( g_gauge_field + _GGI(ix, 3) );
    }
  }
#ifdef MPI
  xchange_gauge();
#endif

  /* measure the plaquette */
  plaquette(&plaq);
  if(g_cart_id==0) fprintf(stdout, "measured plaquette value: %25.16e\n", plaq);
/*
  sprintf(filename, "gauge.%.2d", g_cart_id);
  ofs = fopen(filename, "w");
  for(x0=0;x0<T;x0++) {
  for(x1=0;x1<LX;x1++) {
  for(x2=0;x2<LY;x2++) {
  for(x3=0;x3<LZ;x3++) {
    ix = g_ipt[x0][x1][x2][x3];
    for(mu=0;mu<4;mu++) {
      for(i=0;i<9;i++) {
         fprintf(ofs, "%8d%3d%3d%3d%3d%3d%3d%25.16e%25.16e\n", ix, x0+Tstart, x1+LXstart, x2+LYstart, x3, mu, i, g_gauge_field[_GGI(ix,mu)+2*i], g_gauge_field[_GGI(ix,mu)+2*i+1]);
      }
    }  
  }}}}
  fclose(ofs);

  if(g_cart_id==0) fprintf(stdout, "\nWarning: forced exit\n");
  fflush(stdout);
  fflush(stderr);
#ifdef MPI
  MPI_Abort(MPI_COMM_WORLD, 255);
  MPI_Finalize();
#endif
  exit(255);
*/

  /* allocate memory for the spinor fields */
  no_fields = 2;
  if(mms) no_fields++;
  g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
  for(i=0; i<no_fields; i++) alloc_spinor_field(&g_spinor_field[i], VOLUMEPLUSRAND);
  if(mms) {
    work = g_spinor_field[no_fields-1];
  }

  /* allocate memory for the contractions */
  conn = (double*)calloc(2 * 16 * VOLUME, sizeof(double));
  if( conn==(double*)NULL ) {
    fprintf(stderr, "could not allocate memory for contr. fields\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 3);
    MPI_Finalize();
#endif
    exit(3);
  }
#ifdef OPENMP
#pragma omp parallel for
#endif
  for(ix=0; ix<32*VOLUME; ix++) conn[ix] = 0.;

  conn2 = (double*)calloc(2 * 16 * VOLUME, sizeof(double));
  if( conn2 == NULL ) {
    fprintf(stderr, "could not allocate memory for contr. fields\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 3);
    MPI_Finalize();
#endif
    exit(3);
  }
#ifdef OPENMP
#pragma omp parallel for
#endif
  for(ix=0; ix<32*VOLUME; ix++) conn2[ix] = 0.;

  /***********************************************************
   * determine source coordinates, find out, if source_location is in this process
   ***********************************************************/
#if (defined PARALLELTX) || (defined PARALLELTXY)
  sx0 = g_source_location / (LX_global*LY_global*LZ);
  sx1 = (g_source_location%(LX_global*LY_global*LZ)) / (LY_global*LZ);
  sx2 = (g_source_location%(LY_global*LZ)) / LZ;
  sx3 = (g_source_location%LZ);
  source_proc_coords[0] = sx0 / T;
  source_proc_coords[1] = sx1 / LX;
  source_proc_coords[2] = sx2 / LY;
  source_proc_coords[3] = 0;
  MPI_Cart_rank(g_cart_grid, source_proc_coords, &source_proc_id);
  have_source_flag = (int)(g_cart_id == source_proc_id);
  if(have_source_flag==1) {
    fprintf(stdout, "\n# process %2d has source location\n", source_proc_id);
    fprintf(stdout, "\n# global source coordinates: (%3d,%3d,%3d,%3d)\n",  sx0, sx1, sx2, sx3);
    fprintf(stdout, "\n# source proc coordinates: (%3d,%3d,%3d,%3d)\n",  source_proc_coords[0],
        source_proc_coords[1], source_proc_coords[2], source_proc_coords[3]);
  }
  sx0 = sx0 % T;
  sx1 = sx1 % LX;
  sx2 = sx2 % LY;
  sx3 = sx3 % LZ;
# else
  have_source_flag = (int)(g_source_location/(LX*LY*LZ)>=Tstart && g_source_location/(LX*LY*LZ)<(Tstart+T));
  if(have_source_flag==1) fprintf(stdout, "process %2d has source location\n", g_cart_id);
  sx0 = g_source_location/(LX*LY*LZ)-Tstart;
  sx1 = (g_source_location%(LX*LY*LZ)) / (LY*LZ);
  sx2 = (g_source_location%(LY*LZ)) / LZ;
  sx3 = (g_source_location%LZ);
#endif
  if(have_source_flag==1) { 
    fprintf(stdout, "local source coordinates: (%3d,%3d,%3d,%3d)\n", sx0, sx1, sx2, sx3);
    source_location = g_ipt[sx0][sx1][sx2][sx3];
  }
#ifdef MPI
#  if (defined PARALLELTX) || (defined PARALLELTXY)
  have_source_flag = source_proc_id;
  MPI_Bcast(Usourcebuff, 72, MPI_DOUBLE, have_source_flag, g_cart_grid);
#  else
  MPI_Gather(&have_source_flag, 1, MPI_INT, status, 1, MPI_INT, 0, g_cart_grid);
  if(g_cart_id==0) {
    for(mu=0; mu<g_nproc; mu++) fprintf(stdout, "status[%1d]=%d\n", mu,status[mu]);
  }
  if(g_cart_id==0) {
    for(have_source_flag=0; status[have_source_flag]!=1; have_source_flag++);
    fprintf(stdout, "have_source_flag= %d\n", have_source_flag);
  }
  MPI_Bcast(&have_source_flag, 1, MPI_INT, 0, g_cart_grid);
#  endif
  fprintf(stdout, "[%2d] have_source_flag = %d\n", g_cart_id, have_source_flag);
#else
  have_source_flag = 0;
#endif

/*
  if(g_cart_id==0) fprintf(stdout, "\nWarning: forced exit\n");
  fflush(stdout);
  fflush(stderr);
#ifdef MPI
  MPI_Abort(MPI_COMM_WORLD, 255);
  MPI_Finalize();
#endif
  exit(255);
*/

#ifdef MPI
      ratime = MPI_Wtime();
#else
      ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
  /***********************************************************
   *  initialize the Gamma matrices
   ***********************************************************/
  // gamma_5:
  gperm[4][0] = gamma_permutation[5][ 0] / 6;
  gperm[4][1] = gamma_permutation[5][ 6] / 6;
  gperm[4][2] = gamma_permutation[5][12] / 6;
  gperm[4][3] = gamma_permutation[5][18] / 6;
  gperm_sign[4][0] = gamma_sign[5][ 0];
  gperm_sign[4][1] = gamma_sign[5][ 6];
  gperm_sign[4][2] = gamma_sign[5][12];
  gperm_sign[4][3] = gamma_sign[5][18];
  // gamma_nu gamma_5
  for(nu=0;nu<4;nu++) {
    // permutation
    gperm[nu][0] = gamma_permutation[6+nu][ 0] / 6;
    gperm[nu][1] = gamma_permutation[6+nu][ 6] / 6;
    gperm[nu][2] = gamma_permutation[6+nu][12] / 6;
    gperm[nu][3] = gamma_permutation[6+nu][18] / 6;
    // is imaginary ?
    isimag[nu] = gamma_permutation[6+nu][0] % 2;
    // (overall) sign
    gperm_sign[nu][0] = gamma_sign[6+nu][ 0];
    gperm_sign[nu][1] = gamma_sign[6+nu][ 6];
    gperm_sign[nu][2] = gamma_sign[6+nu][12];
    gperm_sign[nu][3] = gamma_sign[6+nu][18];
    // write to stdout
    if(g_cart_id == 0) {
      fprintf(stdout, "# gamma_%d5 = (%f %d, %f %d, %f %d, %f %d)\n", nu,
          gperm_sign[nu][0], gperm[nu][0], gperm_sign[nu][1], gperm[nu][1], 
          gperm_sign[nu][2], gperm[nu][2], gperm_sign[nu][3], gperm[nu][3]);
    }
  }
  // gamma_nu
  for(nu=0;nu<4;nu++) {
    // permutation
    gperm2[nu][0] = gamma_permutation[nu][ 0] / 6;
    gperm2[nu][1] = gamma_permutation[nu][ 6] / 6;
    gperm2[nu][2] = gamma_permutation[nu][12] / 6;
    gperm2[nu][3] = gamma_permutation[nu][18] / 6;
    // (overall) sign
    gperm2_sign[nu][0] = gamma_sign[nu][ 0];
    gperm2_sign[nu][1] = gamma_sign[nu][ 6];
    gperm2_sign[nu][2] = gamma_sign[nu][12];
    gperm2_sign[nu][3] = gamma_sign[nu][18];
    // write to stdout
    if(g_cart_id == 0) {
    	fprintf(stdout, "# gamma_%d = (%f %d, %f %d, %f %d, %f %d)\n", nu,
        	gperm2_sign[nu][0], gperm2[nu][0], gperm2_sign[nu][1], gperm2[nu][1], 
        	gperm2_sign[nu][2], gperm2[nu][2], gperm2_sign[nu][3], gperm2[nu][3]);
    }
  }

  /**********************************************************
   **********************************************************
   **
   ** first contribution
   **
   **********************************************************
   **********************************************************/  

  /**********************************************
   * loop on the Lorentz index nu at source 
   **********************************************/
for(ia=0; ia<n_c; ia++) {
  for(nu=0; nu<4; nu++) 
  //for(nu=0; nu<4; nu++) 
  {
    // fprintf(stdout, "\n# [avc_exact2_lowmem_xspace] 1st part, processing nu = %d ...\n", nu);

    for(ir=0; ir<4; ir++) {

      // read 1 up-type propagator color components for spinor index ir
	if(!mms) {
      	  get_filename(filename, 0, 3*ir+ia, 1);
          exitstatus = read_lime_spinor(g_spinor_field[0], filename, 0);
          if(exitstatus != 0) {
            fprintf(stderr, "\n# [avc_exact2_lowmem_xspace] Error from read_lime_spinor\n");
            exit(111);
          }
          xchange_field(g_spinor_field[0]);
        } else {
          sprintf(filename, "%s.%.4d.00.%.2d.cgmms.%.2d.inverted", filename_prefix, Nconf, 3*ir+ia, mass_id);
          exitstatus = read_lime_spinor(work, filename, 0);
          if(exitstatus != 0) {
            fprintf(stderr, "\n# [avc_exact2_lowmem_xspace] Error from read_lime_spinor\n");
            exit(111);
          }
          xchange_field(work);
          Qf5(g_spinor_field[0], work, -g_mu);
          xchange_field(g_spinor_field[0]);
        }


      // read 1 dn-type propagator color components for spinor index gamma_perm ( ir )
        if(!mms) {
          if(ud_single_file) {
            get_filename(filename, 0, 3*gperm[nu][ir]+ia, 1);
            exitstatus = read_lime_spinor(g_spinor_field[1], filename, 1);
          } else {
            get_filename(filename, 0, 3*gperm[nu][ir]+ia, -1);
            exitstatus = read_lime_spinor(g_spinor_field[1], filename, 0);
          }
          if(exitstatus != 0) {
            fprintf(stderr, "\n# [avc_exact2_lowmem_xspace] Error from read_lime_spinor\n");
            exit(111);
          }
          xchange_field(g_spinor_field[1]);
        } else {
          sprintf(filename, "%s.%.4d.%.2d.%.2d.cgmms.%.2d.inverted", filename_prefix, Nconf, 4, 3*gperm[nu][ir]+ia, mass_id);
          exitstatus = read_lime_spinor(work, filename, 0);
          if(exitstatus != 0) {
            fprintf(stderr, "\n# [avc_exact2_lowmem_xspace] Error from read_lime_spinor\n");
            exit(111);
          }
          xchange_field(work);
          Qf5(g_spinor_field[1], work, g_mu);
          xchange_field(g_spinor_field[1]);
        }

        phi = g_spinor_field[0];
        chi = g_spinor_field[1];
        //fprintf(stdout, "\n# [nu5] spin index pair (%d, %d); col index %d\n", ir, gperm[nu][ir], ia);
        // 1) gamma_nu gamma_5 x U
        for(mu=0; mu<4; mu++) 
        //for(mu=0; mu<1; mu++) 
        {

          imunu = 4*mu+nu;
#ifdef OPENMP
#pragma omp parallel for private(ix, spinor1, spinor2, U_, w)  shared(imunu, ia, nu, mu)
#endif
          for(ix=0; ix<VOLUME; ix++) {
/*
            threadid = omp_get_thread_num();
            nthreads = omp_get_num_threads();
            fprintf(stdout, "[thread%d] number of threads = %d\n", threadid, nthreads);
*/

            _cm_eq_cm_ti_co(U_, &g_gauge_field[_GGI(ix,mu)], &co_phase_up[mu]);

            _fv_eq_cm_ti_fv(spinor1, U_, phi+_GSI(g_iup[ix][mu]));
            _fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
	    _fv_mi_eq_fv(spinor2, spinor1);
	    _fv_eq_gamma_ti_fv(spinor1, 5, spinor2);
	    _co_eq_fv_dag_ti_fv(&w, chi+_GSI(ix), spinor1);
            if(!isimag[nu]) {
              conn[_GWI(imunu,ix,VOLUME)  ] += gperm_sign[nu][ir] * w.re;
              conn[_GWI(imunu,ix,VOLUME)+1] += gperm_sign[nu][ir] * w.im;
            } else {
              conn[_GWI(imunu,ix,VOLUME)  ] += gperm_sign[nu][ir] * w.im;
              conn[_GWI(imunu,ix,VOLUME)+1] -= gperm_sign[nu][ir] * w.re;
            }

          }  // of ix

#ifdef OPENMP
#pragma omp parallel for private(ix, spinor1, spinor2, U_, w)  shared(imunu, ia, nu, mu)
#endif
          for(ix=0; ix<VOLUME; ix++) {
            _cm_eq_cm_ti_co(U_, &g_gauge_field[_GGI(ix,mu)], &co_phase_up[mu]);

            _fv_eq_cm_dag_ti_fv(spinor1, U_, phi+_GSI(ix));
            _fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
	    _fv_pl_eq_fv(spinor2, spinor1);
	    _fv_eq_gamma_ti_fv(spinor1, 5, spinor2);
	    _co_eq_fv_dag_ti_fv(&w, chi+_GSI(g_iup[ix][mu]), spinor1);
            if(!isimag[nu]) {
              conn[_GWI(imunu,ix,VOLUME)  ] += gperm_sign[nu][ir] * w.re;
              conn[_GWI(imunu,ix,VOLUME)+1] += gperm_sign[nu][ir] * w.im;
            } else {
              conn[_GWI(imunu,ix,VOLUME)  ] += gperm_sign[nu][ir] * w.im;
              conn[_GWI(imunu,ix,VOLUME)+1] -= gperm_sign[nu][ir] * w.re;
            }

          }  // of ix

          // contribution to local-local correlator
#ifdef OPENMP
#pragma omp parallel for private(ix, spinor1, spinor2, U_, w)  shared(imunu, ia, nu, mu)
#endif
          for(ix=0; ix<VOLUME; ix++) {
            _fv_eq_gamma_ti_fv(spinor2, mu, phi+_GSI(ix) );
	    _fv_eq_gamma_ti_fv(spinor1, 5, spinor2);
	    _co_eq_fv_dag_ti_fv(&w, chi+_GSI(ix), spinor1);
            if(!isimag[nu]) {
              conn2[_GWI(imunu,ix,VOLUME)  ] += gperm_sign[nu][ir] * w.re;
              conn2[_GWI(imunu,ix,VOLUME)+1] += gperm_sign[nu][ir] * w.im;
            } else {
              conn2[_GWI(imunu,ix,VOLUME)  ] += gperm_sign[nu][ir] * w.im;
              conn2[_GWI(imunu,ix,VOLUME)+1] -= gperm_sign[nu][ir] * w.re;
            }

          }  // of ix

	} // of mu
    }  // of ir

  }  // of nu
}  // of ia loop on colors

  
  // normalisation of contractions
#ifdef OPENMP
#pragma omp parallel for
#endif
  for(ix=0; ix<32*VOLUME; ix++) conn[ix] *= -0.5;

#ifdef OPENMP
#pragma omp parallel for
#endif
  for(ix=0; ix<32*VOLUME; ix++) conn2[ix] *= -1.;

#ifdef MPI
      retime = MPI_Wtime();
#else
      retime = (double)clock() / CLOCKS_PER_SEC;
#endif
  if(g_cart_id==0) fprintf(stdout, "contractions in %e seconds\n", retime-ratime);

  
  // save results
#ifdef MPI
  ratime = MPI_Wtime();
#else
  ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
  if(outfile_prefix_set) {
    sprintf(filename, "%s/cvc_lvc_x.%.4d.t%.2dx%.2dy%.2dz%.2d", outfile_prefix, Nconf, sx0, sx1, sx2, sx3);
  } else {
    sprintf(filename, "cvc_lvc_x.%.4d.t%.2dx%.2dy%.2dz%.2d", Nconf, sx0, sx1, sx2, sx3);
  }
  sprintf(contype, "cvc - lvc in position space, all 16 components");
  status = write_lime_contraction(conn, filename, 64, 16, contype, Nconf, 0);
  if(status != 0) {
    fprintf(stderr, "[] Error from write_lime_contractions, status was %d\n", status);
    exit(16);
  }

  if(outfile_prefix_set) {
    sprintf(filename, "%s/lvc_lvc_x.%.4d.t%.2dx%.2dy%.2dz%.2d", outfile_prefix, Nconf, sx0, sx1, sx2, sx3);
  } else {
    sprintf(filename, "lvc_lvc_x.%.4d.t%.2dx%.2dy%.2dz%.2d", Nconf, sx0, sx1, sx2, sx3);
  }
  sprintf(contype, "lvc - lvc in position space, all 16 components");
  status = write_lime_contraction(conn2, filename, 64, 16, contype, Nconf, 0);
  if(status != 0) {
    fprintf(stderr, "[] Error from write_lime_contractions, status was %d\n", status);
    exit(17);
  }

#ifndef MPI
  if(write_ascii) {
    if(outfile_prefix_set) {
      sprintf(filename, "%s/cvc_lvc_x.%.4d.ascii", outfile_prefix, Nconf);
    } else {
      sprintf(filename, "cvc_lvc_x.%.4d.ascii", Nconf);
    }
    write_contraction(conn, NULL, filename, 16, 2, 0);

    if(outfile_prefix_set) {
      sprintf(filename, "%s/lvc_lvc_x.%.4d.ascii", outfile_prefix, Nconf);
    } else {
      sprintf(filename, "lvc_lvc_x.%.4d.ascii", Nconf);
    }
    write_contraction(conn2, NULL, filename, 16, 2, 0);
  }
#endif

#ifdef MPI
  retime = MPI_Wtime();
#else
  retime = (double)clock() / CLOCKS_PER_SEC;
#endif
  if(g_cart_id==0) fprintf(stdout, "saved position space results in %e seconds\n", retime-ratime);

#ifndef MPI
  // check the Ward identity in position space
  if(check_position_space_WI) {
    sprintf(filename, "WI_X.%.4d", Nconf);
    ofs = fopen(filename,"w");
    fprintf(stdout, "\n# [avc_exact2_lowmem_xspace] checking Ward identity in position space ...\n");
    for(x0=0; x0<T;  x0++) {
    for(x1=0; x1<LX; x1++) {
    for(x2=0; x2<LY; x2++) {
    for(x3=0; x3<LZ; x3++) {
      fprintf(ofs, "# t=%2d x=%2d y=%2d z=%2d\n", x0, x1, x2, x3);
      ix=g_ipt[x0][x1][x2][x3];
      for(nu=0; nu<4; nu++) {
        w.re = conn[_GWI(4*0+nu,ix,VOLUME)] + conn[_GWI(4*1+nu,ix,VOLUME)]
             + conn[_GWI(4*2+nu,ix,VOLUME)] + conn[_GWI(4*3+nu,ix,VOLUME)]
	     - conn[_GWI(4*0+nu,g_idn[ix][0],VOLUME)] - conn[_GWI(4*1+nu,g_idn[ix][1],VOLUME)]
	     - conn[_GWI(4*2+nu,g_idn[ix][2],VOLUME)] - conn[_GWI(4*3+nu,g_idn[ix][3],VOLUME)];

        w.im = conn[_GWI(4*0+nu,ix,VOLUME)+1] + conn[_GWI(4*1+nu,ix,VOLUME)+1]
            + conn[_GWI(4*2+nu,ix,VOLUME)+1] + conn[_GWI(4*3+nu,ix,VOLUME)+1]
	    - conn[_GWI(4*0+nu,g_idn[ix][0],VOLUME)+1] - conn[_GWI(4*1+nu,g_idn[ix][1],VOLUME)+1]
	    - conn[_GWI(4*2+nu,g_idn[ix][2],VOLUME)+1] - conn[_GWI(4*3+nu,g_idn[ix][3],VOLUME)+1];
      
        fprintf(ofs, "\t%3d%25.16e%25.16e\n", nu, w.re, w.im);
      }
    }}}}
    fclose(ofs);
  }
#endif

  /****************************************
   * free the allocated memory, finalize
   ****************************************/
  free(g_gauge_field);
  for(i=0; i<no_fields; i++) free(g_spinor_field[i]);
  free(g_spinor_field);
  free_geometry();
  if(conn  != NULL) free(conn);
  if(conn2 != NULL) free(conn2);
#ifdef MPI
  free(status);
  MPI_Finalize();
#endif

  if(g_cart_id==0) {
    g_the_time = time(NULL);
    fprintf(stdout, "\n# [cvc_lvc_exact2_lowmem_xspace] %s# [cvc_lvc_exact2_lowmem_xspace] end of run\n", ctime(&g_the_time));
    fprintf(stderr, "\n# [cvc_lvc_exact2_lowmem_xspace] %s# [cvc_lvc_exact2_lowmem_xspace] end of run\n", ctime(&g_the_time));
  }

  return(0);

}
Exemplo n.º 14
0
int main(int argc, char **argv) {
  
  int c, i, mu, nu;
  int count        = 0;
  int filename_set = 0;
  int dims[4]      = {0,0,0,0};
  int l_LX_at, l_LXstart_at;
  int x0, x1, x2, x3, ix;
  int sid;
  double *disc = (double*)NULL;
  double *work = (double*)NULL;
  double *disc_diag = (double*)NULL;
  double phase[4];
  int verbose = 0;
  int do_gt   = 0;
  char filename[100];
  double ratime, retime;
  double plaq;
  double spinor1[24], spinor2[24], U_[18];
  complex w, w1, psi1[4], psi2[4];
  FILE *ofs;

  fftw_complex *in=(fftw_complex*)NULL;

#ifdef MPI
  fftwnd_mpi_plan plan_p, plan_m;
  int *status;
#else
  fftwnd_plan plan_p, plan_m;
#endif

#ifdef MPI
  MPI_Init(&argc, &argv);
#endif

  while ((c = getopt(argc, argv, "h?vgf:")) != -1) {
    switch (c) {
    case 'v':
      verbose = 1;
      break;
    case 'g':
      do_gt = 1;
      break;
    case 'f':
      strcpy(filename, optarg);
      filename_set=1;
      break;
    case 'h':
    case '?':
    default:
      usage();
      break;
    }
  }

  /* set the default values */
  set_default_input_values();
  if(filename_set==0) strcpy(filename, "cvc.input");

  /* read the input file */
  read_input(filename);

  /* some checks on the input data */
  if((T_global == 0) || (LX==0) || (LY==0) || (LZ==0)) {
    if(g_proc_id==0) fprintf(stdout, "T and L's must be set\n");
    usage();
  }
  if(g_kappa == 0.) {
    if(g_proc_id==0) fprintf(stdout, "kappa should be > 0.n");
    usage();
  }

  /* initialize MPI parameters */
  mpi_init(argc, argv);
#ifdef MPI
  if((status = (int*)calloc(g_nproc, sizeof(int))) == (int*)NULL) {
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
    exit(7);
  }
#endif

  /* initialize fftw */
  dims[0]=T_global; dims[1]=LX; dims[2]=LY; dims[3]=LZ;
#ifdef MPI
  plan_p = fftwnd_mpi_create_plan(g_cart_grid, 4, dims, FFTW_BACKWARD, FFTW_MEASURE);
  plan_m = fftwnd_mpi_create_plan(g_cart_grid, 4, dims, FFTW_FORWARD, FFTW_MEASURE);
  fftwnd_mpi_local_sizes(plan_p, &T, &Tstart, &l_LX_at, &l_LXstart_at, &FFTW_LOC_VOLUME);
#else
  plan_p = fftwnd_create_plan(4, dims, FFTW_BACKWARD, FFTW_MEASURE | FFTW_IN_PLACE);
  plan_m = fftwnd_create_plan(4, dims, FFTW_FORWARD,  FFTW_MEASURE | FFTW_IN_PLACE);
  T            = T_global;
  Tstart       = 0;
  l_LX_at      = LX;
  l_LXstart_at = 0;
  FFTW_LOC_VOLUME = T*LX*LY*LZ;
#endif
  fprintf(stdout, "# [%2d] fftw parameters:\n"\
                  "# [%2d] T            = %3d\n"\
		  "# [%2d] Tstart       = %3d\n"\
		  "# [%2d] l_LX_at      = %3d\n"\
		  "# [%2d] l_LXstart_at = %3d\n"\
		  "# [%2d] FFTW_LOC_VOLUME = %3d\n", 
		  g_cart_id, g_cart_id, T, g_cart_id, Tstart, g_cart_id, l_LX_at,
		  g_cart_id, l_LXstart_at, g_cart_id, FFTW_LOC_VOLUME);

#ifdef MPI
  if(T==0) {
    fprintf(stderr, "[%2d] local T is zero; exit\n", g_cart_id);
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
    exit(2);
  }
#endif

  if(init_geometry() != 0) {
    fprintf(stderr, "ERROR from init_geometry\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(1);
  }

  geometry();

  /* read the gauge field */
  alloc_gauge_field(&g_gauge_field, VOLUMEPLUSRAND);
  sprintf(filename, "%s.%.4d", gaugefilename_prefix, Nconf);
  if(g_cart_id==0) fprintf(stdout, "reading gauge field from file %s\n", filename);
  read_lime_gauge_field_doubleprec(filename);
#ifdef MPI
  xchange_gauge();
#endif

  /* measure the plaquette */
  plaquette(&plaq);
  if(g_cart_id==0) fprintf(stdout, "measured plaquette value: %25.16e\n", plaq);

  /* allocate memory for the spinor fields */
  no_fields = 2;
  g_spinor_field = (double**)calloc(no_fields, sizeof(double*));
  for(i=0; i<no_fields; i++) alloc_spinor_field(&g_spinor_field[i], VOLUMEPLUSRAND);

  /* allocate memory for the contractions */
  disc = (double*)calloc(8*VOLUME, sizeof(double));
  work = (double*)calloc(20*VOLUME, sizeof(double));
  if( (disc==(double*)NULL) || (work==(double*)NULL) ) {
    fprintf(stderr, "could not allocate memory for disc/work\n");
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(3);
  }
  for(ix=0; ix<8*VOLUME; ix++) disc[ix] = 0.;

  if(g_subtract == 1) {
    /* allocate memory for disc_diag */
    disc_diag = (double*)calloc(20*VOLUME, sizeof(double));
    if( disc_diag == (double*)NULL ) {
      fprintf(stderr, "could not allocate memory for disc_diag\n");
#ifdef MPI
      MPI_Abort(MPI_COMM_WORLD, 1);
      MPI_Finalize();
#endif
      exit(8);
    }
    for(ix=0; ix<20*VOLUME; ix++) disc_diag[ix] = 0.;
  }

  /* prepare Fourier transformation arrays */
  in  = (fftw_complex*)malloc(FFTW_LOC_VOLUME*sizeof(fftw_complex));
  if(in==(fftw_complex*)NULL) {    
#ifdef MPI
    MPI_Abort(MPI_COMM_WORLD, 1);
    MPI_Finalize();
#endif
    exit(4);
  }

  if(g_resume==1) { /* read current disc from file */
    sprintf(filename, ".outcvc_current.%.4d", Nconf);
    c = read_contraction(disc, &count, filename, 4);
    if( (g_subtract==1) && (c==0) ) {
      sprintf(filename, ".outcvc_diag_current.%.4d", Nconf);
      c = read_contraction(disc_diag, (int*)NULL, filename, 10);
    }
#ifdef MPI
    MPI_Gather(&c, 1, MPI_INT, status, 1, MPI_INT, 0, g_cart_grid);
    if(g_cart_id==0) {
      /* check the entries in status */
      for(i=0; i<g_nproc; i++) 
        if(status[i]!=0) { status[0] = 1; break; }
    }
    MPI_Bcast(status, 1, MPI_INT, 0, g_cart_grid);
    if(status[0]==1) {
      for(ix=0; ix<8*VOLUME; ix++) disc[ix] = 0.;
      count = 0;
    }
#else
    if(c != 0) {
      fprintf(stdout, "could not read current disc; start new\n");
      for(ix=0; ix<8*VOLUME; ix++) disc[ix] = 0.;
      if(g_subtract==1) for(ix=0; ix<20*VOLUME; ix++) disc_diag[ix] = 0.;
      count = 0;
    }
#endif
    if(g_cart_id==0) fprintf(stdout, "starting with count = %d\n", count);
  }  /* of g_resume ==  1 */
  
  /* start loop on source id.s */
  for(sid=g_sourceid; sid<=g_sourceid2; sid++) {

    /* read the new propagator */
/*    sprintf(filename, "%s.%.4d.%.2d", filename_prefix, Nconf, sid); */
    sprintf(filename, "source.%.4d.%.2d.inverted", Nconf, sid);
    if(format==0) {
      if(read_lime_spinor(g_spinor_field[1], filename, 0) != 0) break;
    }
    else if(format==1) {
      if(read_cmi(g_spinor_field[1], filename) != 0) break;
    }
    count++;
    
    xchange_field(g_spinor_field[1]); 

    /* calculate the source: apply Q_phi_tbc */
    Q_phi_tbc(g_spinor_field[0], g_spinor_field[1]);
    xchange_field(g_spinor_field[0]); 

/*
    sprintf(filename, "%s.source.%.2d", filename, g_cart_id);
    ofs = fopen(filename, "w");
    printf_spinor_field(g_spinor_field[0], ofs);
    fclose(ofs);
*/

    /* add new contractions to (existing) disc */
#ifdef MPI
    ratime = MPI_Wtime();
#else
    ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
    for(ix=0; ix<VOLUME; ix++) {    /* loop on lattice sites */
      for(mu=0; mu<4; mu++) { /* loop on Lorentz index of the current */

        _cm_eq_cm_ti_co(U_, &g_gauge_field[_GGI(ix, mu)], &co_phase_up[mu]);

        /* first contribution */
        _fv_eq_cm_ti_fv(spinor1, U_, &g_spinor_field[1][_GSI(g_iup[ix][mu])]);
	_fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
	_fv_mi_eq_fv(spinor2, spinor1);
	_co_eq_fv_dag_ti_fv(&w, &g_spinor_field[0][_GSI(ix)], spinor2);
	disc[_GJI(ix, mu)  ] -= 0.25 * w.re;
	disc[_GJI(ix, mu)+1] -= 0.25 * w.im;
        if(g_subtract==1) {
	  work[_GWI(mu,ix,VOLUME)  ] = -0.25 * w.re;
	  work[_GWI(mu,ix,VOLUME)+1] = -0.25 * w.im;
	}

        /* second contribution */
	_fv_eq_cm_dag_ti_fv(spinor1, U_, &g_spinor_field[1][_GSI(ix)]);
	_fv_eq_gamma_ti_fv(spinor2, mu, spinor1);
	_fv_pl_eq_fv(spinor2, spinor1);
	_co_eq_fv_dag_ti_fv(&w, &g_spinor_field[0][_GSI(g_iup[ix][mu])], spinor2);
	disc[_GJI(ix, mu)  ] -= 0.25 * w.re;
	disc[_GJI(ix, mu)+1] -= 0.25 * w.im;
        if(g_subtract==1) {
	  work[_GWI(mu,ix,VOLUME)  ] -= 0.25 * w.re;
	  work[_GWI(mu,ix,VOLUME)+1] -= 0.25 * w.im;
	}
      }
    }
#ifdef MPI
    retime = MPI_Wtime();
#else
    retime = (double)clock() / CLOCKS_PER_SEC;
#endif
    fprintf(stdout, "[%2d] contractions in %e seconds\n", g_cart_id, retime-ratime);

    if(g_subtract==1) {
      /* add current contribution to disc_diag */
      for(mu=0; mu<4; mu++) {
        for(i=0; i<4; i++) phase[i] = (double)(i==mu);
        memcpy((void*)in, (void*)&work[_GWI(mu,0,VOLUME)], 2*VOLUME*sizeof(double));
#ifdef MPI
        fftwnd_mpi(plan_m, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
        fftwnd_one(plan_m, in, NULL);
#endif
        for(x0=0; x0<T; x0++) {
        for(x1=0; x1<LX; x1++) {
        for(x2=0; x2<LY; x2++) {
        for(x3=0; x3<LZ; x3++) {
	  ix = g_ipt[x0][x1][x2][x3];
	  w.re =  cos( M_PI * 
	    (phase[0]*(double)(Tstart+x0)/(double)T_global + phase[1]*(double)x1/(double)LX + 
	     phase[2]*(double)x2/(double)LY                + phase[3]*(double)x3/(double)LZ) );
	  w.im = -sin( M_PI * 
	    (phase[0]*(double)(Tstart+x0)/(double)T_global + phase[1]*(double)x1/(double)LX + 
	     phase[2]*(double)x2/(double)LY                + phase[3]*(double)x3/(double)LZ) );
	  _co_eq_co_ti_co(&w1, &in[ix], &w);
	  work[_GWI(4+mu,ix,VOLUME)  ] = w1.re;
	  work[_GWI(4+mu,ix,VOLUME)+1] = w1.im;
	}
	}
	}
	}

        memcpy((void*)in, (void*)&work[_GWI(mu,0,VOLUME)], 2*VOLUME*sizeof(double));
#ifdef MPI
        fftwnd_mpi(plan_p, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
        fftwnd_one(plan_p, in, NULL);
#endif
        for(x0=0; x0<T; x0++) {
        for(x1=0; x1<LX; x1++) {
        for(x2=0; x2<LY; x2++) {
        for(x3=0; x3<LZ; x3++) {
	  ix = g_ipt[x0][x1][x2][x3];
	  w.re = cos( M_PI * 
	    (phase[0]*(double)(Tstart+x0)/(double)T_global + phase[1]*(double)x1/(double)LX + 
	     phase[2]*(double)x2/(double)LY                + phase[3]*(double)x3/(double)LZ) );
	  w.im = sin( M_PI * 
	    (phase[0]*(double)(Tstart+x0)/(double)T_global + phase[1]*(double)x1/(double)LX + 
	     phase[2]*(double)x2/(double)LY                + phase[3]*(double)x3/(double)LZ) );
	  _co_eq_co_ti_co(&w1, &in[ix], &w);
	  work[_GWI(mu,ix,VOLUME)  ] = w1.re;
	  work[_GWI(mu,ix,VOLUME)+1] = w1.im;
	}
	}
	}
	}
      }  /* of mu */
      for(ix=0; ix<VOLUME; ix++) {
        i=-1;
        for(mu=0; mu<4; mu++) {
        for(nu=mu; nu<4; nu++) {
	  i++;
	  _co_eq_co_ti_co(&w, (complex*)&work[_GWI(mu,ix,VOLUME)], (complex*)&work[_GWI(4+nu,ix,VOLUME)]);
	  disc_diag[_GWI(ix,i,10)  ] += w.re;
	  disc_diag[_GWI(ix,i,10)+1] += w.im;
	}
	}
      }
    } /* of g_subtract == 1 */

    /* save results for count = multiple of Nsave */
    if(count%Nsave == 0) {
#ifdef MPI
      ratime = MPI_Wtime();
#else
      ratime = (double)clock() / CLOCKS_PER_SEC;
#endif
      if(g_cart_id == 0) fprintf(stdout, "save results for count = %d\n", count);

      /* save the result in position space */
      sprintf(filename, "outcvc_X.%.4d.%.4d", Nconf, count);
      write_contraction(disc, NULL, filename, 4, 1, 0);

      /* Fourier transform data, copy to work */
      for(mu=0; mu<4; mu++) {
        for(i=0; i<4; i++) phase[i] = (double)(i==mu);
        for(ix=0; ix<VOLUME; ix++) {
	  in[ix].re = disc[_GJI(ix,mu)  ];
	  in[ix].im = disc[_GJI(ix,mu)+1];
	}
#ifdef MPI
        fftwnd_mpi(plan_m, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
        fftwnd_one(plan_m, in, NULL);
#endif
        for(x0=0; x0<T; x0++) {
        for(x1=0; x1<LX; x1++) {
        for(x2=0; x2<LY; x2++) {
        for(x3=0; x3<LZ; x3++) {
	  ix = g_ipt[x0][x1][x2][x3];
	  w.re =  cos( M_PI * 
	    (phase[0]*(double)(Tstart+x0)/(double)T_global + phase[1]*(double)x1/(double)LX + 
	     phase[2]*(double)x2/(double)LY                + phase[3]*(double)x3/(double)LZ) );
	  w.im = -sin( M_PI * 
	    (phase[0]*(double)(Tstart+x0)/(double)T_global + phase[1]*(double)x1/(double)LX + 
	     phase[2]*(double)x2/(double)LY                + phase[3]*(double)x3/(double)LZ) );
	  _co_eq_co_ti_co(&w1, &in[ix], &w);
	  work[_GWI(ix,4+mu,8)  ] = w1.re / (double)count;
	  work[_GWI(ix,4+mu,8)+1] = w1.im / (double)count;
	}
	}
	}
	}

        for(ix=0; ix<VOLUME; ix++) {
	  in[ix].re = disc[_GJI(ix, mu)  ];
	  in[ix].im = disc[_GJI(ix, mu)+1];
	}
#ifdef MPI
        fftwnd_mpi(plan_p, 1, in, NULL, FFTW_NORMAL_ORDER);
#else
        fftwnd_one(plan_p, in, NULL);
#endif
        for(x0=0; x0<T; x0++) {
        for(x1=0; x1<LX; x1++) {
        for(x2=0; x2<LY; x2++) {
        for(x3=0; x3<LZ; x3++) {
	  ix = g_ipt[x0][x1][x2][x3];
	  w.re = cos( M_PI * 
	    (phase[0]*(double)(Tstart+x0)/(double)T_global + phase[1]*(double)x1/(double)LX + 
	     phase[2]*(double)x2/(double)LY                + phase[3]*(double)x3/(double)LZ) );
	  w.im = sin( M_PI * 
	    (phase[0]*(double)(Tstart+x0)/(double)T_global + phase[1]*(double)x1/(double)LX + 
	     phase[2]*(double)x2/(double)LY                + phase[3]*(double)x3/(double)LZ) );
	  _co_eq_co_ti_co(&w1, &in[ix], &w);
	  work[_GWI(ix,mu,8)  ] = w1.re / (double)count;
	  work[_GWI(ix,mu,8)+1] = w1.im / (double)count;
	}
	}
	}
	}
	 
      }  /* of mu =0 ,..., 3*/

      /* save the result in momentum space */
      sprintf(filename, "outcvc_P.%.4d.%.4d", Nconf, count);
      write_contraction(work, NULL, filename, 8, 1, 0);

      /* calculate the correlations 00, 01, 02, 03, 11, 12, ..., 23, 33 */
      for(ix=VOLUME-1; ix>=0; ix--) {
        /* copy current data to auxilliary vector */
	memcpy((void*)psi1, (void*)&work[_GWI(ix,0,8)], 8*sizeof(double));
	memcpy((void*)psi2, (void*)&work[_GWI(ix,4,8)], 8*sizeof(double));
	i = -1;
        for(mu=0; mu<4; mu++) {
        for(nu=mu; nu<4; nu++) {
	  i++;
          _co_eq_co_ti_co(&w,&psi1[mu],&psi2[nu]);
	  if(g_subtract !=1 ) {
            work[_GWI(ix,i,10)  ] = w.re / (double)(T_global*LX*LY*LZ);
            work[_GWI(ix,i,10)+1] = w.im / (double)(T_global*LX*LY*LZ);
	  }
	  else {
	    work[_GWI(ix,i,10)  ] =
	      ( w.re - disc_diag[_GWI(ix,i,10)  ]/(double)(count*count) ) / 
	        (double)(T_global*LX*LY*LZ);
	    work[_GWI(ix,i,10)+1] =
	      ( w.im - disc_diag[_GWI(ix,i,10)+1]/(double)(count*count) ) / 
	        (double)(T_global*LX*LY*LZ);
	  }
        }
	}
      }
 
      /* save current results to file */
      sprintf(filename, "outcvc_final.%.4d.%.4d", Nconf, count);
      write_contraction(work, (int*)NULL, filename, 10, 1, 0);
#ifdef MPI
      retime = MPI_Wtime();
#else
      retime = (double)clock() / CLOCKS_PER_SEC;
#endif
      fprintf(stdout, "[%2d] time to save results: %e seconds\n", g_cart_id, retime-ratime);
    }  /* of count % Nsave == 0 */

  }  /* of loop on sid */

  /* write current disc to file */
  sprintf(filename, ".outcvc_current.%.4d", Nconf);
  write_contraction(disc, &count, filename, 4, 0, 0);

  if(g_subtract == 1) {
    /* write current disc_diag to file */
    sprintf(filename, ".outcvc_diag_current.%.4d", Nconf);
    write_contraction(disc_diag, (int*)NULL, filename, 10, 0, 0);
  }

  /* free the allocated memory, finalize */
  free(g_gauge_field); g_gauge_field=(double*)NULL;
  for(i=0; i<no_fields; i++) {
    free(g_spinor_field[i]);
    g_spinor_field[i] = (double*)NULL;
  }
  free(g_spinor_field); g_spinor_field=(double**)NULL;
  free_geometry();
  fftw_free(in);
  free(disc);
  free(work);
  if(g_subtract==1) free(disc_diag);
#ifdef MPI
  fftwnd_mpi_destroy_plan(plan_p);
  fftwnd_mpi_destroy_plan(plan_m);
  free(status);
  MPI_Finalize();
#else
  fftwnd_destroy_plan(plan_p);
  fftwnd_destroy_plan(plan_m);
#endif

  return(0);

}